Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Size: px
Start display at page:

Download "Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S."

Transcription

1 Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3% of h ol (Op book) Thi coi of o hour ppr wih 5 mulipl choic quio. () Fil Exm : 7% of h ol Th ppr coi of 6 quio d 5 quio hould b wrd. 3

2 . Lplc rform I mhmic, " rform" uully rfr o dvic which chg o kid of fucio or quio io ohr kid. O mp o dig rform which chg problm h w do o kow how o olv io problm which r o olv. Thi chiqu h provd vry ffciv i olvig diffril quio.my diffr rform hv b ivd. I hi cio w udy o of hm, h Lplc rform which r grlly pplid o complx lcricl circui d mchicl ym. Dfiiio Th Lplc rform L{ f ( )} of fucio f() i dfid o b L{ f ( )} f ( ) d F( ) whvr hi igrl xi. Th igrio vribl i. Hc h igrl dfi fucio of h w vribl. W hll lo cuomrily u h vribl of our origil fucio d h vribl of i Lplc rform. Dfiiio Th ivr Lplc rform of F() i fucio f() uch h L{f()} = F(). If w do h oprio of kig Lplc rform by L, d of kig ivr Lplc rform by L, h L{ f ( )} F( ) impli d covrly, L { F( )} f ( ) L { F( )} f ( ) impli L{ f ( )} F( ) Exrci Uig h dfiiio of Lplc rform how h followig. (i) L{} =, ( >) (iii) L Si, (ii) For >, L{Co()} = (iv) L, 4

3 No: I i how by rpd igrio h L{ } =! for y poiiv igr. Thorm : (i) L{f() g()} = L{f()} L{g()} whvr ll h rform xi. Hc L L f ( ) Lg ( ) f ( ) g( ) (ii) For y rl umbr,l{ f()} = L{f()} whvr boh id xi. L L f ( ) f (. Hc ) Exrci Uig bov horm fid (i) L Sih 5 (ii) L{4 Sih(3 ) 8 } (iii) L 3 8 Lplc rform of bic fucio r giv blow. f () L f ()! 3! Si Co (Abov formul r vlid for. ) Sih Coh ( Th bov hr formul r vlid for ). 5

4 Exrci 3 Uig h dfiiio of ivr Lplc rform obi h followig. 3 (i) L 5 (ii) L (iii) L 3 64 ( 4) (iv) L 3 5 { } (v) L { } 7 ( )( )( 4) Thorm : If i y rl umbr h L{ f()} = F(-) whr F() = L{f()} i.. L{ f()}= L{f()} Thi i kow fir rlio horm or Shifig propry. Exrci 4 Fid h followig. (i) L{ 5 3 } (iv) Cob (vii) Sih b (ii) L{ Co4} (iii) L { } 3 ( ) L (v) L Sib (vi) L Cohb L (viii) L CohCo b Lplc Trform of Driviv Our gol i o u h Lplc rform o olv cri kid of diffril dy d y quio. For h w d o vlu quii uch L{ } d L{ }. d d if f i coiuou h, for L{ f ()}= F() f() L{ f ()} F( ) f () f () Exrci 5 Prov bov wo rul. 6

5 No: I grl, L{ f ( )} whr F() = L{f()}. F( ) f () f ()... f ( ) Solvig diffril quio uig Lplc rform () I ordr o olv diffril quio Lplc rform of driviv r ud. Exrci 6 Solv h followig. (i) dy 3y ubjc o y() =. d 3 (ii) y 6y 9y ubjc o y() =, y ( ) 6 (iii) y 4 y 6y ubjc o y() =, y ( ) ( iv) x 6x Co4 ubjc o X() =, x ( ) Solvig Simulou diffril quio uig Lplc rform Th Lplc rform rduc ym of lir quio wih co coffici o of imulou lgbric quio i h rformd fucio. Exrci 7 Solv h followig. (i) x y y x y ubjc o x() =, y()= (ii)mchicl ym wih wo dgr of frdom ifi h quio miod blow. d x dy d y dx 3 4, 3. U lplc rform o drmi x d y d d d d dx dy y i giv h x, y,, ll vih =. d d 7

6 Som impor horm i lplc rform Thorm 3: L{ f ( u) du} F( ) whr L{f()} = F(). Thorm 4: If { f ( )} F( ) Similrly, d L{ f ( )} d I grl d d L h L{ f ( )} ( F( )). { F( )} d d L { f ( )} ( ) { F( )} Exrci 8 Fid h followig. (i) L{ Co } (iv) L ( ) (ii) L{ Si} (iii) L hc fid ( ) L ( ) Thorm 5: f ( ) L F( )d whr F( ) Lf ( ) h f ( ) L F( ) d. Exrci 9 Fid lplc rform of (i) Si u u du (ii) Si 3 Thorm 6: If f() i priodic wih priod T>, h T Lf ( ) ( f ( T )d ) 8

