Design and Analysis of Algorithms (Autumn 2017)

Size: px
Start display at page:

Download "Design and Analysis of Algorithms (Autumn 2017)"

Transcription

1 Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn. Sow alo ow o raak an opimal pa. Soluion. For air rawin, ollowin omi ar (aum i ain i nou o o a on an u i anno or pa). L u n ain ollowin o or or ar: Now layr vrion o rap wi V = 4 layr look lik i: Fir w iniializ ian in ir layr a 0 or, an or or no.

2 Tn w ompu ian or or no wi Bllman-For rurrn (v, k) = min v N (v){(v, k 1) + (v, v)}. Lookin a valu a no 1, 2, 3 an 4 w orv a or pa rom o u 3 an a o 2. Train ak pa a prou i valu w oain:

3 Wi ak o oriinal rap i a. 2. Pa in rap II L G = (V, E) a ir ayli rap an l w : E N a union ainin wi o o G. Rall rom lur a olnk o a pa P in G i in a minimum valu o wi o i. Givn wo vri an o G, ow a amon all pa rom o, w an in on o maximum olnk in im O( E ). Soluion. L u all (v) maximum olnk rom our o no v. T prour o ompu valu i own in Alorim 1. Runnin im analyi (w aum a V E ). T im i O( E ) au opoloial or ak O( E ), an in Alorim 1, in wo or loop, a o G i inp on. Alorim 1 Maximum Bolnk in a DAG 1: prour MaxBolnk(G = (V, E))) 2: opoloial or(g) 3: or (u V \ {}) o 4: (u) 5: () + 6: or (v opoloial orr(g)) o 7: or (u N (v)) o 8: (v) max((v), min((u), w(u, v))) 9: rurn () 3. Flow an inraliy Prov inraliy orm o low: I apaiy union ak only inral valu, n maximum low prou y For-Fulkron mo a propry a i an inr. Morovr, or all (u, v), valu o (u, v) i an inr. Soluion. Ti an provn y inuion: i a a ivn i- p o alorim w aum a low ain o a vrx i inr, i i ay o a riual nwork will av only inral apaii. Tror, any pa oon in riual nwork will av inral olnk, an aumnin pa will inra low y an inral valu. Tror, rulin low in i + 1- p will alo inral. In iniial a, a o 0- iraion, laim ol au nwork a low qual o zro or all. 4. Bipari main uin For-Fulkron Conir ipari rap low.

4 a Simula ruion onir a Wnay lur (alo in our ook S. 27.3) rom maximum ipari main o maximum low, AND n imula For-Fulkron alorim on i inpu. Explain ow o xra maximum main rom maximum low oluion. Soluion. T rulin low nwork i a ollow: a Ar runin For-Fulkron alorim a poil rul i a ollow: 1 a

5 Tror, oon main i {a, }, {, }, {, }. 5. Max low - Jo ainmn wi onrain loa L A a o ay o (ink o ompur o), A a o ar o, an l B a o main. For a o a A A, w know on wi main i an xu. Morovr, a main B an xu: a mo a ivn numr () o ay o; a mo a ivn numr () o ar o; a mo a ivn numr () o oal o (ay or ar). W n o in an ainmn o (a u o) o o main a oy xuion limi on main, an maximiz numr o o ain or xuion. Giv a ruion rom i prolm o a maximum low prolm an aru a i i orr. Soluion. W will uil a nwork N wi ollowin no: Sour, ink, on no a i pr a o (ay or ar), an r no M H i, M E i an M T i or a main. W will a ollowin wi apaii: (M H i, M T i ) = ( i ), (M E i, M T i ) = ( i ), (M T i, ) = ( i ). For a ay o a i a an xu in main w ra an (a i, M E) wi (a i, M E) = 1, an or a ar o a i a an xu in main w ra an (a i, M H) wi (a i, M E ) = 1. Finally, or a o a i w ra an (, a i ) wi (, a i ) = 1. W mu prov a o ainmn prolm an ainmn o k o i an only i r i an inral low in N o valu k. : Suppo w av a ainmn o k o: or a ay/ar o a i, rpivly, ain o main, w a low 1 on (, a i ), (a i, M E/H ), (M E/H, M T ), (M T, ). By onruion, in w ar wi a vali ainmn o o, i i low aii apaii o N an a valu k. : L a low o valu k in N. By onruion, in a only inr valu, r ar xaly k o yp (a i, M E/H ) wi low valu 1. For a o, w ain o a i o main M (k ainmn in oal). By way apaii in N ar in, i i alo a vali o ainmn.

