# CONTINUITY AND DIFFERENTIABILITY

Size: px
Start display at page:

Transcription

1 MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f givn by f() = is continuous t = 0 Empl : Discuss th continuity of th function f givn by f() = t = 0 Empl 4 : Show tht th function f givn by f () 0 0 is not continuous t = 0 Empl 5 : Chck th points whr th constnt function f() = k is continuous Empl 6 : Prov tht th idntity function on rl numbrs givn by f() = is continuous t vry rl numbr Empl 7 : Is th function dfind by f() =, continuous function? Empl 8 : Discuss th continuity of th function f givn by f() = + Empl 9 : Discuss th continuity of th function f dfind by f(), 0 Empl 0 : Discuss th continuity of th function f dfind by f () Empl : Find ll th points of discontinuity of th function f dfind by f () 0 Empl : Discuss th continuity of th function dfind by 0 f () 0 0 Empl : Discuss th continuity of th function f givn by f() 0 Empl 4 : Show tht vry polynomil function is continuous Empl 5 : Find ll th points of discontinuity of th grtst intgr function dfind by f() = [], whr [] dnots th grtst intgr lss thn or qul to Empl 6 : Prov tht vry rtionl function is continuous Empl 7 : Discuss th continuity of sin function Empl 8 : Prov tht th function dfind by f() = tn is continuous function Empl 9 : Show tht th function dfind by f() = sin ( ) is continuous function Empl 0 : Show tht th function f dfind by f() = +, whr is ny rl numbr, is continuous function EXERCISE 5 Prov tht th function f() = 5 is continuous t = 0, t = nd t = 5 Emin th continuity of th function f() = t = Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

2 MCD Emin th following functions for continuity () f() = 5 (b) f(), (c) f(), 5 (d) f() = Prov tht th function f() = n is continuous t = n, whr n is positiv intgr 5 Is th function f dfind by f () continuous t = 0? At =? At =? 5 Find ll points of discontinuity of f, whr f is dfind by : 6 f() 7 f() f() f() f() f() 0 f() 5 Is th function dfind by f () continuous function? 5 Discuss th continuity of th function f, whr f is dfind by 4 0 f() f() f() 7 Find th rltionship btwn nd b so tht th function f dfind by continuous t = f () is b 8 For wht vlu of is th function dfind by Wht bout continuity t =? ( ) f() 4 0 continuous t = 0? 0 9 Show tht th function dfind by g() = [] is discontinuous t ll intgrl points Hr [] dnots th grtst intgr lss thn or qul to 0 Is th function dfind by f() = sin + 5 continuous t =? Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

3 MCD Discuss th continuity of th following functions : () f() = sin + cos (b) f() = sin cos (c) f() = sin cos Discuss th continuity of th cosin, coscnt, scnt nd contngnt functions Find ll points of discontinuity of f, whr sin 0 f () 0 4 Dtrmin f dfind by sin f() is continuous function? sin cos 0 5 Emin th continuity of f, whr f is dfind by f () 0 Find th vlus of k so tht th function f is continuous t th indictd point in Erciss 6 to 9 6 k cos f () t 7 k f() t = 8 k f () t = 9 cos k 5 f () t = Find th vlus of nd b such tht th function dfind by continuous function Show tht th function dfind by f() = cos ( ) is continuous function Show tht th function dfind by f() = cos is continuous function Emin tht sin is continuous function 4 Find ll th points of discontinuity of f dfind by f() = + Answrs : f is continuous t = (), (b), (c) nd (d) r ll continuous functions 5 f is continuous t = 0 nd = ; Not continuous t = 6 Discontinuous t = 7 Discontinuous t = 8 Discontinuous t = 0 9 No point of discontinuity 0 No point of discontiniuty No point of discontinuity f is discontinuity t = f is not continuous t = 5 f () b 0 is 0 4 f is not continuous t = nd = 5 = is th only point of discontinuity 6 Continuous 7 b 8 For no vlu of, f is continuous t = 0 but f is continuous t = for ny vlu of 0 f is continuous t = (), (b) nd (c) r ll continuous Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

