Controllability and Observability of Matrix Differential Algebraic Equations

Size: px
Start display at page:

Download "Controllability and Observability of Matrix Differential Algebraic Equations"

Transcription

1 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG Corollabiliy ad Obsrvabiliy of Marix Diffrial Algbrai Equaios Ya Wu Absra Corollabiliy ad obsrvabiliy of a lass of marix Diffrial Algbrai Equaio (DAEs) ar sudid i his ar h sruur of a losd-form soluio for h sysm is sough via wo o-sidd sub-sysms h soluio is h usd o driv ssary ad suffii odiios for h orollabiliy ad obsrvabiliy of h im-varyig marix DAE sysms Mor sraighforward odiios o h orollabiliy ad obsrvabiliy of liar im-ivaria marix DAE sysms ha oly dd o h sa maris ar also obaid Kywords Corollabiliy, Diffrial Algbrai Equaios, Gramia, Obsrvabiliy 2 Mahmais Subj Classifiaio: Primary 93B5 ad 93B7, Sodary 93C5 M NRODUCON ANY girig sysms, suh as mhaial sysm, lrial iruis ad hmial raio iis, ar modld by ould diffrial ad algbrai quaios (DAEs) ha ao b rasformd io ordiary diffrial quaios Suh DAEs also rfrrd o as sigular sysms hav b sudid xsivly i h viw of umrial simulaio h mos ommoly sudid liar diffrial algbrai quaios ar h vor DAEs li h followig, whr E( ) xɺ ( ) A( ) x( ) = f ( ) () x R, E( ) is sigular for all i h assoiad im irval, E, A R, ad f R A hararizaio of solvabiliy for () ad a gral aoial form rrsaio for solvabl DAEs i h form of () a b foud i [] h DAE sysm () is alld liar imivaria (L) if E ad A ar osa maris For suh L sysms, h roblms of fdba ol lam [2] ad oimal orol [3] hrough sa fdba hav b sudid h aalysis ad orol rsuls for liar im-ivaria sysms hav also b gralizd o im-varyig [4] ad disr-im [5] sysms Corollabiliy ad obsrvabiliy ar of imora ad fudamal roris of orol sysms [6], h orollabiliy ad obsrvabiliy Gramias ar dvisd i h frquy domai for orollr rduio dsig h orollabiliy ad obsrvabiliy roris ar rquird for miimal ralizaio, suh as h mulidimsioal hybrid sysms irodud i [7] Sruural roris of gralizd liar sysms ar sudid i [8] usig h Prro-Siljs igral o obai h iu-ouu ma Nssary ad suffii odiios ar drivd for oml orollabiliy ad obsrvabiliy Diffr orol mhods ar aliabl o orol sysms ha m h orollabiliy ad obsrvabiliy riria for sa fdba ad ouu fdba dsigs, suh as h hrmosyho sysm i [9] h orollabiliy, obsrvabiliy ad ralizabiliy of firsordr marix Lyauov sysms ar firs irodud i [] his ar, w sudy h diffrial algbrai marix Lyauov sysms ovr is solvabiliy ad orol rsivs h rs of h ar is orgaizd as follows A losd form soluio for h roosd marix DAE sysm is rsd i sio 2 his soluio is usd o driv ssary ad suffii riria for orollabiliy ad obsrvabiliy of h marix DAE sysm for boh liar im-varyig ad liar im-ivaria sysms, all rsd i sio 3 Colusio ad rmars o fuur wor ar foud i sio 4 CLOSED FORM SOLUON OF HE MAR DAE SYSEMS h lass of marix diffrial algbrai quaio sysm osidrd i his ar wih iu ad ouu sruurs is dfid as ad whr E ɺ = A EB DU, ( ) = (2) Y = F (22) d ɺ =, h sa offii maris,, E A B R, d h iu sruur marix m m D R, h orol iu q U R, ad h ouu sruur marix F R is also osidrd ha h sa offii maris as wll as h iu/ouu sruur maris ar im-dd f ha is h as, w assum h marix fuios ar oiuously diffriabl ovr = [, ] Morovr, E is sigular for all ssu 3, Volum 5, 2 287

