Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Size: px
Start display at page:

Download "Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations"

Transcription

1 Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs ordr ordiry diffril quios hs h grl form whr h k is fuio of. If h F k is lir fuio of h h sysm of quios is sid o b lir ohrwis i is olir. Sysms of highr ordr diffril quios similrly b dfid. F F F

2 Empl Th moio of ri sprig-mss sysm from Sio.7 ws dsribd by h diffril quio u + u 8 + u = This sod ordr quio b ovrd io sysm of firs ordr quios by lig = u d = u'. Thus = or = = = - - 8

3 Nh Ordr ODEs d Lir s Ordr Sysms Th mhod illusrd i h prvious mpl b usd o rsform rbirry h ordr quio io sysm of firs ordr quios firs by dfiig Th y y y y F y y y y y F

4 Soluios of Firs Ordr Sysms A sysm of simulous firs ordr ordiry diffril quios hs h grl form I hs soluio o if hr iss fuios h r diffribl o I d sisfy h sysm of quios ll pois i I. Iiil odiios my lso b prsribd o giv IVP:. F F I : < < b

5 Thorm 7.. Suppos F F d r oiuous i h rgio R of -sp dfid by d l h poi b oid i R. Th i som irvl h + h hr iss uiqu soluio h sisfis h IVP. F F F F /... F /... F /... F / < < b < < b... < < b

6 Lir Sysms If h F k is lir fuio of h h sysm of quios hs h grl form If h of h g k is zro o I h h sysm is homogous ohrwis i is ohomogous. g p p p g p p p g p p p

7 Thorm 7.. Suppos p p p g g r oiuous o irvl wih i I d l prsrib h iiil odiios. Th hr iss uiqu soluio h sisfis h IVP d iss hroughou I. g p p p g p p p g p p p I : < < b

8 Boy/DiPrim/Md h d Ch 7.: Rviw of Mris Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. For horil d ompuiol rsos w rviw rsuls of mri hory i his sio d h. A mri A is m rgulr rry of lms rrgd i m rows d olums dod Som mpls of mris r giv blow: m m m j i A i i i C B A

9 Trspos Th rspos of A = ij is A T = ji. For mpl m m m T m m m A A T T B B A A

10 Cojug Th ojug of A = ij is A = ij. For mpl m m m m m m A A i i i i A A

11 Adjoi Th djoi of A is A T d is dod by A * For mpl m m m m m m * A A * i i i i A A

12 Squr Mris A squr mri A hs h sm umbr of rows d olums. Th is A is. I his s A is sid o hv ordr. For mpl A B A

13 Vors A olum vor is mri. For mpl A row vor is mri. For mpl y No hr h y = T d h i grl if is olum vor h T is row vor.

14 Th Zro Mri Th zro mri is dfid o b = whos dimsios dpd o h o. For mpl

15 Mri Equliy Two mris A = ij d B = b ij r qul if ij = b ij for ll i d j. For mpl B A B A

16 Mri Slr Mulipliio Th produ of mri A = ij d os k is dfid o b ka = k ij. For mpl A 5 5A

17 Mri Addiio d Subrio Th sum of wo m mris A = ij d B = b ij is dfid o b A + B = ij + b ij. For mpl Th diffr of wo m mris A = ij d B = b ij is dfid o b A - B = ij - b ij. For mpl B A B A B A B A

18 Mri Mulipliio Th produ of m mri A = ij d r mri B = b ij is dfid o b h mri C = ij whr Empls o AB dos o ssrily qul BA: k kj ik ij b CD D C BA AB B A

19 Empl : Mri Mulipliio To illusr mri mulipliio d show h i is o ommuiv osidr h followig mris: From h dfiiio of mri mulipliio w hv: B A AB = æ è ç ç ö ø = æ è ç ç ö ø BA = æ è ç ç ö ø = æ è ç ç ö ø ¹ AB

20 Vor Mulipliio Th do produ of wo vors & y is dfid s Th ir produ of wo vors & y is dfid s Empl: k j i T y y k j i T y y y i i i i i i i i i i i T T y y y y

