ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

Size: px
Start display at page:

Download "ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University"

Transcription

1 ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following tp to fin t tranfr function of t DT quivalnt ol irctly. Conir a CT LT yt wit t tranfr function g ˆ. Fin t invr Laplac tranfor of y t an rprnt t tp rpon of t CT yt. g ˆ. Ti ti ignal i not by Fin t z-tranfor of y k wr rprnt t apling prio. Ti function i not by Y z an rprnt t tp rpon of t DT quivalnt ol. Divi Y z by t z-tranfor of t unit tp ignal z t tranfr function of t DT quivalnt ol. - T abov tp can b iply own a follow: to fin gˆ z gˆ gˆ z z Zˆ - Eapl.: Fin t DT quivalnt ol for t yt of Eapl. irctly fro t tranfr function of t CT yt. - Solution: W will av: On t otr an: ˆ g z z z ˆ gˆ Z ˆ Z Lctur Not Prpar by ir G. ga

2 ˆ Z z z z Tu: ˆ g z z z wic i t a rult obtain fro t DT quivalnt tat pac ol. Controllability of Syt - Controllability: control yt i fin to b controllabl if for any arbitrary initial tat tr it an uncontrain control ignal u tat can bring t tat to t origin of t tat pac in a finit ti. - Racability: control yt i fin to b racabl if tr it an uncontrain control ignal u tat can tranfr t tat of t yt fro t origin to any arbitrary point in t tat pac in a finit ti. - T abov finition of controllability an racability ar vry gnral an can b u for any CT an DT yt. - Conir now a CT LT yt wit t following tat-pac rprntation: & t t u t y t C t Du t. wr n t R i t tat vctor u t R i t input vctor an y t R i t output vctor. atric. n n R n R C R n an D R ar contant - For CT LT yt t concpt of controllability an racability ar quivalnt. n otr wor tranfrring t tat fro any arbitrary point to t origin an tranfrring t tat fro t origin to any arbitrary point ar quivalnt. n fact if t abov yt i controllabl or racabl on can u an uncontrain control ignal to tranfr t tat of t yt fro any arbitrary point to any otr arbitrary point in t tat pac in finit ti. Lctur Not Prpar by ir G. ga

3 - Controllability Tt: T CT LT yt. i controllabl iff any of t following two conition ol: i T following controllability atri i full-rank: n [ L ] ii T following atri i full-rank for any copl calar : [ ] - T con tt i rfrr to a Popov-lvitc-Hautu PH tt. - Sinc t atri i alway full-rank if i not an ignvalu of t rank conition of ii uffic to b cck only for qual to t ignvalu of. - T concpt of controllability an racability for DT LT yt ar not quivalnt. Ti i own in t following apl. - Eapl.: Conir t following DT LT yt: [ k ] [ u[ [ k ] [ Cck t controllability an racability of ti yt. - Solution: To cck controllability w au tat t final tat i qual to zro t origin of t tat pac. W will av: [ k ] [ k ] [ [ u[ Ti ipli tat t tat of t yt can b tranfrr fro any arbitrary [] point [] in t tat pac to t origin in on tp by cooing t [] following control ignal u [ ] [] [] Ti an tat t yt i controllabl. u now tat t initial tat i t origin of t tat pac i.. W will av: []. Lctur Not Prpar by ir G. ga

4 4 [] [] [] [] u[] Ti ipli tat tarting fro t origin t con tat variabl [ ] can b tranfrr to any arbitrary point in t tat pac in on tp but [ ] will tay k k in t origin an cannot b ift to any arbitrary point in a finit nubr of tp. Ti an tat t yt i not racabl. - t can b conclu fro Eapl. tat controllability an racability of DT LT yt ar iffrnt. - Conir a DT LT yt wit t following tat pac rprntation: [ k ] y[ C [ [ D u[ u[. wr n [ R i t tat vctor u [ R i t input vctor an y[ R i t output vctor. R n n R n C R n an D R ar contant atric. For a DT LT yt wit a non-ingular tat atri controllability an racability ar quivalnt. t i to b not tat if a DT yt i obtain by icrtizing a CT yt t rultant tat atri will b noningular. - n ti cour w will rfr to a DT LT yt a controllabl if tr it an uncontrain control ignal fin ovr a finit nubr of apl uc tat tarting fro any arbitrary initial tat t tat can b tranfrr to any ir tat in finit nubr of apl ti i in fact quivalnt to racability. - Controllability tt for t DT LT yt. i iilar to tat of t CT countrpart.. T DT LT yt. i controllabl iff any of t following two conition ol: i T following controllability atri i full-rank: n [ L ] ii T following atri i full-rank for any copl calar z : [ z ] Lctur Not Prpar by ir G. ga