2 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG his sio, our mai objiv is o obai a gral form of soluio for (2) h losd-form soluio lays a imora rol i drivig h odiios o h orollabiliy of (2), ad obsrvabiliy of (2) ad (22) i sio 3 h soluio of (2) is osrud via h soluio of wo o-sidd subsysms of (2) o s h sag, w bgi wih som basi dfiiios assoiad wih h soluios of liar firs-ordr marix diffrial quaios Dfiiio 2 A marix fuio Z ( ) R is a fudamal soluio of a liar firs-ordr marix diffrial quaio L( ɺ,, A, A, A ) = DU, (23) 2 r whr A R, i=, 2,, r, D R ow as h iu i m m sruur marix, ad U R is h iu marix, if Z saisfis (23) wih D=, d( Z ( )) for all, ad vry soluio o (23) a b wri as h= Zϒ, whr ϒ is a arbirary by osa marix ad is a ariular soluio o (23) Obviously, h marix diffrial algbrai quaio (2) is a sial as of (23) h o of sa rasiio marix assoiad wih a sysm of ordiary diffrial quaios was irodud i [] W xd h sa rasiio marix o (23) via h fudamal soluio of (23) Firs, rwri (23) as a iiial valu roblm, ɺ 2 r, ( ) L(,, A, A, A ) = =, (24) Aordig o Dfiiio 2, h uiqu soluio o (24) is = Z( ) Z ( ) =Φ (, ) (25) h marix fuio Φ (, ) a b gralizd as Φ (, s) = Z ( ) Z ( s), whih is ow as h sa rasiio marix assoiad wih (24) Dfiiio 22 h sa rasiio marix assoiad wih (24) is dfid as Φ (, s) = Z ( ) Z ( s) (26) whr Z( ) is a fudamal soluio of (24) is asy o h ha Φ saisfis h marix diffrial quaio (24) i, ad i saisfis h followig hr roris: Lmma 2 h sa rasiio marix saisfis h followig roris (i) Φ (, ) =, Φ(, ) Φ (, ) =Φ (, ),, 2, 3 (ii) (iii) Φ (, ) =Φ (, ),, 2 W will xlor wo sial liar marix diffrial quaios of (23), whih lad o h soluio of (2) h firs o is h sadard liar marix diffrial quaio as follows, ɺ = A (27) whr A, R, ad (27) is a liar im-ivaria (L) marix diffrial sysm if A is a osa marix; ohrwis, i is ow as liar im-varyig (LV) sysm f (27) is L, h fudamal soluio of (27) is Z ( ) = h marix xoial owr sris, A is formally dfid by h ovrg 2 A 2 = A A A 2!! hr ar may umrial mhods availabl for omuig A A i uorial rviw a b foud i [2] h sa rasiio marix assoiad wih (27) is his is baus sa sa ( ) = ( s) A Φ (, s) = Z( ) Z ( s) = A ad sa ommu wih ah ohr ad h soluio o (27) is mor omliad if i is LV is wri as a iiial valu roblm, ɺ = A( ), ( ) =, (28) h gral soluio of (28) is of h form ( ) (, ) ( ) =Φ (29) whr Φ is h sa rasiio marix assoiad wih (28) h im-varyig as, h sa rasiio marix Φ has a aalogous form similar o h L as, i A( τ ) Φ (, ) = (2) A ssu 3, Volum 5, 2 288

3 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG if A( ) ad A( τ) ommu Ohrwis, h marix xoial (2) is gralizd o h so-alld Pao-Bar formula as a xsio o h owr sris xasio for Φ, τ τ τ τ τ2 τ2 τ Φ (, ) = A( ) d A( ) A( ) d d τ τ A( ) A( 2 ) A( ) d d τ τ τ τ τ si of h la of losd-form xrssios for Φ from im-varyig sysms, h sa rasiio marix is a usful ool for sudyig h roris of soluios of (2), whih lads o h xloraio of orollabiliy ad obsrvabiliy roris of h marix DAE sysm h sod lass of marix diffrial quaio off (23) o b osidrd hr is h so-alld marix diffrial algbrai quaio as follows E ɺ = A DU ( ), ( ) =, (2) Rall ha E is a sigular marix Wh sysm (2) is imivaria, i E, A ad D ar osa maris, h soluio of (2) a b drmid by h assoiad marix il, se A, as a rsul of Lala rasform Dfiiio 23 A marix il se A is rgular if d( se A) for som s C h marix DAE (2) is solvabl if ad oly if h il se A is rgular, whih is aalogous o h rsul from [3] ordr o obai a xlii form of soluio for (2), o ds o rasform (2) io a aoial form o b mor sifi, suos h ra of marix E saisfis r( E) = r<, ad d( se A) is a ozro olyomial of dgr m, m r, h hr xis o-sigular maris, P, Q C, suh ha (2) is rasformd io h followig aoial form by rmulilyig (2) by P ad a oordia hag wih Q, ɺɶ = A ɶ D U N ɺɶ 2= ɶ 2 D2 U ( ) (22) m whr ɶ ( m) C, ɶ ɶ 2 C, = Q, ad N is a ɶ 2 ( m) ( m) marix of iloy idx κ, whih i mas N for i< κ ad N κ = A algorihm for osruig h similariy rasformaio maris P ad Q is dvlod i [4] h as of m= r, marix N is idially zro, ad h sod quaio i (22) boms a algbrai marix quaio Mawhil, if m< r, marix N is i h Jorda aoial form wih zros o h mai diagoal ay v, h ODE subsysm i ɶ is oally dould from h DAE subsysm i ɶ 2, ad hy a b solvd saraly h soluios ar giv as follows, ad A( ) A( τ ) = ɶ ( ) ( ) D U( τ), (23) whr κ i ( i) ɶ 2 ( ) = N D2U ( ), (24) i= ( i U ) ( ) dos h i h drivaiv of h iu marix fuio U ( ) h DAE sysm (2) has smooh soluios if h iiial odiio ɶ 2 ( ) saisfis (24) Furhrmor, if h iloy idx κ is grar ha o, h h iu marix fuio U ( ) is oiuously diffriabl u o h ordr of κ For liar im-varyig DAEs, w rwri (2) as E( ) ɺ = A( ) G( ), ( ) =, (25) whr G( ) = D( ) U ( ) h ssary ad suffii odiios for h soluio of (25) a b ddud from [] Firs, for ay ˆ, w obai aylor sris of h marix fuios, E, A, G ad Du o hir similariy i aylor sris xasios, w us h followig xrssio H ( ) = H ( ) ( ) H ( ) whr H=, H= E, A, G,ad h aylor! sris xasios ar subsiud i (25), h for ah j>, bu lss ha h ordr of smoohss of E, A, G ad, ad, h DAE (25) is rasformd io a sysm of algbrai quaios, whr j j j j ψζ = ϕ g (26) E E A 2 E ψ j= E A E A E E j Aj 2 2 E j2 Aj 3 je ssu 3, Volum 5, 2 289