4 MCD 4 Cosin function is continuous for ll R; coscnt is continuous cpt for = n, n Z; scnt is continuous cpt for (n ), n Z nd cotngnt function is continuous cpt for = n, n Z Thr is no point of discontinuity 4 Ys, f is continuous for ll R 5 f is continuous for ll R 6 k = 6 7 k 8 4 k 9 9 k 0 =, b = 5 4 Thr is no point of discontinuity NCERT Solvd mpls upto th sction 5 (Dfrntibility) : Empl : Find th drivtiv of th function givn by f() = sin ( ) cos Empl : Find th drivtiv of tn ( + ) sc ( + ) Empl : Dfrntit sin (cos ( )) with rspct to sin cos (cos ) EXERCISE 5 Dfrntit th functions with rspct to in Ercis to 8 sin ( + 5) cos (sin ) sin ( + b) 4 sc (tn ()) 5 sin( b) cos(c d) 6 cos sin ( 5 ) 7 cot( ) 8 cos () 9 Prov tht th function f givn by f() =, R 0 Prov tht th grtst intgr function dfind by f() = [], 0 < < is not dfrntibl t = nd = Answrs : cos( + 5) cos sin (sin ) cos ( + b) 4 sc(tn )tn(tn )sc 5 cos ( + b) sc (c + d) + c sin ( + b) tn (c + d) sc (c + d) sin 5 cos 5 cos sin sin 5 7 sin sin 8 sin Empl 4 : Find y = d Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

5 MCD 5 Empl 5 : Find, y + sin y = cos d y (n+ ) Empl 6 : Find th drivtiv of f givn by f() = sin ssuming it ists Empl 7 : Find th drivtiv of f givn by f() = tn ssuming it ists EXERCISE 5 Find in th following : d + y = sin + y = sin y + by = cos y 4 y + y = tn + y 5 + y + y = y + y + y = 8 7 sin y + cos y = 8 sin + cos y = 9 y sin 0 y tn, y cos, 0 < < y sin, 0 < < y cos, < < 4 y sin, 5 y sc,0 Answrs : cos cosy by sin y 4 sc y y 5 ( y) 6 ( y) ( y y ) ( y y ) 7 y sin y sin y sin y 8 sin sin y Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

6 MCD 6 NCERT Solvd mpls upto th sction 54 (Eponntil nd Logrithmic Functions) : Empl 8 : Is it tru tht = log for ll rl? Empl 9 : Dfrntit th following wrt : (i) (ii) sin (log ), > 0 (iii) cos ( ) (iv) cos (i) (ii) cos(log ) (iii) (iv) (sin ) cos EXERCISE 54 Dfrntit th following wrt : sin sin 4 sin (tn ) 5 log (cos ) 6 5 cos 7, > 0 8 log (log ), > 9, 0 log 0 cos (log + ), > 0 Answrs : (sin cos ), n,n Z sin sin, (,) 4 cos(tn ) 5 tn, (n ),n N , 0 8, log 4 (sin log cos ) 9, 0 0 sin(log ), 0 (log ) NCERT Solvd mpls upto th sction 55 (Logrithmic Dfrntition) : Empl 0 : Dfrntit ( )( 4) 4 5 wrt ( )( 4) 6 4 ( ) Empl : Dfrntit wrt, whr is positiv constnt log log = log Empl : Dfrntit sin, > 0 wrt sin sin + sin cos log Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

7 MCD 7 Empl : Find, y + y + = b d [y d log y y y y ( log )] y log EXERCISE 55 Dfrntit th functions givn in Ercis to wrt cos cos cos ( )( ) ( )( 4)( 5) (log ) cos 4 sin 5 ( + ) ( + 4) ( + 5) (log ) + log 8 (sin ) + sin 9 sin + (sin ) cos 0 cos ( cos ) (sin ) Find of th functions givn in Ercis to 5 d y + y = y = y 4 (cos ) y = (cos y) ( y) 5 y = 6 Find th drivtiv of th function givn by f() = ( + ) ( + ) ( + 4 ) ( + 8 ) nd hnc find f () 7 Dfrntit ( 5 + 8) ( ) in thr wys mntiond blow : (i) (ii) (iii) by using produc rul by pnding th product to obtin singl polynomil by logrithmic dfrntition Do thy ll giv th sm nswr? 8 If u, v nd w r functions of, thn show tht d (u, v, w) d du dv dw vw u w u v d d d in two wys-first by rptd ppliction of product rul, scond by logrithmic dfrntition Answrs : cos cos cos [tn + tn + tn ] ( )( ) ( )( 4)( 5) 4 5 cos cos (log ) sin log(log ) log 4 ( + log ) sin cos log Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