5 5 Sinc t atri z i alway full-rank if z i not an ignvalu of t rank conition of ii uffic to b cck only for z qual to t ignvalu of. Obrvability of Syt - yt i fin to b obrvabl if vry initial tat can b trin fro t obrvation itory of output in a finit ti givn t control ignal. - Obrvability Tt: T CT LT yt. i obrvabl iff any of t following two conition ol: i T following obrvability atri i full-rank: C C M n C ii T following atri i full-rank for any copl calar : - T con tt i rfrr to a Popov-lvitc-Hautu PH tt. - Obrvability tt for t DT LT yt. i iilar to tat of t CT countrpart.. T DT LT yt. i obrvabl iff any of t following two conition ol: i T following obrvability atri i full-rank: C C C M C ii T following atri i full-rank for any copl calar z : C n z Lctur Not Prpar by ir G. ga

6 6 - n gnral controllability tll u about t faibility to control a plant wil obrvability tll u about wtr it i poibl to know wat i appning in a givn yt by obrving it output. - yt wo uncontrollabl o ar tabl i rfrr to a a tabilizabl yt. Likwi a yt wo unobrvabl o ar tabl i rfrr to a a tctabl yt. Effct of Sapling - W will now invtigat t ffct of apling in icrtization unr tpinvariant tranforation. Can w av a controllabl/obrvabl CT yt wic a an uncontrollabl/unobrvabl DT quivalnt an vic vra? - Conir t following t-up []: u [ H ut G yt S y [ Figur.: apl-ata yt u for invtigating t apling ffct - u tat t apling frquncy in ra/c i not by : wr i t apling prio. Lt t CT yt G av t following tranfr function: gˆ - u now tat t unit tp ignal i appli at u [. W will av: u[ u[ u t u t Y y t in t t - y [ i t apl vrion of t tp-rpon y t wit t apling frquncy a follow: y[ y t in k in k ink k t kt Lctur Not Prpar by ir G. ga

7 Lctur Not Prpar by ir G. ga 7 - Ti an tat SGH G i a zro yt an ˆ z g. On t otr an by icrtizing a zro yt w will alo gt G. n otr wor uing t abov apling prio icrtization of t givn CT yt will not b uniqu. - n tr of tat ol w will av: ˆ D C g - t i to b not tat t ignvalu of t atri wic ar in fact t pol of t CT tranfr function too ar locat at j ±. - T DT quivalnt ol uing t tp-invariant tranforation can b obtain for ti yt a follow: co in in co } { t t t t L L t co in in co τ τ - Ti an tat altoug t pair i controllabl in t DT quivalnt ol i not. n otr wor t particular coic of apling prio for ti apl i not goo in t n tat it o not prrv controllability. Ti apling prio i call patological. - Dfinition. []: Conir a CT yt wit t following tat atric: D C

8 8 T apling frquncy i patological wit rpct to if a two ignvalu wit qual ral part but tir iaginary part iffr by an intgr ultipl of.g. α ± j k k K. Otrwi t apling frquncy i non-patological. - Eapl. []: Conir t CT LT yt. an au tat t ignvalu of t atri ar: ± j ± j Fin t patological apling frqunci. - Solution: W av two t of ignvalu wit qual ral part. an 4 ± j all av a ral part qual to an 5 6 ± j bot av a ral part qual to. T iffrnc btwn t iaginary part of t firt t { 4 } ar an an t iffrnc btwn t iaginary part of t con t } i 4. Tu all apling frqunci in t following t ar patological: { : k K U : k K U : k K k k k Sinc 4 i iviibl by an t t of all patological apling frqunci can b iplifi a follow: 4 : k K k t i to b not tat t uppr boun for t lnt of t abov t i qual to 4. Tu t apling frquncy will b non-patological if ufficint conition it i gratr tan 4. - Patological apling can alo b icu uing pctral apping tor. t i known tat if a function f i analytic at t ignvalu of tn t ignvalu of f ar qual to f wr rprnt t ignvalu of. Ti an tat t ignvalu of ar qual to. Sinc t Lctur Not Prpar by ir G. ga

