Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Size: px
Start display at page:

Download "Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions"

Transcription

1 Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion Reduce Prolem A o Prolem B Conver an inance of Prolem A o an inance Prolem B Ue a oluion of Prolem B o ge a oluion o Prolem A Pracical Ue a program for Prolem B o olve Prolem A Theoreical Show ha Prolem B i a lea a hard a Prolem A Prolem Reducion Example Reduce he prolem of finding he Maximum of a e of ineger o finding he Minimum of a e of ineger Find he maximum of: 8, -,,,, -6 Conruc an equivalen minimizaion prolem Undireced Nework Flow Undireced graph wih edge capaciie Flow may go eiher direcion along he edge (ujec o he capaciy conrain) u Biparie Maching A graph G=(V,E) i iparie if he verice can e pariioned ino dijoin e X,Y A maching M i a ue of he edge ha doe no hare any verice 5 Find a maching a large a poile v Conruc an equivalen flow prolem

2 Applicaion A collecion of eacher A collecion of coure And a graph howing which eacher can each which coure RA 0 Convering Maching o Nework Flow PB CC DG AK 6 0 Finding edge dijoin pah Theorem The maximum numer of edge dijoin pah equal he minimum numer of edge whoe removal eparae from Conruc a maximum cardinaliy e of edge dijoin pah Circulaion Prolem Direced graph wih capaciie, c(e) on he edge, and demand d(v) on verice Find a flow funcion ha aifie he capaciy conrain and he verex demand 0 <= f(e) <= c(e) u f in (v) f ou (v) = d(v) Circulaion fac: Feaiiliy prolem 5 d(v) < 0: ource; d(v) > 0: ink Mu have Σ v d(v)=0 o e feaile v -5 Find a circulaion in he following graph - a e c f h 9 8 d 5 g -5

3 Reducing he circulaion prolem o Nework flow 5 a u v -5 Formal reducion Add ource node, and ink node For each node v, wih d(v) < 0, add an edge from o v wih capaciy -d(v) For each node v, wih d(v) > 0, add an edge from v o wih capaciy d(v) Find a maximum - flow. If hi flow ha ize Σ v cap(,v) hen he flow give a circulaion aiifying he demand Circulaion wih loweround on flow on edge Each edge ha a loweround l(e). The flow f mu aify l(e) <= f(e) <= c(e) Removing loweround on edge Loweround can e hifed o he demand a, x y -,5 0,, -, y y Formal reducion L in (v): um of loweround on incoming edge L ou (v): um of loweround on ougoing edge Creae new demand d and capaciie c on verice and edge d (v) = d(v) + l ou (v) l in (v) c (e) = c(e) l(e) Applicaion Cuomized urvey Ak cuomer aou produc Only ak cuomer aou produc hey ue Limied numer of queion you can ak each cuomer Need o ak a cerain numer of cuomer aou each produc Informaion availale aou which produc each cuomer ha ued

4 Deail Circulaion conrucion Cuomer C,..., C n Produc P,..., P m S i i he e of produc ued y C i Cuomer C i can e aked eween c i and c i queion Queion aou produc P j mu e aked on eween p j and p j urvey Today opic Open Pi Mining Prolem Tak Selecion Prolem Reducion o Min Cu prolem S, T i a cu if S, T i a pariion of he verice wih in S and in T The capaciy of an S, T cu i he um of he capaciie of all edge going from S o T Open Pi Mining Each uni of earh ha a profi (poily negaive) Geing o he ore elow he urface require removing he dir aove Te drilling give reaonale eimae of co Plan an opimal mining operaion Mine Graph Deermine an opimal mine

5 Precedence graph G=(V,E) Each v in V ha a profi p(v) A e F if feaile if when w in F, and (v,w) in E, hen v in F. Find a feaile e o maximize he profi Generalizaion Min cu algorihm for profi maximizaion Conruc a flow graph where he minimum cu idenifie a feaile e ha maximize profi Precedence graph conrucion Precedence graph G=(V,E) Each edge in E ha infinie capaciy Add verice, Each verex in V i aached o and wih finie capaciy edge Show a finie value cu wih a lea wo verice on each ide of he cu Infinie Finie The ink ide of a finie cu i a feaile e No edge permied from S o T If a verex i in T, all of i anceor are in T If p(v) > 0, cap(v,) = p(v) cap(,v) = 0 If p(v) < 0 cap(,v) = -p(v) cap(v,) = 0 If p(v) = 0 cap(,v) = 0 cap(v,) = 0 Seing he co

