Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Size: px
Start display at page:

Download "Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011"

Transcription

1 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/

2 Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr propry in h rnormd domin! /7

3 Ingrl Trnorm I x, y i uncion o wo vribl, hn dini ingrl o w.r.. on o h vribl ld o uncion o h ohr vribl. Exmpl: xy dx y Impropr ingrl o uncion din how ingrion cn b clculd ovr n inini inrvl: K, d lim b b K, d /7

4 plc Trnorm Diniion: b uncion dind or, hn h ingrl { } d i id o b h plc rnorm o, providd h ingrl convrg. Th rul o h plc rnorm i uncion o, uully rrrd o F. 4/7

5 Exmpl: {} By diniion: d lim b b d lim b b lim b b, providd >. Th ingrl divrg or <. 5/7

6 Exmpl: {} By diniion: d Uing ingrion by pr nd lim, >, w hv: { } {} d 6/7

7 7/7 Exmpl: { } By diniion: d d >, } {

8 Gmm Funcion Γx Th gmm uncion i dind or x > Sinc Γ x x d. Γ x x d x x x d. For x >, w hv Γx x Γx, hror, gmm uncion i clld h gnrlizd coril uncion. No: Γ nd Γx x! i x i poiiv ingr. 8/7

9 Exmpl: { } I w l u, u/, nd d du/, hn by diniion, or >, { } Γ u d u du, or ll > o h >. I n i nonngiv ingr, Γn n!, nd w hv n n! { }, > n. 9/7

10 Exmpl: {in } By diniion: { in } in d in co d co d, > co 4 in d 4 { in } { in }, > /7

11 /7 inriy o {} For um o uncion, w cn wri whnvr boh ingrl convrg or > c. Hnc, ] [ d g d d g β α β α } { } { } { G F g g β α β α β α

12 Exmpl: { in } { in } { } {in } / { co 6} / [/ / 6], >. /7

13 Uni Sp Funcion Th uni p uncion u i dind o b, < u., u i on dnod u. No h u i only dind on h non-ngiv xi inc h plc rnorm i only dind on hi domin. 8 /7

14 Rwri o Picwi Funcion A picwi dind uncion cn b rwrin in compc orm uing u. For xmpl, g, h, < i h m g gu hu. y y 4/7

15 plc Trnorm o u, > By diniion, Thror, { u } u d lim b b. { u } >, >. d 5/7

16 Trnorm o Bic Funcion { } { } n n! { }, n,,, n {co k} k {in k} k k {coh k} k {inh k} k k { u } 6/7

17 Exinc o {} Thorm: I i picwi coninuou on [,, nd h i o xponnil ordr or > T, whr T i conn, hn {} convrg. b Diniion: A uncion i id o b o xponnil ordr c i hr xi conn c, M >, nd T > uch h M c or ll > T. 7/7

18 Exmpl: Exponnil Ordr Th uncion,, nd co r ll o xponnil ordr c or >, inc w hv,, co. M c, c > T 8/7

19 9/7 Proo o Exinc o {} By h ddiiv inrvl propry o dini ingrl, Th ingrl I xi ini inrvl, picwi coninuou. Now, I xi wll {} convrg. } { I I d d T T., c c M c M d M d M d I T c T c T c T T c >

20 /7 Exmpl: Trnorm o Picwi Evlu {} or Soluion: { }., > d d d d <.,, y

21 Invr plc Trnorm I F i h plc rnorm o uncion, nmly, {} F, hn w y h i h invr plc rnorm o F, h i, Exmpl: {F}. {/}, {/ }, nd {/ }. /7

22 /7 Exmpl: Invr Trnorm Evlu {/ 5 } Soluion: Evlu {/ 7} Soluion: ! 4! in

23 /7 inriy o {} Th invr plc rnorm i lo linr rnorm; h i, or conn α nd β, Exmpl: Evlu { 6 / 4} } { } { } { G F G F β α β α in co

24 Exmpl: Pril Frcion / Evlu Soluion: Thr xi uniqu conn A, B, C uch h: 6 9 A 4 A 4 B 4 C 4 By compring rm, w hv B C 4 4/7

