SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Size: px
Start display at page:

Download "SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3"

Transcription

1 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos ot ist. As.[D] E. quls - / / / (D) ( / ( / ) ) quls - Limit As.[B] / As.[B] E.5 Limit E.6 E.7 is qul to- / (D) ( )( ) ( )( ) ( ) (D) ( ) (D.L.Hospitl rul), form LHL h h RHL ( h ) h ( h ) h h h E.8 If f() ( h ) h ( h ) h As.[A] (D) Dos ot ist As.[A] LHL RHL, so it dos ot ist.as.[d], th f() (D) Dos ot ist IIT JEE PREPRETION LIMIT 5

2 LHL E.9 RHL h h h h h h h h h () LHL RHL dos ot ist. As.[D] Limit E. / (D) ( ) ( ) log( ). As.[C] quls - / / (D) E. E. t si / / / (D) Th giv it is i th form, thrfor pplyig L 'Hospitl's rul, w gt Limit sc cos si log( ) / / As.[C] (D) Dos ot ist It is i / form, so usig Hospitl rul, w hv Limit cos si ( ) (/ form) / As.[C]...! E. Th vlu of Limit / As.[C] si / / / (D) / si. si...!...!...!... is - / As.[C] E. IIT JEE PREPRETION LIMIT 5 E.5 si quls - si (D) Dos ot ist ( fiit umbr btw d )/ As.[B] Limit t / / (D) / /... / [, so glctig highr powrs of ] / / / As.[B]

3 E.6 If f() f() E.7 If G () th si cos, th { (cos f() quls - { (si / )} / )}. As.[C] G ( ) 5, G () quls - / /5 Hr G() Giv it E.8 If f(9) 9 d f'(9), th E.9 qul to - form (By L Hospitl rul) As.[D] f ( ) 9 (D) 9 Giv it is i / form, so usig Hospitl rul, w gt Limit f (9 ). f (9 ) 9 9..f ( ) f ( ) As.[C] (D) is Limit E. E. / / [( / ). /. /. / ( / ) ]. / /. As.[B] Th vlu of (log ) is - () /. (log ) (log ) (log ) (log ). 6 (log ). form form (log ) 6 log form 6 (log ) 6 si Limit log ( / ) º form. As.[A] (D) /8 8 si( / 8 ) ( / 8 ) cos( / 8 ) As.[D] IIT JEE PREPRETION LIMIT 5

4 E. If f() E., /,, th Hr d f() f() f() f() quls - (D) Dos ot ist ( ) f() f() dos ot ist. ( ) quls - log log As.[D] / log (D) Giv Limit ( ). ( ) log. log As.[B] E. If,b,c,d r positiv rl umbrs, th E.5 d/b b (c+d)/(+b) c d b c d c/ (D) ( form) b c d b c d / b (c + d) d/b As.[A] t / quls - (D) Lt y E.6 t (cot ) / log y ( cos ( ( cot log cot ) cos ( ) ) ) / form ( form) form y.as.[b] quls - () () log () log () No of ths Th giv it E.7 log. si. cos / si( / ) log. As.[C] Th vlu of cot is - (D) / Giv Limit si( / ) cos( / ) si( / ) cos( / ) si( / ) si( / ) cos( / ) si( / ) cos( cos( / ) / ) cos( / ) ( / ) si( / ) form ( / ) si( / ) As.[A] IIT JEE PREPRETION LIMIT 5

5 LEVEL- Qustio bsd o Q. If f() Eistc of it,,,, th Q. If f() Q. Q. Q.5 f(),,,, f() (D) Dos ot ist f() (D) si quls si si th- f() f() (D) Dos ot ist (D) Dos ot ist Q.6 Lt f() ( ) [/], whr [ ] rprst grtst itgr fuctio th f() is - (D) Dos ot ist Q.8 If f () Q.9,,, th, f() - (D) dos ot ist / [] quls - / (D) / Q. Which of th followig its ists- [] Q. ( Q. If f() si / ) / /, f() / (D) All th bov ( N) / / (D) Dos ot ist, th (D) Dos ot ist Q. If f is odd fuctio d f() f() ists th Q. If [] grtst itgr, th qul to - ± ( ) [] is Q.7 Which of th followig its dos ot ist- Qustio bsd o (D) { + } { } Q ( ) / / (D) IIT JEE PREPRETION LIMIT 5