6 Enumerae all finie, cu and how heir capaciie Minimum cu give opimal oluion Why? Compuing he Profi Co(W) = Σ {w in W; p(w) < 0} -p(w) Benefi(W) = Σ {w in W; p(w) > 0} p(w) Profi(W) = Benefi(W) Co(W) Expre Cap(S,T) in erm of B, C, Co(T), Benefi(T), and Profi(T) Maximum co and enefi C = Co(V) B = Benefi(V) Summary Conruc flow graph Infinie capaciy for precedence edge Capaciie o ource/ink aed on co/enefi Finie cu give a feaile e of ak Minimizing he cu correpond o maximizing he profi Find minimum cu wih a nework flow algorihm Today opic More nework flow reducion Airplane cheduling Image egmenaion Baeall eliminaion

7 Airplane Scheduling Given an airline chedule, and aring locaion for he plane, i i poile o ue a fixed e of plane o aify he chedule. Schedule [egmen] Deparure, arrival pair (ciie and ime) Approach Conruc a circulaion prolem where pah of flow give egmen flown y each plane Example Seale->San Francico, 9:00 :00 Seale->Denver, 8:00 :00 San Francico -> Lo Angele, :00 :00 Sal Lake Ciy -> Lo Angele, 5:00-7:00 San Diego -> Seale, 7:0-> :00 Lo Angele -> Seale, 8:00->:00 Fligh ime: Denver->Sal Lake Ciy, hour Lo Angele->San Diego, hour Can hi chedule e full filled wih wo plane, aring from Seale? Compaile egmen Segmen S and S are compaile if he ame plane can e ued on S and S End of S equal ar of S, and enough ime for urn around eween arrival and deparure ime End of S i differen from S, u here i enough ime o fly eween ciie Graph repreenaion Each egmen, S i, i repreened a a pair of verice (d i, a i, for deparure and arrival), wih an edge eween hem. d i Add an edge eween a i and d j if S i i compaile wih S j. a i a i d j Seing up a flow prolem Reul d i, a i The plane can aify he chedule iff here i a feaile circulaion 0, a i d j - P i P i

8 Image Segmenaion Separae foreground from ackground Image analyi a i : value of aigning pixel i o he foreground i : value of aigning pixel i o he ackground p ij : penaly for aigning i o he foreground, j o he ackground or vice vera A: foreground, B: ackground Q(A,B) = Σ {i in A} a i + Σ {j in B} j - Σ {(i,j) in E, i in A, j in B} p ij Pixel graph o flow graph Mincu Conrucion Baeall eliminaion a v u p vu p uv v Can he Dinoaur win he league? Remaining game: AB, AC, AD, AD, AD, BC, BC, BC, BD, CD W L An Bee Cockroache Dinoaur 5 v A eam win he league if i ha ricly more win han any oher eam a he end of he eaon A eam ie for fir place if no eam ha more win, and here i ome oher eam wih he ame numer of win

9 Baeall eliminaion Can he Frui Flie win he league? Remaining game: AC, AD, AD, AD, AF, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF W L An 7 Bee 6 7 Cockroache 6 7 Dinoaur Earhworm Frui Flie 5 Aume Frui Flie win remaining game Frui Flie are ied for fir place if no eam win more han 9 game Allowale win An () Bee () Cockroache () Dinoaur (5) Earhworm (5) 8 game o play AC, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, CE, CE, CE, DE W L An 7 Bee 6 8 Cockroache 6 9 Dinoaur Earhworm Frui Flie 9 5 Remaining game AC, AD, AD, AD, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE, CE, CE, CE, DE AC AD BC BD BE CE DE A B C D E Nework flow applicaion ummary Biparie Maching Dijoin Pah Airline Scheduling Survey Deign Baeall Eliminaion Projec Selecion Image Segmenaion T