25 5/7 Exmpl: Pril Frcion / Pril rcion: Thror

26 Trnorming Driviv Wh i h plc rnorm o '? { } d Thror { } { } F d No h hi drivion only work i i coninuou uncion 6/7

27 Driviv Trnorm Thorm Thorm: I h uncion i coninuou nd picwi mooh or nd i o xponnil ordr, o h hr xi nonngiv conn M, c, nd T uch h M c or T. Thn { } xi or > c, nd { } F. Proo: Prorm ini pic-by-pic ingrion o d 7/7

28 Gnrl Driviv Trnorm Thorm: I, ',, n r coninuou on [, nd r o xponnil ordr nd i n i picwi coninuou on [,, hn { } F n n n n n, whr F {}. 8/7

29 Solving inr IVP / Th plc rnorm o linr DE wih conn coicin bcom n lgbric quion in X. Th i, bcom or n d x d x n n d d n n x n n d x d x n n d d { } n n n { x} { }, n [ n X n x n x x n ] n [ n X n x x n ] X F 9/7

30 Solving inr IVP / Givn iniil condiion, x x, x' x,, x n x n, w hv ZX I F, or dy bhvior F X Z I, Z rnin bhvior whr Z n n n n nd I n n n n x n n n n x' n x n. /7

31 dy d y in, y Exmpl: / 6 Sinc dy { y} {in }, d {dy/dx} Y - y Y-6, nd {in} / 4, w hv 6 Y 6 Y, 4 or 6 Y 6, Y 4. 4 /7

32 /7 Exmpl: / Aum h w hv A 8, B, C 6. Thror, C B A y y in co 8 6, in y y d dy

33 /7 Exmpl: Soluion: 5,, 4 y y y y y } { } { 4 y d dy d y d 4 ] [ Y y Y y y Y Y Y y } {

34 Trnorm o Ingrl Thorm: Th plc rnorm o h ingrl o picwi coninuou uncion o xponnil ordr i F τ dτ { }. Th invr orm i: - F τ dτ. Rcll h: {'} F. 4/7

35 Proo o Trnorm o Ingrl Sinc i picwi coninuou, by undmnl horm o clculu, i g τdτ, g i coninuou nd g' whr i coninuou. Bcu i o xponnil ordr, hr xi conn M nd c uch h c c g d M τ τ τ dτ < c g i o xponnil ordr. Thu, {} {g'} {g} g. Bu g, hror, M { } F τ dτ { g }. M c c. 5/7

36 6/7 Exmpl: Invr by Ingrion Sring wih in, F / w hv:. co in, in co, co in d d d τ τ τ τ τ τ τ

37 Bhvior o F I i picwi coninuou on [, nd o xponnil ordr or > T, hn lim {}. Proo: Sinc i picwi coninuou on T, i i ncrily boundd on h inrvl. Th i M. Alo, M γ or > T. I M dno h mximum o {M, M } nd c dno h mximum o {, γ}, hn or > c: { } M c c d M M c c d. 7/7

38 8/7 Pril Frcion Dcompoiion Finding invr plc rnorm uully involv pril rcion dcompoiion, l P b polynomil uncion wih dgr l hn n: inr cor dcompoiion: whr A, A,, A n r conn. Qudric cor dcompoiion whr A,, A n nd B,, B n r conn.,... n n n A A A P, ] [... ] [ ] [ n n n n b B A b B A b B A b P

39 -xi Trnlion Thorm Thorm: I {} F nd i ny rl numbr, hn { } F. Proo: { } d d F. 9/7

40 4/7 Exmpl: { 5 } nd { co 4} Soluion: ! } { } { 6 6 } 4 {co } 4 co {

41 4/7 Invr o -xi Trnlion Th invr plc rnorm o F, cn b compud by muliply {F} by, ollow. Exmpl: Compu {5/ }. Sinc } { } { F F, 5.