6 Q.6 Th vlu of 7 5 / 7/ /5 (D) Q.5 / / Q.7 Th vlu of Q.8 Q.9 ( ) ( + ) ( ) ( ( ) ( 5 ) (5 ) 6 ) / /5 (D) / si 5 5 /5 (D) Q. Th vlu of... 5 / Q.6 Q.7 ( )! ( )! ( )!... / (D) Q.8 Th vlu of Q /... is - / / (D) Q. Q (D) ( + 5 ) / quls 5 Qustio bsd o Fctoristio mthod Q. Th vlu of / si cos (D) Q. si cos Q. Th vlu of 8 is udfid Q.... is qul to- / (D) / Q. 7 5 / / / (D) / IIT JEE PREPRETION LIMIT 55

7 Q. / / / / / (D) / Qustio bsd o Rtiolistio mthod Q. / (D) Dos ot ist Q. Q. cos si 8 (D) Q.5 Q.6 Q.7 Q.8 / / ( ) ( ) (D) / si ( ) / (D) / Q.9 Th vlu of b Q. Th vlu of b (D) b b b ( > b) is - / ( ) is Qustio bsd o Epsio mthod Q. Q. Q.5 Q.6 Q.7 Q.8 si si (D) cos si cos / (D) si cos log ( ) / / si t / (D) / cos si (D). cos log log IIT JEE PREPRETION LIMIT 56

8 Q.9 ( t ) / / (D) Q.57 ( si ) / ( si ) / / (D) / Qustio bsd o L Hospitl rul Q.58 h / ( h ) h / Q.5 Q.5 Q.5 Q.5 log / (D) m m m/ m m (D) / m t log si Q.5 Lt f() [ / ] f ( ) f () 8 m log /9 / Q.55 Th vlu of, th th vlu of (D), th Q.59 / /... Q.6 Th vlu of / (D) Q.6 Th vlu of Q.6 h / (D) / ( ) [ t (/) sc ] h (8 h ) h / / / 6/ (D) /8 / si Q.6 Th vlu of cos (D) / (D) Q.6 Th vlu of / sc log / / (D) / Q.56 Th vlu of (6 5 ) / / 5 ( ) /5 5/6 /8 Q.65 Th vlu of / cos log (t ) IIT JEE PREPRETION LIMIT 57

9 Q.66 log / (D) / Q.75 Th vlu of cot p cot q q/p (D) p/q Q.67 Th vlu of si( cos h ) log( h h ) si log h + log si cos cos + log si (D) cos log + si Q.76 Q.77 8 t / 7 si cos (D) Dos ot ist (D) / Q.68 / t si is qul to- (D) Q.69 If f(), f ' (), g(), g'(), th Q.7 g ( ) f ( ) g ( ) f ( ) 5 (D) 5 h ( h ) si ( h ) h si cos + si (cos + si ) (cos + si ) Q.7 Th vlu of Q.7 ( ) si ( ) (D) (D) / Q.7 Th vlu of (D) 5 Qustio bsd o Som stdrd it Q.78 cos cos / Q.79 Th vlu of y (y ) cosc (y ) (D) / Q.8 Th vlu of Q.8 Q.8 Q.8 Q.8 [log (+) log ] (D) ( ) / / (D) / si si (D) (D) Q.7 Th vlu of log ( k cos ) is - k (D) k Q.85 si (D) / IIT JEE PREPRETION LIMIT 58

10 Q.86 If Q.87 t k si 5, th th vlu of k 5 (D) 5 ( / ) (D) Q.88 Th vlu of Q.89 Q.9 If Q.9 b log b d d si (b/ ) is ( >) - cos d log b is qul to- / / (D) k si cos 8 8 k, th vlu of / / / (D) /8 8 cos cos cos /6 / 8 Qustio bsd o,, Forms Q.9 Q.9 Q.9 log ( ) / (D) 9 cos (D) / [ + t] cot quls - (+ ) / (D) / Q.95 Q.96 / / (D) / / (sc ) cot / Q.97 Th vlu of (cosc ) /log is - (D) / Q.98 Th vlu of Q.99 If f() Q. Q. / (t ) t (D), th- f() 6 f() (D) f() f() (D) (D) Q. Th vlu of / is - Q. Th vlu of ( + ) / is - (D) IIT JEE PREPRETION LIMIT 59