20/20 20/20 0/5 0/5 20/20 20/20 5/5 0/5 0/5 5/5 0/20 25/30 20/20 30/30 20/20 0/5 5/5 20/20 0/5 0/5 15/20 15/25 20/20 10/10

20/20 20/20 0/5 0/5 20/20 20/20 5/5 0/5 0/5 5/5 0/20 25/30 20/20 30/30 20/20 0/5 5/5 20/20 0/5 0/5 15/20 15/25 20/20 10/10 Annoncemen CSEP Applied Algorihm Richard Anderon Lecre 9 Nework Flow Applicaion Reading for hi week 7.-7.. Nework flow applicaion Nex week: Chaper 8. NP-Compleene Final exam, March 8, 6:0 pm. A UW. hor

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

Network Flow Applications

Network Flow Applications Hopial problem Neork Flo Applicaion Injured people: n Hopial: k Each peron need o be brough o a hopial no more han 30 minue aay Each hopial rea no more han n/k" people Gien n, k, and informaion abou people

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURE 0 Nework Flow Applicaion Biparie maching Edge-dijoin pah Adam Smih 0//0 A. Smih; baed on lide by E. Demaine, C. Leieron, S. Rakhodnikova, K. Wayne La ime: Ford-Fulkeron

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

CSE 521: Design & Analysis of Algorithms I

CSE 521: Design & Analysis of Algorithms I CSE 52: Deign & Analyi of Algorihm I Nework Flow Paul Beame Biparie Maching Given: A biparie graph G=(V,E) M E i a maching in G iff no wo edge in M hare a verex Goal: Find a maching M in G of maximum poible

More information

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching Chaper. Biparie Maching Nework Flow Slide by Kein Wayne. Copyrigh 00 Pearon-Addion Weley. All righ reered. Maching Biparie Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching Chaper. Biparie Maching Nework Flow Slide by Kevin Wayne. Copyrigh PearonAddion Weley. All righ reerved. Maching Biparie Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques Algorihm Deign Technique CS : Nework Flow Dan Sheldon April, reedy Divide and Conquer Dynamic Programming Nework Flow Comparion Nework Flow Previou opic: deign echnique reedy Divide and Conquer Dynamic

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem.

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem. Maximum Flow and Minimum Cu CS lgorihm Deign Inrucor: rur Czumaj Lecure Nework Max and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy.

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Maximum Flow and Minimum Cut

Maximum Flow and Minimum Cut // Sovie Rail Nework, Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nework Flow Flow nework.

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic

More information

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005 CS 473G Lecure 1: Max-Flow Algorihm and Applicaion Fall 200 1 Max-Flow Algorihm and Applicaion (November 1) 1.1 Recap Fix a direced graph G = (V, E) ha doe no conain boh an edge u v and i reveral v u,

More information

Maximum Flow in Planar Graphs

Maximum Flow in Planar Graphs Maximum Flow in Planar Graph Planar Graph and i Dual Dualiy i defined for direced planar graph a well Minimum - cu in undireced planar graph An - cu (undireced graph) An - cu The dual o he cu Cu/Cycle

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem MAXIMUM FLOW inroducion Ford-Fulkeron algorihm maxflow-mincu heorem Mincu problem Inpu. An edge-weighed digraph, ource verex, and arge verex. each edge ha a poiive capaciy capaciy 9 10 4 15 15 10 5 8 10

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

7. NETWORK FLOW II. Soviet rail network (1950s) Max-flow and min-cut applications. "Free world" goal. Cut supplies (if cold war turns into real war).