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Combinatorial Optimization

Combinatorial Optimization Cominoril Opimizion Prolm : oluion. Suppo impl unir rp mor n on minimum pnnin r. Cn Prim lorim (or Krukl lorim) u o in ll o m? Explin wy or wy no, n iv n xmpl. Soluion. Y, Prim lorim (or Krukl lorim) n

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Shortest Path With Negative Weights

Shortest Path With Negative Weights Shor Pah Wih Ngaiv Wigh 1 9 18-1 19 11 1-8 1 Conn Conn. Dird hor pah wih ngaiv wigh. Ngaiv yl dion. appliaion: urrny xhang arbirag Tramp amr problm. appliaion: opimal piplining of VLSI hip Shor Pah wih

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

Eager st-ordering. 1 Introduction. Ulrik Brandes

Eager st-ordering. 1 Introduction. Ulrik Brandes Er -Orrin Ulrik Brn Dprmn o Compur & Inormion Sin, Univriy o Konnz ulrik.rn@uni-konnz. Ar. Givn ionn rp G =(V,E) wi{, } E, n -orrin i n orrin v 1,...,v n o V u = v 1, = v n,n vry or vrx o ir-numr n lowr-numr

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Graphs: Paths, trees and flows

Graphs: Paths, trees and flows in in grph rph: Ph, r n flow ph-fir rh fin vri rhl from nohr givn vrx. Th ph r no h hor on. rph r = hor in = = Jori orll n Jori Pi prmn of ompur in = in wn wo no: lngh of h hor ph wn hm rh-fir rh rph p.,

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

Eager st-ordering. Universität Konstanz. Ulrik Brandes. Konstanzer Schriften in Mathematik und Informatik Nr. 171, April 2002 ISSN

Eager st-ordering. Universität Konstanz. Ulrik Brandes. Konstanzer Schriften in Mathematik und Informatik Nr. 171, April 2002 ISSN Univriä Konnz Er -Orrin Ulrik Brn Konnzr Srin in Mmik un Inormik Nr. 171, April 2002 ISSN 1430 3558 Fri Mmik un Siik Fri Inormik un Inormionwin Univriä Konnz F D 188, 78457 Konnz, Grmny Emil: prprin@inormik.uni

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson CMP 6610/4610 Fall 2016 Flow Nework Carola Wenk lide adaped rom lide by Charle Leieron Max low and min c Fndamenal problem in combinaorial opimizaion Daliy beween max low and min c Many applicaion: Biparie

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Analysis of Members with Axial Loads and Moments. (Length effects Disregarded, Short Column )

Analysis of Members with Axial Loads and Moments. (Length effects Disregarded, Short Column ) Analyi o emer wih Axial Loa an omen (Lengh ee Diregare, Shor Column ) A. Reaing Aignmen Chaper 9 o ex Chaper 10 o ACI B. reenaion o he INTERACTION DIAGRA or FAILURE ENVELO We have een ha a given eion an

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Intersection Testing Chapter 16. Department of Computer Engineering Chalmers University of Technology

Intersection Testing Chapter 16. Department of Computer Engineering Chalmers University of Technology Inrion Ting Chapr 6 Dparmn of Compur Enginring Chalmr Uniriy of Thnology Wha for? l A ool n for h graphi popl all h im l Vry imporan omponn: N o mak hm fa! l Fining if an whr a ray hi an obj Piking Ray

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

a b ixā + y b ixb + ay

a b ixā + y b ixb + ay Albrai Topoloy: Solution St #5 1) Lt G,, and x X. Baus X is Hausdor and x φ (x), thr ar opn nihborhoods U x o x and U φ(x) o φ (x) whih ar disjoint. Thn V,x : U x φ 1 (U φ(x)), is also an opn nihborhood

More information

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s CSE Alorihm Rihr Anron Dijkr lorihm Sinl Sor Shor Ph Prolm Gin rph n r r Drmin in o ry r rom Iniy hor ph o h r Epr onily hor ph r Eh r h poinr o pror on hor ph Conr Shor Ph Tr rom Wrmp - - I P i hor ph

More information

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths Shor Ph CSE Alorihm Rihr Anron Lr 0- Minimm Spnnin Tr Ni Co E Dijkr lorihm m poii o For om ppliion, ni o mk n Shor ph no wll in i rph h ni o yl - - - Ni Co E Priw Topoloil Sor n or olin h hor ph prolm

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Labeling Problem & Graph-Based Solution