9 9 function i prioic wit prio j two CT o wit a itanc qual to k along t iaginary ai will b app to on point in t icrtiz ol. Ti an tat t ap i not on-to-on an t inforation about t o will b lot if t apling prio i patological. - W will now icu t ffct of apling on controllability an obrvability. - Tor. []: u tat t CT yt. i icrtiz wit a nonpatological apling frquncy to obtain t DT ol.. Tn: controllabl controllabl C obrvabl C obrvabl - Proof []: W will prov it for obrvability firt iplication. T proof for controllability i iilar. u tat t apling frquncy i non-patological an C i obrvabl. To prov tat C i obrvabl w will ow tat all t ignvalu of if tn: ar obrvabl. Uing t PH tt w ut ow tat rank n C rank n C wr an rprnt t ignvalu of an rpctivly. Dfin t following function: g Ti function i analytic for all not tat vn for t function will b analytic u to t cancllation of t pol wit a zro at tat point. Morovr zro of a follow: g will b locat at { } :. Ti can alo b writtn Lctur Not Prpar by ir G. ga

10 or: { : jk k ± ± ± K} { : jk k ± ± ± K} Ti ipli tat for a non-patological apling prio tr i no intrction btwn t t of zro of g an t t of ignvalu of. Sinc t ignvalu of t atri g i qual to g i i K n wr i rprnt t ignvalu of trfor i not an ignvalu of g. Ti an tat t atri g i invrtibl. On t otr an: g g Sinc tu: Sinc t atri C g C g i invrtibl an inc t invrtibility of g an g ar quivalnt on can conclu tat: rank rank C C Ti coplt t proof. - t i to b not tat non-patological apling i only a ufficint conition for controllability an obrvability of DT quivalnt ol. - T following tor ow tat w cannot gain controllability or obrvability by apling. - Tor. []: f t CT yt. i icrtiz to obtain t DT ol. tn: not controllabl not controllabl C not obrvabl C not obrvabl Lctur Not Prpar by ir G. ga

11 Lctur Not Prpar by ir G. ga - Proof []: W will only proof t firt iplication. T proof for unobrvability i iilar. f t pair i not controllabl w will av: [ ] n < rank for an ignvalu of. Ti an tat tr i a nonzro vctor uc tat: [ ] n otr wor: Tu: an: tc. Now fro: L!! t can b conclu tat:!!! L L Trfor: an:.

12 Ti ipli tat: wic i quivalnt to: t t t t fro quation. rank [ ] [ ] n < Ti an tat i an uncontrollabl ignvalu of. - T rult for tabilizability an tctability ar vry iilar to controllability an obrvability. n otr wor on can ay: - Tor.: u tat t CT yt. i icrtiz to obtain t DT ol.. Tn: not tabilizabl not tabilizabl C not tctabl C not tctabl Furtror if t apling frquncy i non-patological tn: tabilizabl tabilizabl C tctabl C tctabl Rfrnc: [] T. Cn an.. Franci Optial Sapl-Data Control Syt availabl at ttp:// [] G.F. Franklin J.D. Powll an M.L. Workan Digital Control of Dynaic Syt r Eition ion-wly 998. Lctur Not Prpar by ir G. ga

ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University ENGR 78 LETURE NOTES WEEK 5 r. mir G. dam onordia Univrity ilinar Tranformation - W will now introdu anotr mtod of tranformation from -plan to t - plan and vi vra. - Ti tranformation i bad on t trapoidal

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

AP Calculus Multiple-Choice Question Collection

AP Calculus Multiple-Choice Question Collection AP Calculus Multipl-Coic Qustion Collction 985 998 . f is a continuous function dfind for all ral numbrs and if t maimum valu of f () is 5 and t minimum valu of f () is 7, tn wic of t following must b

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

6. Negative Feedback in Single- Transistor Circuits

6. Negative Feedback in Single- Transistor Circuits Lctur 8: Intrductin t lctrnic analg circuit 36--366 6. Ngativ Fdback in Singl- Tranitr ircuit ugn Paprn, 2008 Our aim i t tudy t ffct f ngativ fdback n t mall-ignal gain and t mall-ignal input and utput

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level 5.76 Lctur #6 //94 Pag of 8 pag Lctur #6: Polyatomic Vibration III: -Vctor and H O Lat tim: I got tuck on L G L mut b L L L G F-matrix: too many F ij vn at quadratic-only lvl It obviou! Intrnal coordinat:

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

electron -ee mrw o center of atom CLASSICAL ELECTRON THEORY Lorentz' classical model for the dielectric function of insulators

electron -ee mrw o center of atom CLASSICAL ELECTRON THEORY Lorentz' classical model for the dielectric function of insulators CLASSICAL ELECTRON THEORY Lorntz' claical odl for th dilctric function of inulator In thi odl th lctron ar aud to b bound to th nuclu ith forc obying Hook la. Th forc ar aud to b iotropic and daping can

More information

METHOD OF DIFFERENTIATION

METHOD OF DIFFERENTIATION EXERCISE - 0 METHOD OF DIFFERENTIATION CHECK YOUR GRASP 5. m mn n ( m n )(n ) ( n )( m ) ( m )(m n ) 0 7. co y / y / loga m m n n (m n )(n )( m ) d () d 0 tan y y log a tan y tan log a Now diffrntiating

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

Calculus Revision A2 Level

Calculus Revision A2 Level alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE Dr Amir Aghdam Cncrdia Univrity Part f th nt ar adaptd frm th matrial in th fllwing rfrnc: Mdrn Cntrl Sytm by Richard C Drf and Rbrt H Bihp, Prntic Hall Fdback Cntrl f Dynamic

More information

Dual Nature of Matter and Radiation

Dual Nature of Matter and Radiation Higr Ordr Tinking Skill Qustions Dual Natur of Mattr and Radiation 1. Two bas on of rd ligt and otr of blu ligt of t sa intnsity ar incidnt on a tallic surfac to it otolctrons wic on of t two bas its lctrons

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid Stat vic Fundamntal ES 345 Lctur Cour by landr M. Zaitv alandr.zaitv@ci.cuny.du Tl: 718 98 81 4101b Collg of Statn Iland / CUY p-n Junction p-n junction i a phyical contact of p- and n-typ miconductor.

More information

Chemistry 342 Spring, The Hydrogen Atom.

Chemistry 342 Spring, The Hydrogen Atom. Th Hyrogn Ato. Th quation. Th first quation w want to sov is φ This quation is of faiiar for; rca that for th fr partic, w ha ψ x for which th soution is Sinc k ψ ψ(x) a cos kx a / k sin kx ± ix cos x

More information

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18 Prlab Lctur Cmy 374 Tur., Marc, 08 Editd mar8, mar8 LA REPORT:From t ClassicalTrmoISub-7.pdf andout: Was not a dry lab A partially complt spradst was postd on wb Not ruird 3 If solid is pur X Partial

More information

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS Slovak Univrity of chnology in Bratilava Intitut of Information Enginring, Automation, an Mathmatic PROCEEDINGS of th 8 th Intrnational Confrnc on Proc Control Hotl itri, atranká Lomnica, Slovakia, Jun

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator Calculation of lctromotiv forc inducd by th lot harmonic and paramtr of th linar gnrator (*)Hui-juan IU (**)Yi-huang ZHANG (*)School of Elctrical Enginring, Bijing Jiaotong Univrity, Bijing,China 8++58483,

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function A gnraliation of th frquncy rsons function Th convolution sum scrition of an LTI iscrt-tim systm with an imuls rsons h[n] is givn by h y [ n] [ ] x[ n ] Taing th -transforms of both sis w gt n n h n n

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which?

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which? 5 9 Bt Ft L # 8 7 6 5 GRAPH IN CIENCE O of th thg ot oft a rto of a xrt a grah of o k. A grah a vual rrtato of ural ata ollt fro a xrt. o of th ty of grah you ll f ar bar a grah. Th o u ot oft a l grah,

More information

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e 8/7/018 Cours Instructor Dr. Raymond C. Rumpf Offic: A 337 Phon: (915) 747 6958 E Mail: rcrumpf@utp.du EE 4347 Applid Elctromagntics Topic 3 Skin Dpth & Powr Flow Skin Dpth Ths & Powr nots Flow may contain

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

CS 491 G Combinatorial Optimization

CS 491 G Combinatorial Optimization CS 49 G Cobinatorial Optiization Lctur Nots Junhui Jia. Maiu Flow Probls Now lt us iscuss or tails on aiu low probls. Thor. A asibl low is aiu i an only i thr is no -augnting path. Proo: Lt P = A asibl

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Chapter 10 Time-Domain Analysis and Design of Control Systems