7. NETWORK FLOW II. Soviet rail network (1950s) Max-flow and min-cut applications. Free world goal. Cut supplies (if cold war turns into real war). Sovie rail nework (9). NETWORK FLOW II "Free world" goal. Cu upplie (if cold war urn ino real war). Lecure lide by Kevin Wayne Copyrigh Pearon-Addion Weley Copyrigh Kevin Wayne hp://www.c.princeon.edu/~wayne/kleinberg-ardo

More information

3/3/2015. Chapter 7. Network Flow. Maximum Flow and Minimum Cut. Minimum Cut Problem

3/3/2015. Chapter 7. Network Flow. Maximum Flow and Minimum Cut. Minimum Cut Problem // Chaper Nework Flow Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nonrivial applicaion /

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges.

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges. Sovie Rail Nework, haper Nework Flow Slide by Kevin Wayne. opyrigh Pearon-ddion Weley. ll righ reerved. Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming,

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

16 Max-Flow Algorithms and Applications

16 Max-Flow Algorithms and Applications Algorihm A proce canno be underood by opping i. Underanding mu move wih he flow of he proce, mu join i and flow wih i. The Fir Law of Mena, in Frank Herber Dune (196) There a difference beween knowing

More information

Network Flows UPCOPENCOURSEWARE number 34414

Network Flows UPCOPENCOURSEWARE number 34414 Nework Flow UPCOPENCOURSEWARE number Topic : F.-Javier Heredia Thi work i licened under he Creaive Common Aribuion- NonCommercial-NoDeriv. Unpored Licene. To view a copy of hi licene, vii hp://creaivecommon.org/licene/by-nc-nd/./

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURES 17 Nework Flow Dualiy of Max Flow and Min Cu Algorihm: Ford-Fulkeron Capaciy Scaling Sofya Rakhodnikova S. Rakhodnikova; baed on lide by E. Demaine, C. Leieron, A. Smih,

More information

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a.

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a. Flow nework, flow, maximum flow Can inerpre direced graph a flow nework. Maerial coure hrough ome yem from ome ource o ome ink. Source produce maerial a ome eady rae, ink conume a ame rae. Example: waer

More information

Average Case Lower Bounds for Monotone Switching Networks

Average Case Lower Bounds for Monotone Switching Networks Average Cae Lower Bound for Monoone Swiching Nework Yuval Filmu, Toniann Piai, Rober Robere, Sephen Cook Deparmen of Compuer Science Univeriy of Torono Monoone Compuaion (Refreher) Monoone circui were

More information

7. NETWORK FLOW II. Minimum cut application (RAND 1950s) Maximum flow application (Tolstoǐ 1930s) Max-flow and min-cut applications

7. NETWORK FLOW II. Minimum cut application (RAND 1950s) Maximum flow application (Tolstoǐ 1930s) Max-flow and min-cut applications Minimum cu applicaion (RAND 90). NETWORK FLOW II Free world goal. Cu upplie (if Cold War urn ino real war). Lecure lide by Kevin Wayne Copyrigh 00 Pearon-Addion Weley biparie maching dijoin pah exenion

More information

Please Complete Course Survey. CMPSCI 311: Introduction to Algorithms. Approximation Algorithms. Coping With NP-Completeness. Greedy Vertex Cover

Please Complete Course Survey. CMPSCI 311: Introduction to Algorithms. Approximation Algorithms. Coping With NP-Completeness. Greedy Vertex Cover Pleae Complee Coure Survey CMPSCI : Inroducion o Algorihm Dealing wih NP-Compleene Dan Sheldon hp: //owl.oi.uma.edu/parner/coureevalsurvey/uma/ Univeriy of Maachue Slide Adaped from Kevin Wayne La Compiled:

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Maximm Flo 5/6/17 21:08 Preenaion for e ih he exbook, Algorihm Deign and Applicaion, by M. T. Goodrich and R. Tamaia, Wiley, 2015 Maximm Flo χ 4/6 4/7 1/9 2015 Goodrich and Tamaia Maximm Flo 1 Flo Neork

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Algorithms. Algorithms 6.4 MAXIMUM FLOW

Algorithms. Algorithms 6.4 MAXIMUM FLOW Algorihm ROBERT SEDGEWICK KEVIN WAYNE 6.4 MAXIMUM FLOW Algorihm F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE hp://alg4.c.princeon.edu inroducion Ford Fulkeron algorihm maxflow mincu heorem analyi