4 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG 2 ζ j=, ϕ j Dfiiio 24 h marix j A A =, ad g A j j G G = G j ψ j is alld smoohly -full if hr xiss a smooh o-sigular marix fuio P( ) o suh ha P( ) ψ j ( ) = R( ) Wih ( ) = ( ), h algbrai sysm a b usd o driv a quaio for ɺ ( ) xliily wh ψ j is -full, i ɺ ( ) = Aɶ ( ) ( ) Gɶ ( ), whih a b solvd aordigly horm 2 h sysm (25) wih E, A ral aalyi is solvabl if ad oly if hr is a igr l [, ] suh ha (i) rψ ( l ) is osa o ; (ii) ψ l is -full o ; ad (iii) j R ( ψl ) R ( ϕl ) = R o, whr R ( ) is h olum sa of h marix h roof of horm 2 is similar o h o i [], as suh omid hr wha follows, w assum solvabiliy for ah of h wo o-sidd marix diffrial quaios basd o h rvious disussios Our goal is o osru a losd-form soluio for (2) L b h fudamal marix soluio of righsid diffrial algbrai sysm E ɺ = A ad b h fudamal soluio of h lf-sid sysm ɺ = B W hav h followig rsul horm 22 h omlmary soluio of h homogous quaio has h uiqu form Eɺ = A EB (27) = C, whr rrss h oraio of omlx ojuga rasos ad C is a by osa marix Proof: Noi ha ɺ B si B is a ral marix = H, i is sraighforward o show ha = C is a gral soluio o show vry soluio of h homogous soluio is of h form = C L Z( ) b a soluio ad Z( ) = Y sr Zɺ = Y ɺ Yɺ i (27), o has EZɺ = EY ɺ EY B= AY EY B Si Z ( ) is a soluio, i rquirs EY ɺ = AY Also, baus is a fudamal soluio of h righ-sid sysm, w hav Y = C, whr C is a arbirary osa marix ( by ) his lads o Z( ) = C, h h uiquss Our x s is o osru a soluio for h ohomogous sysm (2) horm 23 Evry soluio of (2) is of h form of ( ) = C, whr is a ariular soluio of (2) Proof: is sraighforward o show ha ( ) = C is a soluio of (2) is also asy o s ha hrfor, o horm 22 saisfis h homogous quaio (27) a oly b wri as C aordig Similar o solvig o-homogous ODEs, h ariular soluio a b foud via variaio of aramrs Assum = C, whr C dds o h, ɺ = ɺ C C ɺ Cɺ afr subsiuig i (2), o has Eɺ C E C ɺ E Cɺ = A C E C B DU H, E C ɺ = DU Cosidr EP = DU, l D rrs h s of all m by maris suh ha for ay U, h olums of DU is i h olum sa of E, i D R ( E) Si U is a orol iu marix, ad wih h assumio of solvabiliy of (2), D is o-my h s D is idd guarad o b o-my if R( E) R ( D) Howvr, his odiio is o ssary hrfor, P= E DU, whr E is h sudo-ivrs of E Now, w obai a xlii quaio for C ɺ as follows, Cɺ = E DU ssu 3, Volum 5, 2 29

5 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG Afr igraig h quaio ovr, ad alyig C( ) i (2),, w obai h xrssio for h ariular soluio of ( ) = ( ) E DU ( ) (28) h fial soluio of (2) wih a iiial odiio ovr is summarizd i h followig horm horm 24 h soluio of (2) wih iiial odiio ( ) = is giv by τ ( ) =Φ (, ) Φ (, ) Φ (, ) E DUΦ (, τ) (29) whr Φ ad Φ ar sa rasiio maris assoiad wih h righ-sid ad lf-sid subsysms, rsivly Proof: Aordig o horm 23, h gral soluio of h marix DAE (2) is giv by, ( ) = C, whr is giv by (28) is obvious ( ) = hrfor, afr usig h iiial odiio, h soluio of h VP (2) is ( ) = ( ) ( ) ( ) ( ) ( ) E DU ( ) H h rsul (29) Si h sa rasiio maris saisfy Lmma 2, h soluio a also b wri i a alraiv form, ( ) =Φ (, ) Φ (, ) τ E DU τ Φ (, ) Φ (, ) Φ (, ) Φ (, ) (22) whih will b usd wh w xlor h orollabiliy roris of (2) CONROLLABLY AND OBSERVABLY OF MAR DAE SYSEMS his sio, w xlor h orollabiliy ad obsrvabiliy roris of h marix DAE sysm (2) ad (22), whil (22) is osidrd wh h obsrvabiliy is ord h as of im-varyig sysms, h orollabiliy ad obsrvabiliy ar xamid ovr h im irval Wh worig wih orol sysms, h firs s is o drmi whhr a rsribd orol objiv a b ahivd by maiulaig h orol iu A dir aroah is o osru a orol iu ha will driv h sysm sa rajory o h dsird sa Mor ovi riria a also b obaid o s h orollabiliy of h sysm as show i his sio Dfiiio 3 h marix DAE sysm (2) ad (22) is said o b omlly orollabl if for ay, ay arbirary iiial sa ( ) =, ad ay arbirary fial sa, hr xiss a fii im irval = [, ] ad a orol U ( ),, suh ha ( ) = h orollabiliy rory is imora for a orol sysm f h sysm is o orollabl, a orol U ( ) may o xis o ahiv h orol objiv hr ar ohr ys of orollabiliy Coml sa orollabiliy oly rquirs (2); o h ohr had, oml ouu orollabiliy rquirs aaim of arbirary ouu, whr (22) has o b osidrd h orol iu U ( ) a b iwis oiuous ovr h orollabiliy of a orol sysm usually boils dow o hig whhr a s of fuios assoiad wih h sa rasiio marix ad h iu sruur marix ar liarly idd ovr A wll-ow ad mor ovi s for liar idd of a s of fuios is by way of h Gramia marix [] Dfiiio 32 h Gramia marix assoiad wih a s of fuios { f ( ) } i ovr is dfid as i= G= g ij, whr = g f ( τ) f ( τ) ij i j As suh, a s of fuios{ f ( ) } i i= ar liarly idd ovr if h Gramia marix G is o-sigular or osiiv dfii si G is a o-gaiv Hrmiia marix horm 3 h marix DAE sysm (2) is omlly sa orollabl o if ad oly if h orollabiliy Gramia marix τ ℵ (, ) = Φ (, ) E DD E Φ (, τ ) (3) is osiiv dfii Proof: Suos ℵ (, ) is osiiv dfii L ( ) = ad ( ) = b wo arbirary iiial ad fial sa ovr h irval = [, ] Nd o show ha hr is a orol iu U ( ) ovr ha will driv o i W hoos ssu 3, Volum 5, 2 29