7 Exrci Fid L Si. Thorm 7: If U ( ) i dfid follow, ( U ),, Exrci L U ( ). h LU ( ) (i)obi h followig () If f() = k { U ( ) U b( )} h L f (). (b) If g () U( ) U ( ) U ( ) U ( )... h. L g() 3 (iii) Obi h grph of f () U ( ). (iv)for > kch h grph of h followig. () f ( ) U ( ) ( ) (b) f ( ) U ( ) ( (c) f ) U ( ) U ( ) (v) Expr h followig fucio i rm of ui p fucio., F() =, 3, 3 Hc fid lplc of F(). Thorm 8: Scod Shifig Propry If Lf ( ) F( ), L{ U ( ) f ( )} F( ). 9

8 Exrci : u f ( u) du F( ). Cd () A fucio f() i dfid by f ( ) 4, 3, Skch h grph of h fucio d drmi i Lplc rform. () Expr h followig i rm of ui p fucio. 8, () f ( ) 6, (b) f ( ) 3,, 3 (3) A ric R i ri wih iducc L i cocd wih E(). Th curr i i giv by, di L R i E( ) d If h wich i cocd = d dicocd =, fid h curr i() i rm of. 4) If f ( ) L ( )( 4 drmi f() d kch h grph of h fucio. Thorm 9: Covoluio Thorm If L { F( )} f ( ) d L { G( )} g( ) h L { F( ). G( )} f ( u) g( u) du

9 Exrci 4: () Applyig covoluio horm olv h followig iiil vlu problm. y y Si3, y ( ) d y ( ). ()Apply covoluio horm o fid h followig. () L ) (ii) ( ) L ( )( b )

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam iol oul o L choloy i Eii M & Alid Scic LEMAS Volu V u Fbuy 8 SSN 78-54 v holic Pobl o Si-ii Cicul B Shlu D Bi M. S. Wbh d N. W. Khobd 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi

More information

Available online at ScienceDirect. Physics Procedia 73 (2015 )

Available online at  ScienceDirect. Physics Procedia 73 (2015 ) Avilbl oli www.cicdi.co ScicDi Pic Procdi 73 (015 ) 69 73 4 riol Cofrc Pooic d forio Oic POO 015 8-30 Jur 015 Forl drivio of digil ig or odl K.A. Grbuk* iol Rrc Srov S Uivri 83 Arkk. Srov 41001 RuiR Fdrio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

A Bessel polynomial framework to prove the RH

A Bessel polynomial framework to prove the RH A Bl poloil frwork o prov h RH Dr lu Bru Friburg i Br wwwri-hpohid Jur Abrc Th Gu-Wirr di fucio f : bl rprio of Ri duli quio i h for f d f d Th odifid Bl-Hkl fucio : rc Y / J J Y co d dd ih coh : coh r

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

U1. Transient circuits response

U1. Transient circuits response U. Tr crcu rpo rcu ly, Grdo Irí d omucco uro 6-7 Phlp Sm phlp.m@uh. Dprmo d Torí d l Sñl y omucco Idx Rcll Gol d movo r dffrl quo Rcll Th homoou oluo d d ordr lr dffrl quo Exmpl of d ordr crcu Il codo

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Globl Jourl of Pur d Applid hics. ISSN 97-768 Volu, Nubr (7), pp. 94-956 Rsrch Idi Publicios hp://www.ripublicio.co Th o Grig Fucio of h Four- Prr Grlizd F Disribuio d Rld Grlizd Disribuios Wrsoo, Di Kurisri,

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm . Mhmicl ools which mk you lif much simpl.. Usful ppoimio fomul usig ul logihm I his chp, I ps svl mhmicl ools, which qui usful i dlig wih im-sis d. A im-sis is squc of vibls smpd by im. As mpl of ul l

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Anti-sway Control Input for Overhead Traveling Crane Based on Natural Period

Anti-sway Control Input for Overhead Traveling Crane Based on Natural Period Mmoirs of h Fculy of Egirig, Kyushu Uivrsiy, Vol.67, No.4, Dcmbr 7 Ai-swy Corol Ipu for Ovrhd rvlig Cr Bsd o Nurl Priod by Pgfi GAO *, Mooji YAMAMOO ** d Yoshiki HAYASHI * Rcivd Novmbr 5, 7 Absrc For sf

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No.

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No. Dpm o Mhmics Bi Isi o Tchoog Ms Rchi MA Advcd gg. Mhmics Sssio: 7---- MODUL IV Toi Sh No. --. Rdc h oowig i homogos dii qios io h Sm Liovi om: i. ii. iii. iv. Fid h ig-vs d ig-cios o h oowig Sm Liovi bod

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information