More information

CSE 421 Introduction to Algorithms Winter The Network Flow Problem

CSE 421 Introduction to Algorithms Winter The Network Flow Problem CSE 42 Inroducion o Algorihm Winer 202 The Nework Flow Problem 2 The Nework Flow Problem 5 a 4 3 x 3 7 6 b 4 y 4 7 6 c 5 z How much uff can flow from o? 3 Sovie Rail Nework, 955 Reference: On he hiory

More information

They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956]

They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956] 6. Inroducion... 6. The primal-dual algorihmn... 6 6. Remark on he primal-dual algorihmn... 7 6. A primal-dual algorihmn for he hore pah problem... 8... 9 6.6 A primal-dual algorihmn for he weighed maching

More information

Topics in Combinatorial Optimization May 11, Lecture 22

Topics in Combinatorial Optimization May 11, Lecture 22 8.997 Topics in Combinaorial Opimizaion May, 004 Lecure Lecurer: Michel X. Goemans Scribe: Alanha Newman Muliflows an Disjoin Pahs Le G = (V,E) be a graph an le s,,s,,...s, V be erminals. Our goal is o

More information

Selfish Routing. Tim Roughgarden Cornell University. Includes joint work with Éva Tardos

Selfish Routing. Tim Roughgarden Cornell University. Includes joint work with Éva Tardos Selfih Rouing Tim Roughgarden Cornell Univeriy Include join work wih Éva Tardo 1 Which roue would you chooe? Example: one uni of raffic (e.g., car) wan o go from o delay = 1 hour (no congeion effec) long

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

Y. Xiang, Learning Bayesian Networks 1

Y. Xiang, Learning Bayesian Networks 1 Learning Bayesian Neworks Objecives Acquisiion of BNs Technical conex of BN learning Crierion of sound srucure learning BN srucure learning in 2 seps BN CPT esimaion Reference R.E. Neapolian: Learning

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deparmen of Civil and Environmenal Engineering 1.731 Waer Reource Syem Lecure 17 River Bain Planning Screening Model Nov. 7 2006 River Bain Planning River bain planning

More information

26.1 Flow networks. f (u,v) = 0.

26.1 Flow networks. f (u,v) = 0. 26 Maimum Flow Ju a we can model a road map a a direced graph in order o find he hore pah from one poin o anoher, we can alo inerpre a direced graph a a flow nework and ue i o anwer queion abou maerial

More information

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne.

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne. Conen Conen. Maximum flow problem. Minimum cu problem. Max-flow min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Chaper Maximum How do we ranpor he maximum amoun daa from ource

More information

Basic Tools CMSC 641. Running Time. Problem. Problem. Algorithmic Design Paradigms. lg (n!) (lg n)! (lg n) lgn n.2

Basic Tools CMSC 641. Running Time. Problem. Problem. Algorithmic Design Paradigms. lg (n!) (lg n)! (lg n) lgn n.2 Baic Tool CMSC April, Review Aympoic Noaion Order of Growh Recurrence relaion Daa Srucure Li, Heap, Graph, Tree, Balanced Tree, Hah Table Advanced daa rucure: Binomial Heap, Fibonacci Heap Soring Mehod

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Product differentiation

Product differentiation differeniaion Horizonal differeniaion Deparmen of Economics, Universiy of Oslo ECON480 Spring 010 Las modified: 010.0.16 The exen of he marke Differen producs or differeniaed varians of he same produc

More information

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0 Nework flow The problem Seing flow nework G = (V, E, c), a orce and a ink no in E implie c(, ) = 0 Flow from o capaciy conrain kew-ymmery flow-coneraion ale of he flow jfj = P 2V Find a maximm flow from

More information

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson CMP 6610/4610 Fall 2016 Flow Nework Carola Wenk lide adaped rom lide by Charle Leieron Max low and min c Fndamenal problem in combinaorial opimizaion Daliy beween max low and min c Many applicaion: Biparie