8 MCD 8 5 ( + ) ( + 4) ( + 5) ( ) 6 log log 7 (log ) [ + log log (log )] + log log 8 (sin ) ( cot + log sin ) + sin 9 sin cos log + (sin ) cos [cos cot sin log sin ] 0 cos [cos ( + log ) sin log ] ( 4 ) cot log(sin ) ( cos ) [ tn + log ( cos )] + ( sin ) y y y log y y y log log y y y log y 4 y tn logcosy tny logcos 5 y( ) (y ) ( )( )( )( ) ;f () NCERT Solvd mpls upto th sction 56 (Drivtivs of Functions in Prmtric Forms) : Empl 4 : Find, = cos, y = sin d cot Empl 5 : Find, = t, y = t d /t Empl 6 : Find, = ( + sin ), y = ( cos ) d tn Empl 7 : Find, y d y Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

9 EXERCISE 56 MCD 9 If n r connctd prmtriclly by th qution givn in Erciss to 0, without liminting th prmtr, find d = t, y = t 4 = cos, y = b cos = sin t, y = cos t 4 = 4t, y = t 4 5 = cos cos, y = sin sin 6 = ( sin ), y = ( + cos ) 7 sin t cos t t, y 8 cost log tn y sin t cost cost 9 = sc, y = b tn 0 = (cos + sin ), y = (sin cos ) If Answrs : sin t, y cos t, show tht d y t b 4 sin t 4 t 5 cos cos sin sin 6 cot 7 cot t 8 tn t b 9 cosc 0 tn NCERT Solvd mpls upto th sction 57 (Scond Ordr Drivtiv) : Empl 8 : Find, y = + tn d 6 + sc + tn Empl 9 : If y = A sin + B cos, thn prov tht y 0 d Empl 40 : If y = +, prov tht 5 6y 0 d d Empl 4 : If y = sin, show tht ( ) 0 d d EXERCISE 57 Find th scond ordr drivtivs of th functions givn in Erciss to cos 4 log 5 log 6 sin cos 8 tn 9 log (log ) 0 sin (log ) If y = 5 cos sin, prov tht y 0 d Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

10 MCD 0 If y = cos, find d in trms of y lon If y = cos (log ) + 4 sin (log ), show tht y + y + y = 0 4 If y = A m + B n, Show tht (m n) mny 0 d d 5 If y = , show tht 49y d 6 If y ( + ) =, show tht d d 7 If y = (tn ), show tht ( + ) y + ( + ) y = Answrs : 80 8 cos sin 4 5 (5 + 6 log ) 6 (5 cos 5 sin 5) ( cos 4 sin ) 8 9 ( ) ( log ) (log ) 0 sin(log ) cos(log ) cot y cosc y NCERT Solvd mpls upto th sction 58 (Mn Vlu Thorm) : Empl 4 : Vry Roll s thorm for th function y = +, = nd b = Empl 4 : Vry Mn Vlu Thorm for th function f() = in th intrvl [, 4] EXERCISE 58 Vry Roll s thorm for th function f() = + 8, [ 4, ] Emin Roll s thorm is pplicbl to ny of th following functions Cn you sy som thing bout th convrs of Roll s thorm from ths mpl? (i) f() = [] for [5, 9] (ii) f() = [] for [, ] (iii) f() = for [, ] If f : [ 5, 5] R is dfrntibl function nd f () dos not vnish nywhr, thn prov tht f( 5) f(5) 4 Vry Mn Vlu Thorm, f() = 4 in th intrvl [, b], whr = nd b = 4 5 Vry Mn Vlu Thorm, f() = 5 in th intrvl [, b], whr = nd b = Find ll c (, ) for which f (c) 0 6 Emin th pplicbility of Mn Vlu Thorm for ll thr functions givn in th bov rcis MISCELLANEOUS EXAMPLES Empl 44 : Dfrntit wrt, th following function : (i) sc (ii) cos (iii) log 7 (log ) 4 Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