6 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG U ( ) =D E Φ (, ) ℵ (, )[ Φ (, ) Φ Φ (, )] (, ) (32) suffis o show ha h righ-sid of (22) yilds if = ad subsiu (32) for U i (22), usig Lmma 2 o simlify h xrssios ivolvig h sa-rasiio marix, Φ (, ) Φ (, ) Φ (, ) τ E DU τ τ Φ (, ) ( ) Φ (, ) Φ (, ) =Φ (, ) Φ (, ) Φ (, ) τ Φ (, ) E DD E Φ (, τ) ℵ (, ) Φ (, ) Φ (, ) τ Φ (, ) E DD E Φ (, τ) ℵ (, ) Φ (, ) Φ (, ) Φ (, ) = hrfor, h marix DAE sysm (2) is omlly sa orollabl o Covrsly, assum h sysm (2) is omlly sa orollabl o, w d o show ha h orollabiliy Gramia ℵ (, ) is osiiv dfii is obvious ha h marix ℵ (, ) is symmri ad o-gaiv, all w d o show is ha h marix is ivribl Assum h marix ℵ (, ) is o ivribl, or quivally, is ull sa is o-my As suh, hr xiss a o-zro vor suh ha H, ℵ = Φ Φ θ (, ) θ θ (, τ ) E DD E (, τθ ) = θφ (, τ) E D = 2 θ R θ Φ (, ) E ( ) D( ), (33) is ow ha h sysm (2) is omlly sa orollabl hrfor, hr xiss a orol U suh ha h iiial sa ( ) = θθ is driv o h fial sa ( ) = H, from (22), θθ =Φ (, ) Φ (, ) τ E DU τ Φ (, ) Φ (, ) Φ (, ) Φ (, ) whih a b simlifid as θθ = Φ (, τ) E DUΦ (, τ) Pr-mulily boh sids by θ, o has 2 θ θ = θ Φ (, τ) E DUΦ (, τ) = du o (33), whih imlis θ=, h h oradiio From h roof of horm 3, h orollabiliy of marix DAE sysm from a arbirary iiial sa o a arbirary fial sa is quival o h orollabiliy from a arbirary iiial sa o h origi is usually umbrsom o sablish orollabiliy of a orol sysm hrough h orollabiliy Gramia Our x s is o dvlo a alraiv ririo for sig orollabiliy wihou igraio W would assum diffriabiliy of h marix offii fuios i (2) Evually, his w ririo will b alid o s h orollabiliy of liar im-ivaria marix DAEs Dfiiio 33 Cosidr h marix DAE sysm (2), wih h assumio ha all offii maris i (2) ar diffriabl, a squ of marix fuios P ( ) ovr ar dfid rursivly as follows, (i) P ( ) = E D ( ) D ( ) (34) (ii) Pɺ ( ) P ( ) E = A( ) P ( ) P ( ) B( ) =,2, (35) h followig lmmas will b usd o rov a drivaiv formula ivolvig h marix fuios P ( ) ad sarasiio marix fuios Φ ad Φ Lmma 3 L ( ) b a ivribl marix fuio ovr h, Proof: Si rs o o g ɺ ɺ (36) ( ) = ( ) ( ) ( ) ( ) ( ) =, diffria boh sids wih ɺ ɺ ( ) ( ) ( ) ( ) = ssu 3, Volum 5, 2 292