21 Vor Lgh Th lgh of vor is dfid s No hr h w hv usd h f h if = + bi h Empl: / / / k k k k k 6 9 / i i i b bi bi

22 Orhogoliy Two vors & y r orhogol if y =. Empl: y y

23 Idiy Mri Th mulipliiv idiy mri I is mri giv by For y squr mri A i follows h AI = IA = A. Th dimsios of I dpd o h o. For mpl I IB AI

24 Ivrs Mri A squr mri A is osigulr or ivribl if hr iss mri B suh h h AB = BA = I. Ohrwis A is sigulr. Th mri B if i iss is uiqu d is dod by A d is lld h ivrs of A. I urs ou h A iss iff da d A b foud usig row rduio lso lld Gussi limiio o h ugmd mri A I s mpl o slid. Th hr lmry row oprios: Irhg wo rows. Muliply row by ozro slr. Add mulipl of o row o ohr row.

25 Empl : Fidig h Ivrs of Mri of Us row rduio o fid h ivrs of h mri A blow if i iss. Soluio: If possibl us lmry row oprios o rdu A I suh h h lf sid is h idiy mri for h h righ sid will b A. S slid. A A I

26 Empl : Fidig h Ivrs of Mri of Thus 5 / 5 / 5 / / / / / / 7 / 5 / / 5/ / / / 5 / / 5/ / / / 5 / / 5/ 5 5 A I 5 / 5 / 5 / / / / / / 7 / A

27 Mri Fuios Th lms of mri b fuios of rl vribl. I his s w wri Suh mri is oiuous poi or o irvl b if h lm is oiuous hr. Similrly wih diffriio d igrio: m m m m A b ij b ij d d d d d d A A

28 Empl & Diffriio Ruls Empl: My of h ruls from lulus pply i his sig. For mpl: d d d d d d d d d d d d d d d d B A B A AB B A B A C A C CA os mri is whr si os 6 os si d d d A A A

29 Boy/DiPrim/Md h d Ch 7.: Sysms of Lir Equios Lir Idpd Eigvlus Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of lir quios i vribls b prssd s mri quio A = b: If b = h sysm is homogous; ohrwis i is ohomogous. b b b b b b

30 Nosigulr Cs If h offii mri A is osigulr h i is ivribl d w solv A = b s follows: A b A A A b I This soluio is hrfor uiqu. Also if b = i follows h h uiqu soluio o A = is = A =. Thus if A is osigulr h h oly soluio o A = is h rivil soluio =. A b A b

31 Empl : Nosigulr Cs of From prvious mpl w kow h h mri A blow is osigulr wih ivrs s giv. Usig h dfiiio of mri mulipliio i follows h h oly soluio of A = is = : / / / / 7 / 5/ / 5/ / A A / / / / 7 / 5/ / 5/ / A

32 Empl : Nosigulr Cs of Now l s solv h ohomogous lir sysm A = b blow usig A : This sysm of quios b wri s A = b whr Th / / / / 7 / 5/ / 5/ / A b 5 7 b A

33 Empl : Nosigulr Cs of Alrivly w ould solv h ohomogous lir sysm A = b blow usig row rduio. To do so form h ugmd mri A b d rdu usig lmry row oprios A b 5 7

34 Sigulr Cs If h offii mri A is sigulr h A - dos o is d ihr soluio o A = b dos o is or hr is mor h o soluio o uiqu. Furhr h homogous sysm A = hs mor h o soluio. Th is i ddiio o h rivil soluio = hr r ifiily my orivil soluios. Th ohomogous s A = b hs o soluio ulss b y = for ll vors y sisfyig A * y = whr A * is h djoi of A. I his s A = b hs soluios ifiily my h of h form = + whr is priulr soluio of A = b d is y soluio of A =.