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

DETC2004/CIE ALGORITHMIC FOUNDATIONS FOR CONSISTENCY-CHECKING OF INTERACTION-STATES OF MECHATRONIC SYSTEMS

DETC2004/CIE ALGORITHMIC FOUNDATIONS FOR CONSISTENCY-CHECKING OF INTERACTION-STATES OF MECHATRONIC SYSTEMS Proceeding of DETC 04 ASME 2004 Deign Engineering Technical Conference and Compuer and Informaion in Engineering Conference Sal Lake Ciy, Uah, USA, Sepember 28-Ocober 2, 2004 DETC2004/CIE-79 ALGORITHMIC

More information

Monochromatic Infinite Sumsets

Monochromatic Infinite Sumsets Monochromaic Infinie Sumses Imre Leader Paul A. Russell July 25, 2017 Absrac WeshowhahereisaraionalvecorspaceV suchha,whenever V is finiely coloured, here is an infinie se X whose sumse X+X is monochromaic.

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Maximum Flow. Contents. Max Flow Network. Maximum Flow and Minimum Cut

Maximum Flow. Contents. Max Flow Network. Maximum Flow and Minimum Cut Conen Maximum Flow Conen. Maximum low problem. Minimum cu problem. Max-low min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Princeon Univeriy COS Theory o Algorihm Spring Kevin

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

April 3, The maximum flow problem. See class notes on website.

April 3, The maximum flow problem. See class notes on website. 5.05 April, 007 The maximum flow problem See cla noe on webie. Quoe of he day You ge he maxx for he minimum a TJ Maxx. -- ad for a clohing ore Thi wa he mo unkinde cu of all -- Shakepeare in Juliu Caear

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

introduction Ford-Fulkerson algorithm

introduction Ford-Fulkerson algorithm Algorihm ROBERT SEDGEWICK KEVIN WAYNE. MAXIMUM FLOW. MAXIMUM FLOW inroducion inroducion Ford-Fulkeron algorihm Ford-Fulkeron algorihm Algorihm F O U R T H E D I T I O N maxflow-mincu heorem analyi of running

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

2015 Practice Test #1

2015 Practice Test #1 Pracice Te # Preliminary SATNaional Meri Scolarip Qualifying Te IMPORTANT REMINDERS A No. pencil i required for e e. Do no ue a mecanical pencil or pen. Saring any queion wi anyone i a violaion of Te Securiy

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Ford-Fulkerson Algorithm for Maximum Flow

Ford-Fulkerson Algorithm for Maximum Flow Ford-Fulkerson Algorihm for Maximum Flow 1. Assign an iniial flow f ij (for insance, f ij =0) for all edges.label s by Ø. Mark he oher verices "unlabeled.". Find a labeled verex i ha has no ye been scanned.

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D PSTNMSQT PRCTICE NSWER SHEET COMPLETE MRK EXMPLES OF INCOMPLETE MRKS I i recommended a you ue a No pencil I i very imporan a you fill in e enire circle darkly and compleely If you cange your repone, erae

More information

Price of Stability and Introduction to Mechanism Design

Price of Stability and Introduction to Mechanism Design Algorihmic Game Theory Summer 2017, Week 5 ETH Zürich Price of Sabiliy and Inroducion o Mechanim Deign Paolo Penna Thi i he lecure where we ar deigning yem which involve elfih player. Roughly peaking,

More information

Efficient Algorithms for Computing Disjoint QoS Paths

Efficient Algorithms for Computing Disjoint QoS Paths Efficien Algorihm for Compuing Dijoin QoS Pah Ariel Orda and Alexander Sprinon 1 Deparmen of Elecrical Engineering, Technion Irael Iniue of Technology, Haifa, Irael 32000 Email: ariel@eeechnionacil Parallel

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

Computer-Aided Analysis of Electronic Circuits Course Notes 3

Computer-Aided Analysis of Electronic Circuits Course Notes 3 Gheorghe Asachi Technical Universiy of Iasi Faculy of Elecronics, Telecommunicaions and Informaion Technologies Compuer-Aided Analysis of Elecronic Circuis Course Noes 3 Bachelor: Telecommunicaion Technologies

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information