7 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG Lmma 32 h followig holds for all, s Φ (, s) P ( s) Φ (, s) (, s) P ( s) (, s) =Φ Φ, =, 2, (37) Proof: Us mahmaial iduio Wih =, Φ (, s) P ( s) Φ (, s) = ( Φ ) PΦ Φ P ( s) Φ Rall ha P ( Φ Φ ) ɺ (38) Φ (, s) = ( ) ( s), whr is h fudamal marix of h righ-sid subsysm E ɺ = A Aordig o Lmma 3, Φ (, s) =Φ (, s) E A O h ohr had, Φ (, s) = ( s) ( ), whr is h fudamal marix of h lf-sid subsysm Aordig o Lmma 3, i is asy o s ɺ ( s) ( s) ɺ ( s) ( s) = ɺ = B H, Φ (, s) = B Φ (, s) Afr subsiuig hs xrssios i (38), o has Φ (, s) P ( s) Φ (, s) =Φ [ E AP P P B] Φ s P s =Φ (, ) ( ) Φ (, s) from (35) Now, assum Φ (, s) P ( s) Φ (, s) (, s) P ( s) (, s) =Φ Φ s Coiu o diffria boh sids, Φ (, s) P ( s) Φ (, s) = [ Φ (, s) P ( s) Φ(, s)] = ( Φ ) PΦ Φ Pɺ ( s) Φ Φ P ( Φ) =Φ [ E AP Pɺ P B] Φ =Φ (, s) P ( s) Φ (, s) ɺ h maris P ( ) irodud i Dfiiio 33 ar usful for fidig alraiv ririo for sa orollabiliy of (2) alog wih addiioal smoohss odiio o h sysm maris all du o Lmma 32 ad Dfiiio 33 horm 32 Suos h marix fuios i h liar imvaryig marix DAE sysm (2) saisfy h smoohss odiio, i, l l b a osiiv igr, l A( ), B( ) C ad D( ), E ( ) C l h, sysm (2) is omlly sa orollabl if hr xiss α suh ha h orollabiliy marix ( ) = [ P ( ) P ( ) P l ( )] (39) α α α α is full row ra, i r( ( )) = α Proof: Assum h DAE sysm (2) is o omlly sa orollabl Aordig o horm 3, h assoiad orollabiliy Gramia ℵ (, ) mus b sigular H, hr xiss a o-zro osa vor υ R, suh ha υ ℵ (, ) υ=, whr ℵ (, ) is giv by (3), whih imlis ha υ Φ (, ) E ( ) D( ) = for all H, υ Φ (, ) E DD Φ (, ) =, or from (34), υ Φ (, ) P ( ) Φ (, ) =, (3) a -drivaivs of boh sids of (3) wih rs o, aordig o Lmma 32, w hav υ Φ (, ) P ( ) Φ (, ) =,, =,2,, l (3) L β b a arbirary oi i, i < <, du o Lmma 2, (3) ad (3) a b ombid as β u Φ (, ) P ( ) Φ (, ) =,, =,, 2,, l (32) whr u = υ Φ (, β ) u is a o-zro vor baus υ ad Φ (, β ) is ivribl Now, subsiu = β i (32) o g u P ( ) Φ (, ) = or, si β β β Φ (, ) is o-sigular, u P ( β ) =, =,,, l his is wri as β β l β β u [ P ( ) P ( ) P ( )] = u ( ) = β du o (35) wih = ssu 3, Volum 5, 2 293

8 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG whih imlis ha ( β ) ao b full row ra, i r( ( )) <, whih oradis h ra odiio of h β orollabiliy marix horm 32 a b usd o driv orollabiliy ririo for liar im-ivaria (L) marix DAEs (2), i whih all offii maris ar osa maris o his d, a xlii formula is drivd for h P maris from h rursiv rlaio (34) ad (35) as follows, i i P = ( ) ( E A) E DD B, =,,2 i= i (33) wih h udrsadig ha A =, h idiy marix Afr P big subsiud i h orollabiliy marix (39), wih h hl of lmary olum blo oraios o, w obai a orollabiliy s for h L marix DAE (2) i h followig horm horm 33 h liar im-ivaria marix DAE sysm E ɺ = A EB DU, ( ) = is omlly sa orollabl ovr if ihr of h followig orollabiliy maris is full ra, i r( ) = or r( ) =, whr r l= DD E AE DD ( E A) E DD r= DD E DD B E DD B (34) h obsrvabiliy of a orol sysm is of osidrd as a dual roblm of orollabiliy for liar ODE sysms Howvr, his may o b ru for DAEs [6] Obsrvabiliy is imora for a orol sysm baus, if h sysm is obsrvabl, h ouus of h sysm a omlly drmi h sas of h sysm O h ohr had, if a sysm is o obsrvabl, i mas som of h urr sas ao b drmid by h masurm of h ouus hrough ssors As suh, a orollr osrud basd o hs ouus do o fulfill h orol sifiaios rlad o hos uobsrvabl sas A formal dfiiio for obsrvabiliy is giv blow Dfiiio 34 h marix DAE sysms (2) ad (22) is said o b omlly obsrvabl if for ay ad ay iiial sa ( ) =, hr xiss a fii im > suh ha, l = [, ], h orol U ( ) ad ouu Y ( ) for suffi o drmi h iiial sa l Wihou loss of graliy, i a b assumd ha h orol U ( ) is idially zro hroughou h im irval [5] W hav h followig rsul o h obsrvabiliy of marix DAE (2) ad (22), wih zro orol iu, via h obsrvabiliy Gramia marix horm 34 h marix DAE sysm (2) ad (22) is omlly obsrvabl o if ad oly if h obsrvabiliy Gramia marix τ ℵ o (, ) = Φ (, ) F ( τ ) F ( τ ) Φ ( τ, ) (35) is osiiv dfii Proof: Assum h obsrvabiliy Gramia marix is osiiv dfii, osidr (2) ad (22) wih U ( ) = ovr Aordig o (22), h, h ouu Φ (, ) =Φ (, ), o has ( ) =Φ (, ) Φ (, ) ovr Y ( ) = F( ) Φ (, ) Φ (, ) Si F( ) Φ (, ) = Y ( ) Φ (, ) Pr-mulily boh sids of h abov quaio by Φ (, ) F ( ) ad igra ovr, w hav =ℵo Φ Φ (, ) ( τ, ) F ( τ) Y ( τ) (, τ) hrfor, h marix DAE sysm (2) ad (22) is omlly obsrvabl Covrsly, assum h sysm is omlly obsrvabl, w d o show ha h obsrvabiliy Gramia marix ℵ o (, ) is osiiv dfii Obviously, ℵ o (, ) is symmri Assum, howvr, ℵ o (, ) is sigular h, hr xiss a o-zro vor v C suh ha (35), ℵ 2 τ τ v o (, ) v = From vℵ o (, ) v = F ( ) Φ (, ) v = H, F( τ) Φ ( τ, ) v ovr f w hoos h iiial odiio is vv =, whih is a o-zro marix h ouu Y ( ) = F( ) Φ (, ) v vφ (, ) i H, h iiial sa = vv ao b uiquly drmid from h abov quaio his oradis h odiio ha h sysm is omlly obsrvabl ssu 3, Volum 5, 2 294