42 4/7 Exmpl: y" 6y' 9y Solv h DE wih iniil condiion y, y' Y. 4! 4! 4 5 y

43 Convoluion o Two Funcion I nd g r picwi coninuou on [,, hn pcil produc, dnod by g, i dind by h ingrl g τ g τ dτ nd i clld h convoluion o nd g. Th convoluion i uncion o. No h g g. Exmpl: in τ in τ dτ in co. 4/7

44 44/7 Convoluion Thorm Thorm: I nd g r picwi coninuou on [, nd o xponnil ordr, hn Proo: τ β, d dβ, o h { } { } { }. G F g g. τ β β τ β β τ τ β τ β τ d d g d g d G F { }. g d d g G F τ τ τ

45 45/7 Exmpl: { }. in d τ τ τ { } { } { } in in d τ τ τ

46 46/7 Invr Form o Convoluion Thorm: Exmpl: F G / k, { }. g G F - k - [ ]. co in co co, in in k k k k d k k k d k k k k - τ τ τ τ τ

47 Solving Ingrl Equion W cn u convoluion horm o olv dirnil quion wll ingrl quion. For xmpl, h Volrr ingrl quion: g τ h τ dτ, whr g nd h r known. 47/7

48 48/7 Exmpl: Soluion: noic h h. Tk h plc rnorm o ch rm: Th invr rnorm hn giv: F F. d τ τ τ

49 Dirniion o Trnorm Thorm Thorm: I i picwi coninuou nd i o xponnil ordr, hn d { } { } F. Proo: d d d F d d d d d d { } { } { F } - [ ] { } d 49/7

50 nh-ordr Trnorm Dirniion Thorm: I F {} nd n,,, hn n n n d { } F n d Proo: Th proo cn b don by mhmicl inducion. Hr, w only chck h nd -ordr c. d d d d { } { } { } { } Exmpl: Compu { in k}. d d { in k} {in k} d d k k k k 5/7

51 5/7 Exmpl: x" 6x co4, x, x' Soluion: {x"} {6x} {co 4}, Sinc, rom prviou xmpl,. in 4 8 in in x k k k X

52 5/7 Ingrion o Trnorm Thorm Thorm: I i picwi coninuou wih xponnil ordr, nd h lim / xi nd i ini. Thn, In ddiion, w hv Proo:. d F σ σ { } { }. - - d F F σ σ [ ] { }. / / d d d d d d F σ σ σ σ σ σ σ σ

53 5/7 Exmpl: {inh /} W ir vriy h h uncion i boundd whn : Now, w hv. lim lim inh lim { }. ln ln inh inh d d d σ σ σ σ σ σ σ σ

54 54/7 -xi Trnlion Thorm Thorm: I F {} nd >, hn { u } F. Proo: v, dv d, d d u d u d u { } { } dv v u v

55 55/7 Invr o -xi Trnlion I {F} nd >, h invr orm o h - xi rnlion horm i: Exmpl:. } { u F. i, i, < u

56 56/7 Alrniv Form o -xi Trnlion For g h lck h prci hid orm g, w cn driv n lrniv orm: Exmpl: Sinc gπ co π co, }. { } { } { g u g dv v g d g u g v. } {co } {co u π π π

57 57/7 Exmpl: No h co u π, w hv {y'} {y} {co u π}, < π π y y y, co, 5,, Y π π π 5. co in 5 co in 5 π π π π π π u u y

58 Sri Circui Th currn in circui i govrnd by h ingrodirnil quion di d Ri C i τ dτ E. E R C 58/7

59 Exmpl: Singl-loop RC Circui Givn.h, R Ω, C., i, nd E -U-, ind i. Soluion: Sinc. di d i { } i τ dτ U nd i τ dτ I /, w hv I.I I. I,. 59/7

60 Exmpl: coninud, 8, < i /7

61 Trnorm o Priodic Funcion I priodic uncion h priod T, T >, hn T. Th plc rnorm o priodic uncion cn b obind by ingrion ovr on priod. Thorm: I i picwi coninuou on [,, o xponnil ordr, nd priodic wih priod T, hn { } T T d. 6/7

62 Proo o Priodic Trnorm Thorm Proo: { } T d T l u T, hn h nd rm bcom T Thror d T u T u u d, T du u du T T { } d { } T { } d. T T { } 6/7