35 Empl : Sigulr Cs of Solv h ohomogous lir sysm A = b blow usig row rduio. Obsrv h h offiis r rly h sm s i h prvious mpl W will form h ugmd mri A b d us som of h sps i Empl o rsform h mri mor quikly b b b b b b b b b b b b b b b b b b A b b b b

36 Empl : Sigulr Cs of From h prvious slid if hr is o soluio o h sysm of quios Rquirig h ssum for mpl h Th h rdud ugmd mri A b boms: I b show h h sod rm i is soluio of h ohomogous quio d h h firs rm is h mos grl soluio of h homogous quio lig whr α is rbirry b b b b b b b b b 5 b b b b b b b b b

37 Lir Dpd d Idpd A s of vors is lirly dpd if hr iss slrs o ll zro suh h If h oly soluio of is = = = = h is lirly idpd.

38 Empl : Lir Dpd of Drmi whhr h followig vors r lir dpd or lirly idpd. W d o solv or

39 Empl : Lir Dpd of W rdu h ugmd mri A b s bfor. So h vors r lirly dpd: Alrivly w ould show h h followig drmi is zro: b y umbr whr A b d ij if

40 Lir Idpd d Ivribiliy Cosidr h prvious wo mpls: Th firs mri ws kow o b osigulr d is olum vors wr lirly idpd. Th sod mri ws kow o b sigulr d is olum vors wr lirly dpd. This is ru i grl: h olums or rows of A r lirly idpd iff A is osigulr iff A - iss. Also A is osigulr iff da h olums or rows of A r lirly idpd iff da. Furhr if A = BC h dc = dadb. Thus if h olums or rows of A d B r lirly idpd h h olums or rows of C r lso.

41 Lir Dpd & Vor Fuios Now osidr vor fuios whr As bfor is lirly dpd o I if hr iss slrs o ll zro suh h Ohrwis is lirly idpd o I S for mor disussio o his. I k k m k k k I for ll

42 Eigvlus d Eigvors Th q. A = y b viwd s lir rsformio h mps or rsforms io w vor y. Nozro vors h rsform io mulipls of hmslvs r impor i my ppliios. Thus w solv A = or quivlly A I =. This quio hs ozro soluio if w hoos suh h da I =. l l l Suh vlus of r lld igvlus of A d h ozro soluios r lld igvors. l l

43 Empl : Eigvlus of Fid h igvlus d igvors of h mri A. Soluio: Choos suh h da I = s follows. A d d d I A l l

44 Empl : Firs Eigvor of To fid h igvors of h mri A w d o solv A I = for = d =. Eigvor for = : Solv d his implis h. So A I hoos rbirry l l l l

45 Empl : Sod Eigvor of Eigvor for = : Solv d his implis h. So A I hoos rbirry l

46 Normlizd Eigvors From h prvious mpl w s h igvors r drmid up o ozro mulipliiv os. If his os is spifid i som priulr wy h h igvor is sid o b ormlizd. For mpl igvors r somims ormlizd by hoosig h os so h = ½ =.

47 Algbri d Gomri Mulipliiy I fidig h igvlus of mri A w solv da I =. l Si his ivolvs fidig h drmi of mri h problm rdus o fidig roos of h dgr polyomil. Do hs roos or igvlus by. If igvlu is rpd m ims h is lgbri mulipliiy is m. l l l l Eh igvlu hs ls o igvor d igvlu of lgbri mulipliiy m my hv q lirly idpd igvors q m d q is lld h gomri mulipliiy of h igvlu.

48 Eigvors d Lir Idpd l If igvlu hs lgbri mulipliiy h i is sid o b simpl d h gomri mulipliiy is lso. If h igvlu of mri A is simpl h A hs disi igvlus. I b show h h igvors orrspodig o hs igvlus r lirly idpd. If igvlu hs o or mor rpd igvlus h hr my b fwr h lirly idpd igvors si for h rpd igvlu w my hv q < m. This my ld o ompliios i solvig sysms of diffril quios.