9 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG Similar o h ram of orollabiliy, w will driv algbrai odiios o h obsrvabiliy of (2) ad (22) Dfiiio 35 A squ of marix fuios Q ( ) ovr assoiad wih h marix DAE sysm (2) ad (22) ar dfid rursivly as follows, wih h assumio ha all offii maris i (2) ad (22) ar diffriabl (i) Q ( ) = F ( ) F ( ) (36) (ii) Qɺ ( ) Q ( ) Q ( ) E = A( ) B( ) Q ( ) =,2, (37) Lmma 33 For all, s, h followig holds, Φ (, s) Q ( ) Φ (, s) (, s) Q ( ) (, s) =Φ Φ, =,2, (38) Noi ha h rursiv rlaio (36), (37) alog wih h drivaiv rlaio (38) ar diffr from hos for orollabiliy, i (34), (35), ad (37) h roof of Lmma 33 is similar o ha of Lmma 32 wih h xio ha Lmma 3 is o dd i h roof Lmma 33 a b usd o rov h followig obsrvabiliy horm for imvaryig marix DAE sysms (2) ad (22) horm 35 Suos h marix fuios i h liar imvaryig marix DAE sysm (2) ad (22) saisfy h smoohss odiio, i, F( ) C A( ), B( ), E ( ) C l ad l h, sysm (2) ad (22) is omlly obsrvabl if hr xiss β suh ha h obsrvabiliy marix Q ( ) β Q ( β ) o ( β ) = Ql ( β ) is full olum ra, i r( ( )) = o β (39) For liar im-ivaria DAE sysm (2) ad (22), a biomial formula for Q is obaid from (36) ad (37), Q m m m m m = B F F( E A) = Fially, w obai h obsrvabiliy riria for h L DAE sysm (2) ad (22) horm 36 h liar im-ivaria marix DAE sysm wih /O sruurs is omlly obsrvabl ovr if ihr of h followig obsrvabiliy maris is full ra, i r( ) = or r( ) =, whr lo ro F F F FE A lo= F F( E A) ad V CONCLUSON F F BF FE ro= B F FE Corollabiliy ad obsrvabiliy riria for h marix diffrial algbrai sysms (2) ad (22) ar drivd for liar im-varyig ad liar im-ivaria ass, rsivly Du o h uiqu sruur of h sysm, losd form soluios ar obaid o osru h Gramias ad rursiv rlaios for h orollabiliy ad obsrvabiliy maris h roblm boms mor omliad if h dsrior marix dos o aar o h righ sid of (2) as a losd form soluio may o b availabl for h w sysm his is a ogoig rsarh ad our rlimiary rsuls idia ha rai sysms a b rasformd io h form of (2) ACKNOWLEDGMEN h auhor would li o ha h rviwrs for hir hlful omms REFERENCES [] S L Cambll, A Gral Form for Solvabl Liar im Varyig Sigular Sysms of Diffrial Equaios, SAM J Mah Aal, 8, -5, 987 [2] E B Casla, V G da Silva, O h Soluio of a Sylvsr Equaio Aarig i Dsrior Sysms Corol hory, Sysms Corol L, 54, 9-7, 25 [3] E Johr, Variaioal Calulus for Dsrior Problms, EEE ras Auoma Cor, 33, , 988 [4] S L Cambll, Sigular Sysms of Diffrial Equaios, 6, Rsarh Nos i Mahmais, Pima Boos Ld, Lodo, 982 [5] L Lai, Sigular Corol Sysms, 8, Lur Nos i Corol ad formaio Sis, Srigr-Vrlag, brli, Hidlbrg, 989 [6] R Sadghia, P Karimagha, ad A Khayaia, Corollr Rduio of Disr Liar Closd Loo Sysms i a Crai Frquy Domai, J Ciruis, Sysms, ad Sigal Prossig,, 45-49, 27 [7] V Prlia, Miimal Ralizaio Algorihm for Mulidimsioal Hybrid Sysms, WSEAS ras Sysms, 8, 22-33, 29 [8] V Prlia, Sruural Proris of Liar Gralizd Sysms, WSEAS ras Sysms ad Corol, 3, 7-7, 28 [9] Y Wu, O h Modlig ad Corol of Could Muli-Loo hrmosyhos, i Pro Amria Cof Alid Mah, Puro Morlos, Mxio, 2, 5- [] K N Mury ad L V Faus, Som Fudamal Rsuls o Corollabiliy, Obsrvabiliy ad Ralizabiliy of Firs-Ordr Marix Lyauov Sysms, Mah Si Rs J, 6, 47-6, 22 [] Kailah, Liar Sysms, Pri Hall, Eglwood Cliffs, NJ, 98 ssu 3, Volum 5, 2 295