11 LEVEL- Q. If f() g() si,,,, 5,, Z othrwis, th d g[f ()] (D) 5 Q. If [] dots th grtst itgr, th Q. quls - {[ ] + [ ] + [ ] +. + [ ] / / /6 (D)..... ( ) / (D) Q.8 If f() Q.9 si( [ ]) [ ] for [ ] for [ ] whr [] dots th grtst itgr, f() quls - si /8 / / (D) Q. If g() is polyomil stisfyig g() g(y) g() + g(y) + g (y) for ll rl d y d g() 5, th 8 8 g() is - Q. Th vlu of (cos ) / / (D) Q. 5 t Q.5 {log () log ( + )... log (k )}, k k N is - dos ot ist Q.6 Th vlu of k log t Q. Q. ( ) 6 (D) dos ot ist 8 ( ) 5 ( ) (D) Q.7 h si h cos h 6 6 h ( cosh si h ) / / (D) / is qul to Q. /5 (D) Dos ot ist IIT JEE PREPRETION LIMIT 6

12 Q.5 Th vlu of sc sc sc sc / (D) Q. si log ( ) / / / (D) / Q.6 If > d g is boudd fuctio Q.7 Q.8 f ( ) g() ( g ( ) is - (si ) ) f() / (D) /... / / Q.9 Th vlu of Q. Q. 5 6 is qul to- cos (si ) cos ( ) qul to- ( ) (D) (D) Dos ot ist... ( ) (D) is Q. Th vlu of t t t t t Q.5 Th vlu of Q.6 Q.7 Q.8 Q.9 Q. 5 (D) si (si ) m (m < ) is qul to- /m cos ( ) (D) m/ / / / (D) /8 log 5 (log 5 5 ) quls - / / / cot cos ( ) is - ( >, > ) is qul to- Q. si ( / ) (D) 6 6 IIT JEE PREPRETION LIMIT 6

13 Q. If si si is o-zro dfiit, th must b - Q.5 t t (D) Q. cos (si ) / t (si ) (D) Q.6 si si Q. If f '' (), th th vlu of f ( ) f ( ) f ( ) (D) Q. ( + ( []) ) whr [] rprst grtst itgr fuctio. (D) IIT JEE PREPRETION LIMIT 6

14 Q. If [] dots th grtst itgr lss th or qul to, th [ ] [ ] [ ]... [ ] quls - / / (D) Q. Th vlu of ( t ) / / / (D) / Q. If { } rprst frctiol prt of th [ ] { } { } { } is qul to whr [ ] rprst G.I.F. / LEVEL- Q.7 Lt mi m { + + } R d b cos th vlu of r.. Q.8 Th vlu of Q.9. r r b is - si si si -... / (!) (!) /! (D) (!) Q. Lt f (), th - f (), for > f () for < f () is ot dfid for y vlu of (D) f () for Q.5 If f () h (), g () ( ) [f() + g() +h()] th Q.6 If A i 7 i i < < <.... Th m is qul to ( ) m is qul to ( ) m+ is qul to ( ) m (D) dos ot ist (D) d, i,,..., d if m (A A..A ), Q. Q. ( ) / / ( ) / /... /... ( ) [(mi m (y y + )) si / ] whr [ ] rprst grtst itgr fuctio is si si Q. If f() is th itgrl of th fid f () - / /, Q. If f () is cotiuous fuctio from f : R R d ttis oly irrtiol vlu s th r r f ( r ) r f ( r ) f ( r ) IIT JEE PREPRETION LIMIT

15 Q. Th vlu of cos( ) ( ) / Q.5 Giv rl vlud fuctio f such tht Q.6 f() t { }, ( [ ] ), { } cot{ }, is - whr [ ] rprst G.I.F. d { } rprst frctiol prt of f() t f() cot f ( ) (D) All of th bov si [cos ] cos [cos ] is - / dos ot ist Q.7 Th vlu of Q.8 If si 99 si whr [ ] rprst grtst itgr fuctio ( b ) th, b, b, b Sttmt typ Qustios All qustios r Assrtio & Rso typ qustios. Ech of ths qustios cotis two sttmts: Sttmt- (Assrtio) d Sttmt- (Rso). Aswr ths qustios from th followig four optio. Sttmt-I d Sttmt-II r tru Sttmt-II is th corrct pltio of Sttmt-I Sttmt-I Sttmt-II r tru but Sttmt-II is ot th corrct pltio of Sttmt-I. Sttmt-I is tru but Sttmt-II is fls (D) Sttmt-I is fls but Sttmt-II is tru. Q.9 Sttmt I : [] / / (whr [ ] rprst grtst itgr fuctio) dos ot ist. Sttmt-II : / / dos ot ist. Q. Sttmt-I : Th grph of th fuctio y f() hs uiqu tgt t th poit (, ) through which th grph psss th log ( 6 (f ( )) f ( ) Sttmt-II : Sic th grph psss through (, ). Thrfor f(), wh f() giv it is zro by zro form. So tht it c b vlut by usig L Hospitl s rul. Q. Sttmt-I : wh <, log ( ) cos Sttmt-II : For < <, s,. Q. Sttmt -I : Sttmt -II : Q. Sttmt -I : Sttmt -II : si log( + ) y si y y cos it is qul to right hd it. Q. Sttmt -I : Vlu of Sttmt -II: If f() d ist's. f() ists if th lft hd / ( + f()) g() is g() (si) t is. f ( ) g ( ), IIT JEE PREPRETION LIMIT