49 Empl 5: Eigvlus of 5 Fid h igvlus d igvors of h mri A. Soluio: Choos suh h da I = s follows. A d d I A l l

50 Empl 5: Firs Eigvor of 5 Eigvor for = : Solv A I = s follows. hoos rbirry l l

51 Empl 5: d d rd Eigvors of 5 Eigvor for = : Solv A I = s follows. hoos rbirry whr l l

52 Empl 5: Eigvors of A of 5 Thus hr igvors of A r whr orrspod o h doubl igvlu I b show h r lirly idpd. H A is symmri mri A = A T wih rl igvlus d lirly idpd igvors. A l = -.

53 Empl 5: Eigvors of A 5 of 5 No h w ould hv w hd hos Th h igvors r orhogol si Thus A is symmri mri wih rl igvlus d lirly idpd orhogol igvors.

54 Hrmii Mris A slf-djoi or Hrmii mri sisfis A = A * whr w rll h A * = A T. Thus for Hrmii mri ij = ji. No h if A hs rl ris d is symmri s ls mpl h A is Hrmii. A Hrmii mri A hs h followig propris: All igvlus of A r rl. Thr iss full s of lirly idpd igvors of A. If d r igvors h orrspod o diffr igvlus of A h d r orhogol. Corrspodig o igvlu of lgbri mulipliiy m i is possibl o hoos m muully orhogol igvors d h A hs full s of lirly idpd orhogol igvors.

55 Boy/DiPrim/Md h d Ch 7.: Bsi Thory of Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. Th grl hory of sysm of firs ordr lir quios prllls h of sigl h ordr lir quio. This sysm b wri s ' = P + g whr g p p p g p p p g p p p p p p p p p p p p g g g P g

56 Vor Soluios of ODE Sysm A vor = is soluio of ' = P + g if h ompos of sisfy h sysm of quios o. For ompriso rll h ' = P + g rprss our sysm of quios Assumig P d g oiuous o I suh soluio iss by Thorm 7... g p p p g p p p g p p p f I : < < b

57 Homogous Cs; Vor Fuio Noio As i Chprs d w firs mi h grl homogous quio ' = P. Also h followig oio for h vor fuios k will b usd: k

58 Thorm 7.. If h vor fuios d r soluios of h sysm ' = P h h lir ombiio + is lso soluio for y oss d. No: By rpdly pplyig h rsul of his horm i b s h vry fii lir ombiio k k of soluios k is islf soluio o ' = P.

59 Thorm 7.. If r lirly idpd soluios of h sysm ' = P for h poi i I : < < b h h soluio = f b prssd uiquly i h form If soluios r lirly idpd for h poi i I : < < b h hy r fudml soluios o I d h grl soluio is giv by

60 Th Wroski d Lir Idpd Th proof of Thm 7.. uss h f h if r lirly idpd o I h dx o I whr X Th Wroski of is dfid s W[ ] = dx. I follows h W[ ] o I iff r lirly idpd for h poi i I.

61 Thorm 7.. If r soluios of h sysm ' = P o h I : h < Wroski < b W[ ] is ihr idilly zro o I or ls is vr zro o I. This rsul rlis o Abl s formul for h Wroski dw [ p p p p p W d whr is rbirry os Rfr o Sio. p This rsul bls us o drmi whhr giv s of soluios r fudml soluios by vluig W[ ] y poi i. < < b ] d

62 Thorm 7.. L L b soluios of h sysm ' = P h sisfy h iiil odiios rspivly whr is y poi i. Th r form fudml s of soluios of ' = P. < < b < < b

63 Thorm 7..5 Cosidr h sysm ' = P whr h lm of P is rl-vlud oiuous fuio. If = u + iv is ompl-vlud soluio of Eq. h is rl pr u d is imgiry pr v r lso soluios of his quio.

64 Boy/DiPrim/Md h d Ch 7.5: Homogous Lir Sysms wih Cos Coffiis Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. W osidr hr homogous sysm of firs ordr lir quios wih os rl offiis: This sysm b wri s ' = A whr m A

65 Equilibrium Soluios No h if = h h sysm rdus o Rll h = is h oly quilibrium soluio if. Furhr = is sympoilly sbl soluio if < si ohr soluios pproh = i his s. Also = is usbl soluio if > si ohr soluios dpr from = i his s. For > quilibrium soluios r similrly foud by solvig A =. W ssum da so h = is h oly soluio. Drmiig whhr = is sympoilly sbl or usbl is impor qusio hr s wll.