Chapter 10 Time-Domain Analysis and Design of Control Systems ME 43 Sytm Dynamic & Control Sction 0-5: Stady Stat Error and Sytm Typ Chaptr 0 Tim-Domain Analyi and Dign of Control Sytm 0.5 STEADY STATE ERRORS AND SYSTEM TYPES A. Bazoun Stady-tat rror contitut an

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

Discrete Diagonal State Estimator based Current Control for Grid Connected PWM Converter with an LCL filter

Discrete Diagonal State Estimator based Current Control for Grid Connected PWM Converter with an LCL filter Dicrt Diagonal Stat Etimator ba Currnt Control for Gri Connct PWM Convrtr with an LCL filtr Byong-Hon Kim, Honyoung Kim an Subhahih Bhattacharya * FREEDM Sytm Cntr North Carolina Sta Univrity Raligh, USA

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

Design and Analysis of Algorithms (Autumn 2017)

Design and Analysis of Algorithms (Autumn 2017) Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn.

More information

Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes Quantitativ Modl of Unilluminatd Diod part II G.R. Tynan UC San Digo MAE 119 Lctur Nots Minority Carrir Dnsity at dg of quasinutral rgion incrass EXPONENTIALLY forward bias p nb n pa = p n0 xp qv a kt

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall Staning Wav Intrfrnc btwn th incint & rflct wavs Staning wav A string with on n fix on a wall Incint: y, t) Y cos( t ) 1( Y 1 ( ) Y (St th incint wav s phas to b, i.., Y + ral & positiv.) Rflct: y, t)

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

Chapter 7. A Quantum Mechanical Model for the Vibration and Rotation of Molecules

Chapter 7. A Quantum Mechanical Model for the Vibration and Rotation of Molecules Chaptr 7. A Quantu Mchanica Mo for th Vibration an Rotation of Mocus Haronic osciator: Hook s aw: F k is ispacnt Haronic potntia: V F k k is forc constant: V k curvatur of V at quiibriu Nwton s quation:

More information

Mobile Communications TCS 455

Mobile Communications TCS 455 Mobile Counication TCS 455 Dr. Prapun Sukopong prapun@iit.tu.ac.th Lecture 24 1 Office Hour: BKD 3601-7 Tueday 14:00-16:00 Thurday 9:30-11:30 Announceent Read Chapter 9: 9.1 9.5 Section 1.2 fro [Bahai,

More information

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function agrangian Analysis of a Class of Quadratic iénard-ty Oscillator Equations wit Eonntial-Ty Rstoring Forc function J. Akand, D. K. K. Adjaï,.. Koudaoun,Y. J. F. Komaou,. D. onsia. Dartmnt of Pysics, Univrsity

More information

Comparisons of the Variance of Predictors with PPS sampling (update of c04ed26.doc) Ed Stanek

Comparisons of the Variance of Predictors with PPS sampling (update of c04ed26.doc) Ed Stanek Coparo o th Varac o Prdctor wth PPS aplg (updat o c04d6doc Ed Sta troducto W copar prdctor o a PSU a or total bad o PPS aplg Th tratgy to ollow that o Sta ad Sgr (JASA, 004 whr w xpr th prdctor a a lar

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty Funamntal Limit on Data Acquiition: Tra-off btwn Sampl Complxity an Qury Difficulty Hy Won Chung, Ji Oon L, an Alfr O. Hro arxiv:72.0057v2 [c.it] 2 Jan 208 Abtract W conir qury-ba ata acquiition an th

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative MAT 7 Tst Rviw (Spring ) Tst on April in PSA Sction.7 Implicit Drivativ Rmmbr: Equation of t tangnt lin troug t point ( ab, ) aving slop m is y b m( a ). dy Find t drivativ y d. y y. y y y. y 4. y sin(

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

Finite Element Analysis

Finite Element Analysis Finit Elmnt Analysis L4 D Shap Functions, an Gauss Quaratur FEA Formulation Dr. Wiong Wu EGR 54 Finit Elmnt Analysis Roamap for Dvlopmnt of FE Strong form: govrning DE an BCs EGR 54 Finit Elmnt Analysis

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

Hilbert-Space Integration

Hilbert-Space Integration Hilbert-Space Integration. Introduction. We often tink of a PDE, like te eat equation u t u xx =, a an evolution equation a itorically wa done for ODE. In te eat equation example two pace derivative are

More information

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors Dfnton Th nvr of an n by n atrx A an n by n atrx B whr, Not: nar Algbra Matrx Invron atrc on t hav an nvr. If a atrx ha an nvr, thn t call. Proprt of Matrx Invr. If A an nvrtbl atrx thn t nvr unqu.. (A

