CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

Size: px
Start display at page:

Download "CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming"

Transcription

1 CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of a function ovr a domain, by finding an lmnt of th domain on which th function is minimizd rsp. maximizd). Th problm of minimizing a function f : P R ovr a domain P R is usually writtn as minfx ). x P W call an optimization problm ovr a subst of th rals a linar program LP) whn it satisfis th following conditions 1) f is linar, i.. fx ) = c T x. 2) P is dfind by half-spac constraints and affin subspac constraints, i.. linar in)qualitis. For xampl, w might dfin P R by m inqualitis P = x :a T 1 x b 1 a T 2 x b 2 a T 3 x = b 3. a T mx b m } A constraint a T i x = b i dfins an n 1 dimnsional affin subspac, whil a constraint a T i x b i dfins a half-spac. Affin subspacs and half-spacs ar both convx and bcaus P is th intrsction of th sts whr ach constraint is satisfid, it must also b a convx st or mpty). Dantzig introducd th dfinition of linar programs in Exampl 1.1. max x 1,x 2 ) R 2x 1 + x 2 s.t. x 1 + x 2 3 x 1 0 x 3 0 x 1 2 Th xampl is shown in figur 1. W can writ LPs succinctly using vctor inqualitis. Dfinition 1.2 Vctor inquality). For vctors a R m and b R m dfin a b iff i.a i b i. W say an LP is in gnral form whn it is xprssd as max x x R nct s.t. Ax b 1

2 P x c Figur 1. A simpl xampl of a linar program. An LP is said to b in standard form whn it is xprssd as max x x R nct s.t. Ax = b x 0 HW: Evry LP can b writtn as an quivalnt LP which is in gnral form. HW: Similarly, vry LP can b writtn as an quivalnt LP which is in standard form. Dfinition 1.3 Fasibl solution). x is fasibl iff x P. Dfinition 1.4 Optimal solution). x is an optimal solution iff x is fasibl and c T x = max x P c T x. Dfinition 1.5 Tight constraint). A constraint is tight for a point x iff it is satisfid with quality at x. Dfinition 1.6 Basic fasibl solution). x is a basic fasibl solution iff it is fasibl and has at last n tight constraints that ar linarly indpndnt. Constraints a T 1 x b 1, a T 2 x b 2, a T 3 x = b 3,..., a T mx b m } ar said to b linarly indpndnt if a 1, a 2, a 3,..., a m } forms a linarly indpndnt st of vctors. Dfinition 1.7 Unboundd LP). An LP max x P c T x is said to b unboundd iff th suprmum of th valus it taks is +. Similarly, a minimization program is said to b unboundd iff th infimum of its valus is. Thorm 1.8. For any LP, on of th following is tru 1) Th LP is infasibl. 2) Th LP is unboundd. 3) Th LP has a basic fasibl solution x that is optimal. Exampl 1.9. [Th Assignmnt Problm] Th Assignmnt Problm rquirs us to match a maximal numbr of jobs to popl that can prform thm. Formally, w hav a st of n jobs J, and a st of n popl P, a st of allowd job assignmnts E J P. W rquir that vry job is assignd to at most on prson, and that vry prson gts at most on job. Our goal is to find a valid job assignmnt A E that maximizs A. 2