66 Phs Pl Wh = h h sysm rdus o This s b visulizd i h -pl whih is lld h phs pl. I h phs pl dirio fild b obid by vluig A my pois d ploig h rsulig vors whih will b g o soluio vors. A plo h shows rprsiv soluio rjoris is lld phs porri. Empls of phs pls dirios filds d phs porris will b giv lr i his sio.

67 Solvig Homogous Sysm To osru grl soluio o ' = A ssum soluio of h form = r whr h po r d h os vor r o b drmid. Subsiuig = r io ' = A w obi rξ r Aξ r rξ A riξ Thus o solv h homogous sysm of diffril quios ' = A w mus fid h igvlus d igvors of A. Aξ Thrfor = r is soluio of ' = A providd h r is igvlu d is igvor of h offii mri A.

68 Empl of Fid h grl soluio of h sysm Th mos impor fur of his sysm is h h offii mri is digol mri. Thus by wriig h sysm i slr form w obi ' = ' = - Eh of hs quios ivolvs oly o of h ukow vribls so w solv h wo quios sprly. I his wy w fid h = = - whr d r rbirry oss.

69 Empl of Th by wriig h soluio i vor form w hv = æ è ç - ö ø = æ ç è ö ø + æ ç è - ö ø = æ è ç Now w dfi wo soluios d so h æ ö æ = è ç ø = è ç Th Wroski of hs soluios is ö æ ø + è ç whih is vr zro. Thrfor d form fudml s of soluios. W[ ] = - = - ö - ø ö - ø

70 Empl : Dirio Fild of 9 Cosidr h homogous quio ' = A blow. A dirio fild for his sysm is giv blow. Subsiuig = r i for d rwriig sysm s A ri = w obi r r

71 Empl : Eigvlus of 9 Our soluio hs h form = r whr r d r foud by solvig Rllig h his is igvlu problm w drmi r by solvig da ri = : Thus r = d r =. r r r r r r r r r

72 Empl : Firs Eigvor of 9 Eigvor for r = : Solv by row rduig h ugmd mri: ξ A ri hoos rbirry / / / / / ξ ξ

73 Empl : Sod Eigvor of 9 Eigvor for r = -: Solv by row rduig h ugmd mri: ξ A ri hoos rbirry / / / / / ξ ξ

74 Empl : Grl Soluio 5 of 9 Th orrspodig soluios = r of ' = A r Th Wroski of hs wo soluios is Thus d r fudml soluios d h grl soluio of ' = A is W

75 Empl : Phs Pl for 6 of 9 To visuliz soluio osidr firs = : Now Thus lis log h srigh li = whih is h li hrough origi i dirio of firs igvor If soluio is rjory of pril wih posiio giv by h i is i Q wh > d i Q wh <. I ihr s pril movs wy from origi s irss.

76 Empl : Phs Pl for 7 of 9 N osidr = : Th lis log h srigh li = whih is h li hrough origi i dirio of d igvor If soluio is rjory of pril wih posiio giv by h i is i Q wh > d i Q wh <. I ihr s pril movs owrds origi s irss.

77 Empl : Phs Pl for Grl Soluio 8 of 9 Th grl soluio is = + : As is domi d boms gligibl. Thus for ll soluios sympoilly pproh h li = s. Similrly for ll soluios sympoilly pproh h li = s -. Th origi is sddl poi d is usbl. S grph.

78 Empl : Tim Plos for Grl Soluio 9 of 9 Th grl soluio is = + : As lriv o phs pl plos w grph or s fuio of. A fw plos of r giv blow. No h wh = = - s. Ohrwis = + - grows uboudd s. Grphs of r similrly obid.