10 NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG [2] C Molr ad C Va Loa, Ni Dubious Ways o Comu h Exoial of a Marix, wy-fiv Yars lar, SAM Rviw, 45, - 46, 23 [3] E L Yi ad R F Siov, Solvabiliy, Corollabiliy, ad Obsrvabiliy of Coiuous Dsrior Sysms, EEE ras Auoma Cor, 26, 72-77, 98 [4] S L Cambll ad L R Pzold, Caoial Forms ad Solvabl Sigular Sysms of Diffrial Equaios, SAM J Alg Dis Mhods, 4, 57-52, 983 [5] S Bar ad R G Camro, roduio o Mahmaial Corol hory, Oxford Al Mah ad Comu Si Sris, Clardo Prss, Oxford, 985 [6] CJ Wag, Corollabiliy ad Obsrvabiliy of a Liar im-varyig Sigular Sysms, EEE ras Auoma Cor, 44, 9-95, 999 Ya Wu rivd h BS dgr i Alid Mahmais ad Comur Si from Bijig Uivrsiy of hology, Bijig, Chia, h MS dgr i Alid Mahmais ad PhD i Alid Mahmais ad Elrial Egirig from Uivrsiy of Aro, Aro, OH, i 992, 996, ad 2, rsivly 2, h joid h Darm of Mahmaial Sis, Gorgia Souhr Uivrsiy, Sasboro, GA, whr h urrly is a Assoia Profssor H also holds a adju rofssorshi wih h Darm of Mhaial Egirig, Uivrsiy of Maioba, Wiig, Caada His urr rsarh irss ilud adaiv orol, dralizd orol, samlig hory, digial filr dsig, ad sh/imag rossig ssu 3, Volum 5, 2 296

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias Ovrlook alacd rucaio: firs balacig h ruca. Giv a I sysm: / y u d d For covic of discussio w do h sysm

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

DIFFERENTIAL EQUATIONS MTH401

DIFFERENTIAL EQUATIONS MTH401 DIFFERENTIAL EQUATIONS MTH Virual Uivrsi of Pakisa Kowldg bod h boudaris Tabl of Cos Iroduio... Fudamals.... Elms of h Thor.... Spifi Eampls of ODE s.... Th ordr of a quaio.... Ordiar Diffrial Equaio....5

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

It is quickly verified that the dynamic response of this system is entirely governed by τ or equivalently the pole s = 1.

It is quickly verified that the dynamic response of this system is entirely governed by τ or equivalently the pole s = 1. Tim Domai Prforma I orr o aalyz h im omai rforma of ym, w will xami h hararii of h ouu of h ym wh a ariular iu i ali Th iu w will hoo i a ui iu, ha i u ( < Th Lala raform of hi iu i U ( Thi iu i l bau

More information

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Bo/DiPima/Mad h d Ch.: High Od Lia ODEs: Gal Tho Elma Diffial Eqaios ad Boda Val Poblms h diio b William E. Bo Rihad C. DiPima ad Dog Mad 7 b Joh Wil & Sos I. A h od ODE has h gal fom d d P P P d d W assm

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Advanced Control Theory

Advanced Control Theory Ava Corol Thory Rviw of Corol Sym hibum@oulh.a.kr Irouio o orol Chibum L -Soulh Ava Corol Thory Corol Sym Corol ym: A iroio of omo formig a ym ofiguraio ha will rovi a ir ym ro Targ Tmraur Corollr Tmraur

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

1.7 Vector Calculus 2 - Integration

1.7 Vector Calculus 2 - Integration cio.7.7 cor alculus - Igraio.7. Ordiary Igrals o a cor A vcor ca b igrad i h ordiary way o roduc aohr vcor or aml 5 5 d 6.7. Li Igrals Discussd hr is h oio o a dii igral ivolvig a vcor ucio ha gras a scalar.

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Linear System Theory

Linear System Theory Naioal Tsig Hua Uiversiy Dearme of Power Mechaical Egieerig Mid-Term Eamiaio 3 November 11.5 Hours Liear Sysem Theory (Secio B o Secio E) [11PME 51] This aer coais eigh quesios You may aswer he quesios

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

UNIT III STANDARD DISTRIBUTIONS

UNIT III STANDARD DISTRIBUTIONS UNIT III STANDARD DISTRIBUTIONS Biomial, Poisso, Normal, Gomric, Uiform, Eoial, Gamma disribuios ad hir roris. Prard by Dr. V. Valliammal Ngaiv biomial disribuios Prard by Dr.A.R.VIJAYALAKSHMI Sadard Disribuios

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

The geometry of surfaces contact

The geometry of surfaces contact Applid ad ompuaioal Mchaics (007 647-656 h gomry of surfacs coac J. Sigl a * J. Švíglr a a Faculy of Applid Scics UWB i Pils Uivrzií 0 00 Pils zch public civd 0 Spmbr 007; rcivd i rvisd form 0 Ocobr 007