Labeling Problem & Graph-Based Solution Lling Prolm & Grph-B Soluion Am M. Ali Lling Prolm In lling Prolm w hv o i P n o ll L : rprn img ur {.g. pixl, g, img gmn,.}. Fur my hv om nurl ruur pixl r rrng in 2D rry. : rprn innii, iprii,. P L Lling

More information

Distributed Algorithms for Secure Multipath Routing in Attack-Resistant Networks

Distributed Algorithms for Secure Multipath Routing in Attack-Resistant Networks 1 Diriu Algorihm or Sur Muliph Rouing in Ak-Rin Nwork Prik P. C. L, Vihl Mir, n Dn Runin Ar To proivly n gin inrur rom rily joprizing ingl-ph ion, w propo iriu ur muliph oluion o rou ro mulipl ph o h inrur

More information

F (u) du. or f(t) = t

F (u) du. or f(t) = t 8.3 Topic 9: Impulses and dela funcions. Auor: Jeremy Orloff Reading: EP 4.6 SN CG.3-4 pp.2-5. Warmup discussion abou inpu Consider e rae equaion d + k = f(). To be specific, assume is in unis of d kilograms.

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Chapter 8 Objectives

Chapter 8 Objectives haper 8 Engr8 ircui Analyi Dr uri Nelon haper 8 Objecive Be able o eermine he naural an he ep repone of parallel circui; Be able o eermine he naural an he ep repone of erie circui. Engr8 haper 8, Nilon

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Phonics Bingo Ladders

Phonics Bingo Ladders Poi Bio Lddr Poi Bio Lddr Soli Ti Rour Soli I. r r riio o oooy did rroduil or lroo u. No or r o uliio y rrodud i wol or i r, or ord i rrivl y, or rid i y wy or y y, lroi, il, oooyi, rordi, or orwi, wiou

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

LAUREL HILL VERMONT APRIL 2014

LAUREL HILL VERMONT APRIL 2014 MY Y / OVR O OP MP R OP Y R Y K R U M R PK R R OM R P U ROU P O R RMP OO R MP MOU R RR UR R OU V OR V M O OR R OP R R R OO JOV Y V R V OO Y OUR PKY U V O VY MP O R R UR R R O O V R R R R RO Y P Y QU RU

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Maximm Flo 5/6/17 21:08 Preenaion for e ih he exbook, Algorihm Deign and Applicaion, by M. T. Goodrich and R. Tamaia, Wiley, 2015 Maximm Flo χ 4/6 4/7 1/9 2015 Goodrich and Tamaia Maximm Flo 1 Flo Neork

More information

COSC 3361 Numerical Analysis I Ordinary Differential Equations (I) - Introduction

COSC 3361 Numerical Analysis I Ordinary Differential Equations (I) - Introduction COSC 336 Numerial Analsis I Ordinar Dierenial Equaions I - Inroduion Edgar Gabriel Fall 5 COSC 336 Numerial Analsis I Edgar Gabriel Terminolog Dierenial equaions: equaions onaining e derivaive o a union

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

û s L u t 0 s a ; i.e., û s 0

û s L u t 0 s a ; i.e., û s 0 Te Hille-Yosida Teorem We ave seen a wen e absrac IVP is uniquely solvable en e soluion operaor defines a semigroup of bounded operaors. We ave no ye discussed e condiions under wic e IVP is uniquely solvable.

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Math 2214 Solution Test 1 B Spring 2016

Math 2214 Solution Test 1 B Spring 2016 Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

More information

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair Mor ppl Novmbr 8 N-Compo r Rparabl m h Rparma Dog Ohr ork a ror Rpar Jag Yag E-mal: jag_ag7@6om Xau Mg a uo hg ollag arb Normal Uvr Yaq ua Taoao ag uppor b h Fouao or h aural o b prov o Cha 5 uppor b h

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURE 0 Nework Flow Applicaion Biparie maching Edge-dijoin pah Adam Smih 0//0 A. Smih; baed on lide by E. Demaine, C. Leieron, S. Rakhodnikova, K. Wayne La ime: Ford-Fulkeron

More information

LOWELL, MICHIGAN. THURSDAY, FEBRUARY ROBEIIT E. S P H I N G E T T

LOWELL, MICHIGAN. THURSDAY, FEBRUARY ROBEIIT E. S P H I N G E T T R R AK AY A x \ ( z A ( U U (? - A > - ( x-x ) \ x A! A A z : A : * K A K A z > x x q - x x 93- A P K A R Az x x 4 U z A R X- A \ A U A URAY RUARY 23 933 U X X X X P P P P P R P P P 4 q AY AA A K [! A

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information