63 6/7 Exmpl: Squr-Wv Trnorm Find h rnorm o qur-wv. Soluion: On priod o E cn b dind : < <,, E { }. d d d E E E 4

64 Exmpl: Priodic Inpu Volg / Th DE or i in ingl-loop R ri circui i di Ri E. d Drmin i whn i nd E i h qurwv in h prviou xmpl. Soluion: / I RI I R / Sinc x x x x K K 64/7

65 65/7 Exmpl: Priodic Inpu Volg / Sinc w hv By pplying h -xi rnlion horm:, / / / / R R R R. / R R I / / / u u R u u u R i R R R

66 Exmpl: Priodic Inpu Volg / Thror i R R / R n n R n/ u n. For xmpl, i R,, nd < 4, w hv i /7

67 Uni Impul Qui on, h inpu o phyicl ym i hor priod, lrg mgniud uncion. Thi yp o uncion cn b dcribd by δ,,, < <. Th uncion δ i clld uni impul bcu / y δ d. 67/7

68 Dirc Dl Funcion Din δ limδ. Th uncion δ i clld Dirc dl uncion. δ i chrcrizd by:, i δ,, ii δ d. 68/7

69 69/7 Trnorm o δ Thorm: For >, {δ }. Proo: [ ] { } { } { }. lim lim,, u u δ δ δ δ No h {δ}. δ i no norml uncion inc {δ}.

70 7/7 Exmpl: Two IVP / Solv y" y 4δ π, wih iniil condiion y, y', nd b y, y'. Soluion : Th plc rnorm i: Y Y 4 π,. 4in co. 4 π π π u y Y., 4 in co, co < π π y y - 4π π

71 Exmpl: Two IVP / Soluion b Th plc rnorm i π 4 Y. Thror, y 4in π u π y, 4in, < π π. - π 4π 7/7

72 7/7 Impul Rpon Conidr nd -ordr linr ym wih uni impul inpu : x" x' x δ, x, x'. Applying plc rnorm o h ym: w i h zro- rpon o h ym o uni impul, hror, w i clld h impul rpon o h ym.. w Z x W Z X

73 7/7 inr Dynmic Sym Rcll h or gnrl linr dynmic ym, w hv W /Z i clld h rnr uncion o h ym. No h. Z I Z F X { } { }. I W F W x zro- rpon zro-inpu rpon

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović FCT UNIVESITTIS Sri: chanic uomaic Conrol and oboic Vol. N o 7 5. 87-9 PEIODICL SOLUTION OF SOE DIFFEENTIL EQUTIONS UDC 57.95= Julka Knžvić-iljanović Facul o ahmaic Univri o lgrad E-mail: knzvic@oincar.ma.bg.ac.u

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Homework #2: CMPT-379 Distributed on Oct 2; due on Oct 16 Anoop Sarkar

Homework #2: CMPT-379 Distributed on Oct 2; due on Oct 16 Anoop Sarkar Homwork #2: CMPT-379 Disribud on Oc 2 du on Oc 16 Anoop Sarkar anoop@cs.su.ca Rading or his homwork includs Chp 4 o h Dragon book. I ndd, rr o: hp://ldp.org/howto/lx-yacc-howto.hml Only submi answrs or

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

A modified hyperbolic secant distribution

A modified hyperbolic secant distribution Songklnkrin J Sci Tchnol 39 (1 11-18 Jn - Fb 2017 hp://wwwsjspsuch Originl Aricl A modifid hyprbolic scn disribuion Pnu Thongchn nd Wini Bodhisuwn * Dprmn of Sisics Fculy of Scinc Kssr Univrsiy Chuchk

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Generalized Half Linear Canonical Transform And Its Properties

Generalized Half Linear Canonical Transform And Its Properties Gnrlz Hl Lnr Cnoncl Trnorm An I Propr A S Guh # A V Joh* # Gov Vrh Inu o Scnc n Humn, Amrv M S * Shnkrll Khnlwl Collg, Akol - 444 M S Arc: A gnrlzon o h Frconl Fourr rnorm FRFT, h lnr cnoncl rnorm LCT

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information