3 W can xprss th problm as an intgr program IP). To do this, w giv a bijction btwn an assignmnt A and a vctor of intgr variabls x 0, 1} E. For ach E dfin x 0, 1} s.t. 1 if A, x = 0 othrwis. Th intgr program is max x 0,1} E E x s.t. j J. p P. p:j,p) E j:j,p) E x j,p) 1 x j,p) 1 Obsrvation OPT-IP = max assignmnt siz. Proof: An IP solution x is fasibl iff its corrsponding assignmnt is valid, and th valu of th IP is xactly th siz of th corrsponding assignmnt. Thus, if A is an optimal assignmnt, thn th corrsponding x achivs th sam valu so OPT-IP max assignmnt siz. Similarly, if x is an optimal solution to th IP, thn its corrsponding assignmnt A has siz qual to th valu of th IP at x, so max assignmnt siz OPT-IP. Rmark: It is vry common that combinatorial optimization problms can b xprssd xactly as an IP. W can rlax th IP to an LP: max x x R E E s.t. j J. x j,p) 1 p P. p:j,p) E j:j,p) E E.0 x 1 x j,p) 1 W call this a rlaxation bcaus th nw constraints ar wakr: Any fasibl solution to th IP is also a fasibl solution to th LP. This implis our nxt obsrvation. Obsrvation OPT-LP OPT-IP. Th assignmnt problm LP has an unusual proprty, which is capturd in th nxt thorm. Thorm For th assignmnt problm LP, vry basic fasibl solution is intgral, maning x 0, 1} for vry E. From this thorm and thorm 1.8 it follows that thr xists an optimal solution to th LP which satisfis for all variabls that x 0, 1}, and hnc w gt a simpl corollary. Corollary OPT-IP OPT-LP. Th main algorithms for solving gnral linar programs ar 1) Simplx Dantzig, 1947). Oftn vry fast in practic. Thr is no known dtrministic vrsion of th algorithm which runs in polynomial tim. Thr is a randomizd Simplx algorithm du to Klnr and Spilman that runs in polynomial tim. 3

4 2) Ellipsoid Mthod Khachiyan, 1979). First polynomial tim algorithm for LPs and many othr convx programs. Vry slow in practic. 3) Intrior Point Mthod Karmarkar, 1984). Polynomial running tim and oftn comptitiv with th simplx algorithm in practic. What dos it man to solv an LP in polynomial tim? By this, w man that th running tim is polynomial in n, th numbr of variabls; m, th numbr of constraints; and L, th bit complxity of th problm. L can b dfind in diffrnt ways, for xampl, th bit lngth of th largst numbr in A, b, and c. Evn if arithmtic oprations ar countd as to taking constant tim, all known algorithms for linar programming hav a running tim that dpnds polynomially on L. Algorithms whos running tim dos not dpnd on L in modls with constant tim arithmtic, in addition to bing polynomial-tim undr th standard bit opration modl, ar rfrrd to as strongly polynomial. It is an important opn problm whthr thr xists a strongly polynomial algorithm for linar programming. 2. Approximation Algorithm using Linar Programming Exampl 2.1. [Minimum Vrtx Covr] Givn a an undirctd graph G = V, E), find a subst S V which minimizs S subjct to th condition u, v) E.u S or v S. Th dcision vrsion of this problm is NP-complt Karp, 1972). Thr is a simpl IP for this problm. To dscrib it, w giv a bijction btwn a candidat vrtx covr S and a vctor of intgr variabls x 0, 1} V. For ach v V dfin x v 0, 1} s.t. 1 if v S, x v = 0 othrwis. Th following IP can b shown straightforwardly to b quivalnt to th minimum vrtx covr problm. min x v x 0,1} V v V s.t. u, v) E.x u + x v 1 As for th assignmnt problm, w can rlax th IP to an LP, by ltting x R V and adding constraints 0 x v 1 for all v. Sinc th LP is a rlaxation, w gt th corollary blow. Corollary 2.2. OPT-LP OPT-IP = minimum vrtx covr siz. In this problm, thr may b a gap btwn th valus of th LP and th IP. For xampl, considr th complt graph on n vrtics K n. Th minimum vrtx covr for this graph has siz OPT-IP = n 1, whil th optimal solution for th LP has x v = 1/2 for all v V, and thus OPT-LP = n/2. In this cas, as n OPT-IP/OPT-LP = 2. Dfinition 2.3 Intgrality Gap). Th intgrality gap of an LP rlaxation of an IP minimization problm is dfind as OPT-IPI) sup instancs I OPT-LPI). Manwhil, th intgrality gap of a rlaxation of a maximization problm is dfind as inf instancs I OPT-IPI) OPT-LPI). From th K n xampl w can dduc th nxt corollary. Corollary 2.4. Intgrality gap of Minimum Vrtx Covr LP rlaxation 2. 4