More information

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional Mlil idd variabls March 9 Mlidisioal Parial Dirial Eaios arr aro Mchaical Egirig 5B iar i Egirig Aalsis March 9 Ovrviw Rviw las class haracrisics ad classiicaio o arial dirial aios Probls i or ha wo idd

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region. INEL495 SIGNALS AND SYSEMS FINAL EXAM: Ma 9, 8 Pro. Doigo Rodrígz SOLUIONS Probl O: Copl Epoial Forir Sri A priodi ri ar wav l ad a daal priod al o o od. i providd wi a a 5% d a.- 5 poi: Plo r ll priod

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

On the Frame Properties of System of Exponents with Piecewise Continuous Phase

On the Frame Properties of System of Exponents with Piecewise Continuous Phase Alid Mahmaics 3 4 848-853 h://dxdoiorg/436/am3456 Publishd Oli May 3 (h://wwwscirorg/joural/am) O h Fram Proris of Sysm of Exos wih Picwis Coiuous Phas Sad Mohammadali Farahai Tofig Isa ajafov Isiu of

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

MA6451-PROBABILITY AND RANDOM PROCESSES

MA6451-PROBABILITY AND RANDOM PROCESSES MA645-PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES Dr. V. Valliammal Darm of Alid Mahmaics Sri Vkaswara Collg of Egirig Radom variabl Radom Variabls A ral variabl whos valu is drmid by h oucom

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Frequency Response. Response of an LTI System to Eigenfunction

Frequency Response. Response of an LTI System to Eigenfunction Frquncy Rsons Las m w Rvsd formal dfnons of lnary and m-nvaranc Found an gnfuncon for lnar m-nvaran sysms Found h frquncy rsons of a lnar sysm o gnfuncon nu Found h frquncy rsons for cascad, fdbac, dffrnc

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

IDENTIFICATION OF STRUCTURAL DAMAGE BASED ON VIBRATION RESPONSES

IDENTIFICATION OF STRUCTURAL DAMAGE BASED ON VIBRATION RESPONSES 3 h World or o Earhqua Egirig Vaouvr B.. aada Augus -6 004 Papr No. 3 DENTFATON OF STUTUAL DAMAGE BASED ON VBATON ESPONSES Aio FUUAWA ad Juji YONO SUMMAY A hiqu or dig damag o sruurs is proposd ha uss

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time

Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time Joural of Chmical Egirig of Jaa, Vol. 3, No. 4,. 486 497, 1999 Rsarch Par Auo-uig of PID Corollrs for Scod Ordr Usabl Procss Havig Dad im HSIAO-PING HUANG AND CHAN-CHENG CHEN Darm of Chmical Egirig, Naioal

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (With Unknown Variance Matrix) Richard A.

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (With Unknown Variance Matrix) Richard A. Pag Bfor-Afr Corol-Impac (BACI) Powr Aalysis For Svral Rlad Populaios (Wih Ukow Variac Marix) Richard A. Hirichs Spmbr 0, 00 Cava: This xprimal dsig ool is a idalizd powr aalysis buil upo svral simplifyig

More information

Robust Control of the Aircraft Attitude

Robust Control of the Aircraft Attitude Robus Conrol of h Airraf Aiu F X Wu 1, an W J Zhang Darmn of Mhanial Enginring Univrsiy of Sasahan, Sasaoon, SK S7N 5A9, Canaa Chris_Zhang@EngrUsasCa 1 On h sial laving from Norhsrn Ployhnial Univrsiy,

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Market Conditions under Frictions and without Dynamic Spanning

Market Conditions under Frictions and without Dynamic Spanning Mar Codiio udr Friio ad wihou Dyai Spaig Jui Kppo Hlii Uivriy of hology Sy Aalyi aboraory O Bo FIN-5 HU Filad hp://wwwhufi/ui/syaalyi ISBN 95--3948-5 Hlii Uivriy of hology ISSN 78-3 Sy Aalyi aboraory iblla

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω Fourier rasform Coiuous-ime Fourier rasform (CTFT P. Deoe ( he Fourier rasform of he sigal x(. Deermie he followig values, wihou compuig (. a (0 b ( d c ( si d ( d d e iverse Fourier rasform for Re { (

More information

Vardhaman Mahaveer Open University, Kota

Vardhaman Mahaveer Open University, Kota MA/MS MT-9 Vrdh Mhvr Uivrsiy, Ko rl Trsfors d rl Equio MA/MS MT-9 Vrdh Mhvr Uivrsiy, Ko rl Trsfors d rl Equio Ui No. Ui N P No. Ui - l Trsfor - 4 Ui - Th vrs l Trsfor 4-8 Ui -3 Soluio of rdiry Diffril

More information

Sampling of Continuous-time Signals

Sampling of Continuous-time Signals DSP Spig, 7 Samplig of Coiuous-im Sigals Samplig of Coiuous-im Sigals Advaags of digial sigal possig,.g., audio/vido CD. higs o loo a: Coiuous-o-dis C/D Dis-o-oiuous D/C pf osuio Fquy-domai aalysis of

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Seod ad igher Order Liear Differeial Equaios Oober 9, 7 Seod ad igher Order Liear Differeial Equaios Larr areo Mehaial Egieerig 5 Seiar i Egieerig alsis Oober 9, 7 Oulie Reiew las lass ad hoewor ppl aerial

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information