11 MCD (i) (ii) sc tn sc (iii) log 7log Empl 45 : Dfrntit th following wrt (i) cos sin (sin ) (ii) tn cos (iii) sin 4 (i) f () (ii) f () (iii) 4 log Empl 46 : Find f () f() = (sin ) sin for ll 0 < < ( + log (sin )) (sin ) sin cos Empl 47 : For positiv constnt find, whr d y t t, nd t t t t log t t Empl 48 : Dfrntit sin wrt cos cos cos MISCELLANEOUS EXERCISE ON CHAPTER 5 Dfrntit wrt th function in Erciss to ( 9 + 5) 9 sin + cos 6 (5) cos 4 sin (), 0 cos 5, 7 6 cot sin sin sin,0 sin 7 (log ) log, > 8 cos ( cos + b sin ), for som constnt nd b 9 (sin cos ) (sin cos ), , for som fid > 0 nd > 0 ( ), for > Find, y = ( cos t), = 0 (t sin t), t d Find, y = sin + sin, d 4 If y y 0, for < <, prov tht d ( ) Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

12 MCD 5 If ( ) + (y b) = c, for som c > 0, prov tht nd b d d is constnt indpndnt of 6 If cos y = cos ( + y), with cos ±, prov tht 7 If = (cos t + t sin t) n = (sin t t cos t), find cos ( y) d sin d 8 If f() =, show tht f () ists for ll rl nd find it 9 Using mthmticl induction prov tht d ( d n n ) n for ll positiv intgrs n 0 Using th fct tht sin (A + B) = sin A cos B + cos A sin B nd th dfrntition, obtin th sum formul for cosins Dos thr ist function which is continuous vrywhr but not dfrntibl t ctly two points? Justy your nswr If f() y l g() m b h() n c, prov tht d f () l m n g() b h () c If cos y,, show tht ( ) y 0 d d Answrs : 7 ( 9 + 5) 8 ( ) sin cos (sin cos 4 ) cos cos (5) 6sin log cos ( 7) 6 log log(log ) 7 (log ), 8 ( sin b cos ) sin ( cos + b sin ) 9 (sin cos) sin cos (cos + sin) ( + log (sin cos )), sin > cos 0 ( + log ) + + log log ( ) log( ) 7 6 cot 5 sc t t t,0 t 0 Einstin Clsss, Unit No 0, 0, Vrdhmn Ring Rod Plz, Viks Puri Etn, Outr Ring Rod Nw Dlhi 0 08, Ph : 96905, 857

### INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

### TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

### Instructions for Section 1

Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

### Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### For more important questions visit :

For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

### Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

### Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

### Limits Indeterminate Forms and L Hospital s Rule

Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

### DIFFERENTIAL EQUATION

MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

### , between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

### 1973 AP Calculus AB: Section I

97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

### Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

### ASSERTION AND REASON

ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

### cycle that does not cross any edges (including its own), then it has at least

W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

### A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

A. Limits and Horizontal Asymptots What you ar finding: You can b askd to find lim x "a H.A.) problm is asking you find lim x "# and lim x "\$#. or lim x "±#. Typically, a horizontal asymptot algbraically,

### SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

### Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

### The Matrix Exponential

Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

### Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

### The Matrix Exponential

Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

### CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

### Linear Algebra Existence of the determinant. Expansion according to a row.

Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

### Abstract Interpretation: concrete and abstract semantics

Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

### PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

### Walk Like a Mathematician Learning Task:

Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

### SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

### UNIT # 08 (PART - I)

. r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

### INVERSE TRIGONOMETRIC FUNCTIONS

MIT INVERSE TRIGONOMETRIC FUNCTIONS C Domins Rnge Principl vlue brnch nd Grphs of Inverse Trigonometric/Circulr Functions : Function Domin Rnge Principl vlue brnch = [ / /] Domin Rnge Principl vlue brnch

### MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &D) AND CALCULUS. TIME : hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.If th portion

### MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

### Chapter 10. The singular integral Introducing S(n) and J(n)

Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

### The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

### Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

### Basic Polyhedral theory

Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

### BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

### HIGHER ORDER DIFFERENTIAL EQUATIONS

Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

### this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

### Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

### Multi-Section Coupled Line Couplers

/0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

### Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

### Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Dte :... IIT/AIEEE APPEARING 0 MATRICES AND DETERMINANTS PART & PART Red the following Instrutions very refully efore you proeed for PART Time : hrs. M.M. : 40 There re 0 questions in totl. Questions to

### BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

### The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

### MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

### 10. Limits involving infinity

. Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

### Math 113 Exam 2 Practice

Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

### FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

### ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

### Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

### First derivative analysis

Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

### Combinatorial Networks Week 1, March 11-12

1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

### APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

### 7' The growth of yeast, a microscopic fungus used to make bread, in a test tube can be

N Sction A: Pur Mathmatics 55 marks] / Th rgion R is boundd by th curv y, th -ais, and th lins = V - +7 and = m, whr m >. Find th volum gnratd whn R is rotatd through right angls about th -ais, laving

### Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

### The Equitable Dominating Graph

Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

### (2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

. DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

### Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

### Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

### Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

### Homework #3. 1 x. dx. It therefore follows that a sum of the

Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

### Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...?

Discrt mth Prctic Fl Em.) Fd 4 (i ) i=.) Fd i= 6 i.) Wht is th 6st trm th squnc 7,, 5, 9,...? 4.) Wht s th 57th trm, 6,, 4,...? 5.) Wht s th sum th first 60 trms th squnc, 5, 7, 9,...? 6.) Suppos st A

### (Upside-Down o Direct Rotation) β - Numbers

Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

### Chapter 6 Techniques of Integration

MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

### 5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

### EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

### Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

### SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

### Prelim Examination 2011 / 2012 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours

Prlim Eamination / (Assssing Units & ) MATHEMATICS Advancd Highr Grad Tim allowd - hours Rad Carfull. Calculators ma b usd in this papr.. Candidats should answr all qustions. Full crdit will onl b givn

### CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

### SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

It is not possibl to find flu through biggr loop dirctly So w will find cofficint of mutual inductanc btwn two loops and thn find th flu through biggr loop Also rmmbr M = M ( ) ( ) EDT- (JEE) SOLUTIONS

### MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

### Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

### Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

### Answers & Solutions. for MHT CET-2018 Paper-I (Mathematics) Instruction for Candidates

DATE : /5/8 Qustion Booklt Vrsion Rgd. Offic : Aakash Towr, 8, Pusa Road, Nw Dlhi-5 Ph.: -75 Fa : -77 Tim : Hour Min. Total Marks : Answrs & Solutions for MHT CET-8 Papr-I (Mathmatics) Instruction for

### Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Derangements and Applications

2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

### Thomas Whitham Sixth Form

Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

### COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

### ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

### 10. The Discrete-Time Fourier Transform (DTFT)

Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

### Higher order derivatives

Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

### Integration by Parts

Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

### Calculus Revision A2 Level

alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

### 7. Indefinite Integrals

7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

### Case Study VI Answers PHA 5127 Fall 2006

Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

### Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

. (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

### arxiv: v2 [math.ca] 24 Feb 2016

Product of prbolic cylindr functions involving Lplc trnsforms of conflunt hyprgomtric functions Ridh Nsri rxiv:53.69v [mth.ca] 4 Fb 6 Orng Lbs, 38-4 vnu Gnrl Lclrc, 9794 Issy-ls-Moulinux, Frnc In this

### Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]

### Differential Equations

UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

### Some remarks on Kurepa s left factorial

Som rmarks on Kurpa s lft factorial arxiv:math/0410477v1 [math.nt] 21 Oct 2004 Brnd C. Kllnr Abstract W stablish a connction btwn th subfactorial function S(n) and th lft factorial function of Kurpa K(n).

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### 1997 AP Calculus AB: Section I, Part A

997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6