5 Thorm 2.5. Intgrality gap of Minimum Vrtx Covr LP rlaxation 2. A common mthod for dmonstrating an uppr bound on an intgrality gap is to show that a fasibl solution to th rlaxation can b roundd to a fasibl intgr solution with littl or no loss in th quality of th solution. Proof of thorm. To convrt any fasibl LP solution x to a fasibl IP solution z w us a rounding algorithm, in this cas a vry simpl on: Dfin th vrtx st S = v V.x v 1/2}. S is a vrtx covr, bcaus x fasibl implis that for vry dg u, v), w hav x u + x v 1, and this mans maxx u, x v ) 1/2, so th dg is covrd. Lt z b th IP solution corrsponding to th covr S. Now v V z v 2 v S x v 2 v V x v. In particular, by considring th optimal LP solution x, and rounding it to a fasibl IP solution z, w find OPT-IP z v 2 x v = 2 OPT-LP. v V v V Dfinition 2.6 Approximation Algorithm). W say an algorithm for a minimization problm has an approximation ratio of α if for vry instanc I, it outputs a solution ALGI) with costalgi)) αopt. For a maximization problm, w say an algorithm has an approximation ratio of α if for vry instanc I, it outputs a solution ALGI) with costalgi)) αopt. No known algorithm for Minimum Vrtx Covr achivs a bttr approximation ratio than th α = 2 approximation algorithm givn abov. Dinur and Safra showd that a 1.36 approximation algorithm for th problm would imply P = NP. Khot and Rgv showd that for any constant ɛ > 0, a 2 ɛ approximation algorithm would imply that th Uniqu Gams Conjctur is fals. Exampl 2.7. MAX-SAT W ar givn n boolan variabls x i T, F } and m clauss c j,.g. c 1 : x 1 x 2 x 3... c 2 : x 2 x 4 x c m : x 1 x 5 x 6... and w want to find som boolan assignmnt of our variabls maximizing th numbr of satisfid clauss. This is asily translatd into an IP. First, w crat a nw intgr variabl y i 0, 1} for ach boolan variabl x i. A bijction btwn th boolan variabls an th intgr variabls is givn by 1 if x i is tru y i = 0 othrwis. For ach claus c j w mak an intgr variabl z j 0, 1} and add a xprssing that z j = 1 only if c j is satisfid. For xampl, th claus c 1 in th xampl abov givs th constraint y 1 + y y 3 ) +... z 1. Th objctiv of th IP is to maximiz m j=1 z j, and th optimum of this IP is xactly qual to th valu of th MAX-SAT problm. W can rlax this to an LP by instad allowing th y i and z j to rang ovr th rals and adding constraints 0 y i 1 and 0 z j 1. 5

6 Thorm 2.8 Raghavan-Thomson 1987). Givn a fasibl solution y* to th abov LP, w can gt a fasibl solution to th corrsponding IP by dfining th following indpndnt random variabls 1 with probability yi x i = 0 othrwis. Doing so givs us a solution with an xpctd valu gratr than a factor of 1 1 tims th actual optimal valu. To prov this thorm, w first show th following lmma: Lmma 2.9. Pr[c i is satisfid ] 1 1 ) z i. Proof of lmma. W dmonstrat th mthodology for th xampl claus c 1. Th logic is asily xtndd to gnral clauss. Pr[c i is satisfid ] = 1 1 y 1 )1 y 2 )y 3 ) 1 1 y i + y y 3 ) z ) 3 i ) z i. In th first inquality w usd th AM-GM inquality. Proof of thorm. Dnot th optimal solution of th Linar Program by OPT-LP, and th optimal solution of th MAX-SAT problm by OPT. It should b obvious that E[x i ] = y i Thn by th linarity of xpctation, E[# of clauss satisfid] 1 1 ) z i i = 1 1 ) OPT-LP 1 1 ) OPT. Rfrncs ) 3 6