16 Pssg Bsd Qustios Pssg :- Lt m, r o zro itgrs d t m si itgr. O th bsis of bov iformtio, swr th followig qustios- Q.5 Which of th followig sttmt is tru m is should b v but is odd both m & should b odd m is odd d is v (D) both m & r v itgrs Q.6 Th vlu of it i trms of m & is m 6 m Q.7 Is m & r rltd s m m m Q.8 Th vlu of it for m is Q.9 If 6 t (m ) si 6 for m, th vlu of it is ot itgr th Colum Mtchig Qustios Q. Q. Mtch th try i Colum with th try i Colum. f() is lss th qul to, whr Colum-I f ( ) f ( ) f ( ) (P) si Colum-II (Q) (R) (D) ( + si ) cosc (S) f() f() f(), whr f() is s i colum-i Colum-I t[ [5 / ] si t[ t t t whr [] is th grtst itgr fuctio f() (D) f() cos log( ) si cos Colum-II ] ] [5 / ] (P) / 8 (Q) 5 (R) (S) / IIT JEE PREPRETION LIMIT

17 SECTION A Q. If f (), f (), th LEVEL- (Qustio skd i prvious AIEEE d IIT-JEE) f ( ) [AIEEE ] (D) Q. Th vlu of Q. Q. Q.5 If ( cos ) si si / / 6/5 (D) 5/6 5 5 [AIEEE ] [AIEEE ] (D) log [ ], N, (whr [] dots [ ] grtst itgr lss th or qul to ) [AIEEE-] hs vlu hs vlu hs vlu (D) dos ot ist log ( ) log ( ) k, th vlu of k is - [AIEEE ] (D) Q.6 Lt f() g() k d thir th drivtivs f (), g () ist d r ot qul for som. Q.7 Furthr if f ( )g ( ) f ( ) g ( ) f ( ) g ( )f ( ) g ( ) th th vlu of k [AIEEE ] (D) / t t [ si [ ] ] [AIEEE ] Q.8 If b, th th vlus of d b, r- [AIEEE ] R, b R, b R R, b (D) d b Q.9 Lt d b th distict roots of Q. Q. Q. + b + c, th cos ( ( ) b c ) ( ) ( ) (D) cos{ ( )} [AIEEE-8] ( ) dos ot ist quls quls (D) quls / cot SECTION-B cos ( ) ( ) ( ) 5 [AIEEE-] [IIT-99] 5 (D) [IIT-99] (D) 8 6 (D) 8 IIT JEE PREPRETION LIMIT

18 Q. ( cos ) (D) No [IIT -99] Q. t t ( cos ) (D) [IIT-999] Q. Q.5 for [IIT-99] o vlu of is y whol umbr oly (D) oly t / [IIT-99] (D) Q. For R, Q. 5 (D) 5 si ( cos ) [IIT Scr. ] quls - [IIT Scr. ] / (D) Q.6 Q.7 t / (D) 5 / [IIT- 99] [IIT- 996] (D) Q.8 Th vlu of Q.9 h log ( h ) h log( h ) [IIT-997] cos ( ) [IIT-998 similr to IIT- 99] dos ot ist bcus LHL RHL Q. Th vlu of Itgr ; for which (cos ) (cos ) is fiit o zro umbr- [IIT Scr. ] (D) Q. Lt f : R R such tht f() d f () 6. Q.5 If th f ( ) f () / quls - / (D) (si vlu of ) [( ) t ] [IIT Scr. ] th th [IIT Scr.] ists d it quls dos ot ist bcus (D) ists d it quls + (D) IIT JEE PREPRETION LIMIT 5