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Matematics and Computer Science. ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Tuesday January 9 008, 9:00-:00

More information

Definition of Ablation testcase

Definition of Ablation testcase Dfinition of Ablation tstcas sris #3 5 t Ablation Worksop Lxington, KY Tom van Ekln LMS-Samtc, Blgium Jan Lacaud UARC/Univ. of California Santa Cruz, USA Alxandr Martin Univrsity of Kntucky, USA Ioana

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

WEIGHTED LEAST SQUARES ESTIMATION FOR THE NONLINEAR OBSERVATION EQUATIONS MODELS. T m. i= observational error

WEIGHTED LEAST SQUARES ESTIMATION FOR THE NONLINEAR OBSERVATION EQUATIONS MODELS. T m. i= observational error WEIGHED LEAS SUARES ESIMAION FOR HE NONLINEAR OBSERVAION EUAIONS MODELS Unknowns: [ L ], Osrvals: [ ] Mathatical odl (nonlinar): i fi (,, K, n ), i,, K, n. n L n> Osrvations: i i + i, i,, K, n, i osrvational

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Proportional, Integral, and Derivative Controller Design Part 1

Proportional, Integral, and Derivative Controller Design Part 1 A Suna onlin continuing ducation cour roportional, ntgral, and rivativ ontrollr ign art by tr J nndy roportional, ntgral, and rivativ ontrollr ign art A Suna onlin continuing ducation cour. ntroduction:

More information

OVERFLOW IN A CYLINDRICAL PIPE BEND. 1. Introduction. Fig. 1: Overflow in a cylindrical pipe bend

OVERFLOW IN A CYLINDRICAL PIPE BEND. 1. Introduction. Fig. 1: Overflow in a cylindrical pipe bend circular cannl, ovrflow, brink pt, pip bn Dtlf AIGNER; Carstn CHERUBIM Institut of Hyraulic Enginring an Appli Hyromcanics, Drsn Univrsity of Tcnology OVERFLOW IN A CYLINDRICAL PIPE BEND T ovrflow of watr

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number:

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number: Anwer to Practice Tet Quetion 4 Electron, Orbital Quantu Nuber. Heienberg uncertaint principle tate tat te preciion of our knowledge about a particle poition it oentu are inverel related. If we ave ore

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C De Broglie Wavelengt Uncertainty Principle De Broglie Wavelengt Bot ligt and atter ave bot particle and wavelike propertie. We can calculate te wavelengt of eiter wit te ae forula: p v For large

More information

[1] (20 points) Find the general solutions of y y 2y = sin(t) + e t. Solution: y(t) = y c (t) + y p (t). Complementary Solutions: y

[1] (20 points) Find the general solutions of y y 2y = sin(t) + e t. Solution: y(t) = y c (t) + y p (t). Complementary Solutions: y [] (2 points) Find th gnral solutions of y y 2y = sin(t) + t. y(t) = y c (t) + y p (t). Complmntary Solutions: y c y c 2y c =. = λ 2 λ 2 = (λ + )(λ 2), λ =, λ 2 = 2 y c = C t + C 2 2t. A Particular Solution

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Fourth Part: The Interplay of Algebra and Logic

Fourth Part: The Interplay of Algebra and Logic Fourth Part: Th Intrplay of Algbra and Logic Francsco Paoli TACL 2013 Francsco Paoli (Univ. of Cagliari) Tutorial on algbraic logic TACL 2013 1 / 18 Adissibility of cut Cut liination, in proof-thortic

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. f (t) e. e (2 s)t dt + 0. e (2 s)4 1 ] = 1 = 1. te st dt + = t s e st

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. f (t) e. e (2 s)t dt + 0. e (2 s)4 1 ] = 1 = 1. te st dt + = t s e st Worked Solution Chapter : The Laplace Tranform 6 a F L4] 6 c F L f t] 4 4e t dt e t dt 4 e t 4 ] e t e 4 if > 6 e F L f t] 6 g Uing integration by part, f te t dt f t e t dt + e t dt + e t + 4 4 4 f te

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st Worked Solution 8 Chapter : The Laplace Tranform 6 a F L] e t dt e t dt e t ] lim t e t e if > for > 6 c F L f t] f te t dt f t e t dt + e t dt + e t + f t e t dt e t dt ] e e ] 6 e F L f t] f te t dt

More information