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Network Congestion Games

Network Congestion Games Ntwork Congstion Gams Assistant Profssor Tas A&M Univrsity Collg Station, TX TX Dallas Collg Station Austin Houston Bst rout dpnds on othrs Ntwork Congstion Gams Travl tim incrass with congstion Highway

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

1 A lower bound. Lecture notes: Online bipartite matching algorithms

1 A lower bound. Lecture notes: Online bipartite matching algorithms Cornll Univrsity, Fall 217 Lctur nots: Onlin bipartit matching algorithms CS 682: Algorithms 6 8 Spt In practic whn dsigning algorithms, it is oftn th cas that th input is a stram of data arriving ovr

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices Finding low cost TSP and 2-matching solutions using crtain half intgr subtour vrtics Sylvia Boyd and Robrt Carr Novmbr 996 Introduction Givn th complt graph K n = (V, E) on n nods with dg costs c R E,

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Stochastic Submodular Maximization

Stochastic Submodular Maximization Stochastic Submodular Maximization Arash Asadpour, Hamid Nazrzadh, and Amin Sabri Stanford Univrsity, Stanford, CA. {asadpour,hamidnz,sabri}@stanford.du Abstract. W study stochastic submodular maximization

More information

In the previous two chapters, we clarified what it means for a problem to be decidable or undecidable.

In the previous two chapters, we clarified what it means for a problem to be decidable or undecidable. Chaptr 7 Computational Complxity 7.1 Th Class P In th prvious two chaptrs, w clarifid what it mans for a problm to b dcidabl or undcidabl. In principl, if a problm is dcidabl, thn thr is an algorithm (i..,

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

Approximation and Inapproximation for The Influence Maximization Problem in Social Networks under Deterministic Linear Threshold Model

Approximation and Inapproximation for The Influence Maximization Problem in Social Networks under Deterministic Linear Threshold Model 20 3st Intrnational Confrnc on Distributd Computing Systms Workshops Approximation and Inapproximation for Th Influnc Maximization Problm in Social Ntworks undr Dtrministic Linar Thrshold Modl Zaixin Lu,

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Equidistribution and Weyl s criterion

Equidistribution and Weyl s criterion Euidistribution and Wyl s critrion by Brad Hannigan-Daly W introduc th ida of a sunc of numbrs bing uidistributd (mod ), and w stat and prov a thorm of Hrmann Wyl which charactrizs such suncs. W also discuss

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions

Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions Inapproximability Rsults for Combinatorial Auctions with Submodular Utility Functions Subhash Khot Richard J. Lipton Evanglos Markakis Aranyak Mhta Abstract W considr th following allocation problm arising

More information

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover Coping With NP-Compltnss Chaptr 0 Extning th Limits o Tractability Q. Suppos I n to solv an NP-complt problm. What shoul I o? A. Thory says you'r unlikly to in poly-tim algorithm. Must sacriic on o thr

More information

ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

More information

What are those βs anyway? Understanding Design Matrix & Odds ratios

What are those βs anyway? Understanding Design Matrix & Odds ratios Ral paramtr stimat WILD 750 - Wildlif Population Analysis of 6 What ar thos βs anyway? Undrsting Dsign Matrix & Odds ratios Rfrncs Hosmr D.W.. Lmshow. 000. Applid logistic rgrssion. John Wily & ons Inc.

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China An Application of Hardy-Littlwood Conjctur JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that wakr Hardy-Littlwood

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Objective Mathematics

Objective Mathematics x. Lt 'P' b a point on th curv y and tangnt x drawn at P to th curv has gratst slop in magnitud, thn point 'P' is,, (0, 0),. Th quation of common tangnt to th curvs y = 6 x x and xy = x + is : x y = 8

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

What is a hereditary algebra?