19 Q.6 If f() is diffrtibl fuctio d f () 6, f (), f (c) rprsts th diffrtitio of f() t c, th my ist f ( h h ) f ( ) h f ( h h ) f ( ) will ot ist is qul to (D) is qul to [IIT Scr.] Q.7 Lt f() b strictly icrsig d diffrtibl, th f ( ) f ( ) f ( ) f ( ) (D) [IIT Scr.] Q.9 Lt L, >. If L is fiit, th [IIT- 9] L 6 (D) L Q. If Lim l ( b ) bsi, b > d (, ], th th vlu of is - [IIT- ] (D) 6 Q.8 si / (si ), for > - [IIT-6] (D) IIT JEE PREPRETION LIMIT 6

20 ANSWER KEY LEVEL- Q.No As. A C D D B B A A C D D D A D A A A D C B Q.No As. A B B C A A B C A B B B B D D D B D D A Q.No As. B B D B B C B B B D C A B D B B C B D A Q.No As. D C D B C C D D B A B B A D C A C A D A Q.No As. D C B A C D B C A D C D B C B C D B D D Q.No. As. C B D LEVEL- Q.No As. B B C C B A B B A B A C C B C B C B B D Q.No As. A C B B D A C B B B A B B D C B LEVEL- Q.No As. A C D A,B C D C A B C B A B D D B B C B A Q.No As. A D D A D B C A A. P,R,S ; P,S ; P,Q,R,S ; (D) P. Q ; R ; S ; (D) P LEVEL- SECTION-A Q.No As. A A A A D B D B A A, SECTION-B Q.No As. B C D B B C A B A A C B Q.No As. C C C C B D A,C D IIT JEE PREPRETION LIMIT 7

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B WBJEEM - MATHEMATICS Q.No. μ β γ δ C A C B B A C C A B C A B B D B 5 A C A C 6 A A C C 7 B A B D 8 C B B C 9 A C A A C C A B B A C A B D A C D A A B C B A A 5 C A C B 6 A C D C 7 B A C A 8 A A A A 9 A

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Objective Mathematics

Objective Mathematics . If sum of '' terms of a sequece is give by S Tr ( )( ), the 4 5 67 r (d) 4 9 r is equal to : T. Let a, b, c be distict o-zero real umbers such that a, b, c are i harmoic progressio ad a, b, c are i arithmetic

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions)

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions) Chm 5 Prof. Dor Lopold ANSWER KEY /8/7 Nm Pls prit Qutum Chmistry d Spctroscopy Em poits, 5 miuts, qustios Pls chck hr if you would prfr your grdd m to b rturd to you dirctly rthr th big icludd mog lphbtizd

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor ad Maclauri Sris Taylor ad Maclauri Sris Thory sctio which dals with th followig topics: - Th Sigma otatio for summatio. - Dfiitio of Taylor sris. - Commo Maclauri sris. - Taylor sris ad Itrval

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv.

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Basic Limit Theorems

Basic Limit Theorems Bsic Limit Theorems The very "cle" proof of L9 usig L8 ws provided to me by Joh Gci d it ws this result which ispired me to write up these otes. Absolute Vlue Properties: For rel umbers x, d y x x if x

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

LIMITS. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

LIMITS. Contents. Theory Exercise Exercise Exercise Exercise Answer Key LIMITS Cotets Toic Pge No. Theory Eercise 5 Eercise 7 Eercise 8 Eercise Aswer Key Syllbus Stdrd Limits, Idetermit forms, LH Rule, Series Esio Nme : Cotct No. ARRIDE LEARNING ONLINE ELEARNING ACADEMY A79

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Repeated Root and Common Root

Repeated Root and Common Root Repeted Root d Commo Root 1 (Method 1) Let α, β, γ e the roots of p(x) x + x + 0 (1) The α + β + γ 0, αβ + βγ + γα, αβγ - () (α - β) (α + β) - αβ (α + β) [ (βγ + γα)] + [(α + β) + γ (α + β)] +γ (α + β)

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2.

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2. EXERCISE I Q Prove that cos² + cos² (+ ) cos cos cos (+ ) ² Q Prove that cos ² + cos (+ ) + cos (+ ) Q Prove that, ta + ta + ta + cot cot Q Prove that : (a) ta 0 ta 0 ta 60 ta 0 (b) ta 9 ta 7 ta 6 + ta

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Advanced Calculus Test File Spring Test 1

Advanced Calculus Test File Spring Test 1 Advced Clculus Test File Sprig 009 Test Defiitios - Defie the followig terms.) Crtesi product of A d B.) The set, A, is coutble.) The set, A, is ucoutble 4.) The set, A, is ifiite 5.) The sets A d B re

More information