What is a hereditary algebra? What is a hrditary algbra? (On Ext 2 and th vanishing of Ext 2 ) Claus Michal Ringl At th Münstr workshop 2011, thr short lcturs wr arrangd in th styl of th rgular column in th Notics of th AMS: What is?

More information

Solution of Assignment #2

Solution of Assignment #2 olution of Assignmnt #2 Instructor: Alirza imchi Qustion #: For simplicity, assum that th distribution function of T is continuous. Th distribution function of R is: F R ( r = P( R r = P( log ( T r = P(log

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Properties of Quarks ( ) Isospin. π = 1, 1

Properties of Quarks ( ) Isospin. π = 1, 1 Proprtis of Quarks Isospin So far, w hav discussd thr familis of lptons but principally concntratd on on doublt of quarks, th u and d. W will now introduc othr typs of quarks, along with th nw quantum

More information

Abstract Interpretation. Lecture 5. Profs. Aiken, Barrett & Dill CS 357 Lecture 5 1

Abstract Interpretation. Lecture 5. Profs. Aiken, Barrett & Dill CS 357 Lecture 5 1 Abstract Intrprtation 1 History On brakthrough papr Cousot & Cousot 77 (?) Inspird by Dataflow analysis Dnotational smantics Enthusiastically mbracd by th community At last th functional community... At

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

Separating principles below Ramsey s Theorem for Pairs

Separating principles below Ramsey s Theorem for Pairs Sparating principls blow Ramsy s Thorm for Pairs Manul Lrman, Rd Solomon, Hnry Towsnr Fbruary 4, 2013 1 Introduction In rcnt yars, thr has bn a substantial amount of work in rvrs mathmatics concrning natural

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN Intrnational Journal of Scintific & Enginring Rsarch, Volum 6, Issu 7, July-25 64 ISSN 2229-558 HARATERISTIS OF EDGE UTSET MATRIX OF PETERSON GRAPH WITH ALGEBRAI GRAPH THEORY Dr. G. Nirmala M. Murugan

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

arxiv: v3 [cs.gt] 1 Jan 2019

arxiv: v3 [cs.gt] 1 Jan 2019 Pric of Anarchy in Ntworks with Htrognous Latncy Functions Sanjiv Kapoor and Junghwan Shin arxiv:407.299v3 [cs.gt] Jan 209 Abstract W addrss th prformanc of slfish ntwork routing in multi-commodity flows

More information

NIL-BOHR SETS OF INTEGERS

NIL-BOHR SETS OF INTEGERS NIL-BOHR SETS OF INTEGERS BERNARD HOST AND BRYNA KRA Abstract. W study rlations btwn substs of intgrs that ar larg, whr larg can b intrprtd in trms of siz (such as a st of positiv uppr dnsity or a st with

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

arxiv: v2 [cs.dm] 17 May 2018

arxiv: v2 [cs.dm] 17 May 2018 Inhritanc of Convxity for th P min -Rstrictd Gam arxiv:708.0675v [cs.dm] 7 May 08 A. Skoda July 6, 08 Abstract W considr rstrictd gams on wightd graphs associatd with minimum partitions. W rplac in th

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

On Grids in Topological Graphs

On Grids in Topological Graphs On Grids in Topological Graphs Eyal Ackrman Dpartmnt of Computr Scinc Fri Univrsität Brlin Takustr. 9, 14195 Brlin, Grmany yal@inf.fu-brlin.d Jacob Fox Dpartmnt of Mathmatics Princton Univrsity Princton,

More information

PROBLEM SET Problem 1.

PROBLEM SET Problem 1. PROLEM SET 1 PROFESSOR PETER JOHNSTONE 1. Problm 1. 1.1. Th catgory Mat L. OK, I m not amiliar with th trminology o partially orr sts, so lt s go ovr that irst. Dinition 1.1. partial orr is a binary rlation

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information