79 Empl : Dirio Fild of 9 Cosidr h homogous quio ' = A blow. A dirio fild for his sysm is giv blow. Subsiuig = r i for d rwriig sysm s A ri = w obi -- r - - r æ è ç ç ö ø æ è ç ö ø = æ è ç ö ø

80 Empl : Eigvlus of 9 Our soluio hs h form = r whr r d r foud by solvig æ -- r ö æ ö æ ö ç = è ç - - r ø è ø è ç ø Rllig h his is igvlu problm w drmi r by solvig da ri = : r r r r r 5r r r Thus r = d r =.

81 Empl : Firs Eigvor of 9 Eigvor for r = : Solv by row rduig h ugmd mri: ξ A ri hoos / / / ξ ξ

82 Empl : Sod Eigvor of 9 Eigvor for r = : Solv by row rduig h ugmd mri: ξ A ri hoos ξ ξ

83 Empl : Grl Soluio 5 of 9 Th orrspodig soluios = r of ' = A r Th Wroski of hs wo soluios is Thus d r fudml soluios d h grl soluio of ' = A is 5 W

84 Empl : Phs Pl for 6 of 9 To visuliz soluio osidr firs = : Now Thus lis log h srigh li = ½ whih is h li hrough origi i dirio of firs igvor If soluio is rjory of pril wih posiio giv by h i is i Q wh > d i Q wh <. I ihr s pril movs owrds origi s irss.

85 Empl : Phs Pl for 7 of 9 N osidr = : Th lis log h srigh li = ½ whih is h li hrough origi i dirio of d igvor If soluio is rjory of pril wih posiio giv by h i is i Q wh > d i Q wh <. I ihr s pril movs owrds origi s irss.

86 Empl : Phs Pl for Grl Soluio 8 of 9 Th grl soluio is = + : As is domi d boms gligibl. Thus for ll soluios sympoilly pproh origi log h li = s. Similrly ll soluios r uboudd s -. Th origi is od d is sympoilly sbl.

87 Empl : Tim Plos for Grl Soluio 9 of 9 Th grl soluio is = + : As lriv o phs pl plos w grph or s fuio of. A fw plos of r giv blow. Grphs of r similrly obid.

88 Cs: Rl Eigvlus Sddl Pois d Nods Th prvious wo mpls dmosr h wo mi ss for rl sysm wih rl d diffr igvlus: Boh igvlus hv opposi sigs i whih s origi is sddl poi d is usbl. Boh igvlus hv h sm sig i whih s origi is od d is sympoilly sbl if h igvlus r giv d usbl if h igvlus r posiiv.

89 Eigvlus Eigvors d Fudml Soluios I grl for rl lir sysm ' = A: All igvlus r rl d diffr from h ohr. Som igvlus our i ompl ojug pirs. Som igvlus r rpd. If igvlus r r r rl & diffr h hr r orrspodig lirly idpd igvors. Th ssoid soluios of ' = A r r ξ ξ Usig Wroski i b show h hs soluios r lirly idpd d h form fudml s of soluios. Thus grl soluio is r r ξ ξ r

90 Hrmii Cs: Eigvlus Eigvors & Fudml Soluios If A is Hrmii mri rl d symmri h ll igvlus r r r rl lhough som my rp. I y s hr r orrspodig lirly idpd d orhogol igvors. Th ssoid soluios of ' = A r r ξ ξ d form fudml s of soluios. r

91 Empl : Hrmii Mri of Cosidr h homogous quio ' = A blow. Th igvlus wr foud prviously i Ch 7. d wr: r = r = d r =. Corrspodig igvors: ξ ξ ξ

92 Empl : Grl Soluio of Th fudml soluios r wih grl soluio

93 Empl : Grl Soluio Bhvior of Th grl soluio is = + + : As is domi d bom gligibl. Thus for ll sols bom uboudd s whil for = ll sols s. Th iiil pois h us = r hos h li i pl drmid by d. Thus soluios h sr i his pl pproh origi s.

94 Compl Eigvlus d Fudml Sols If som of h igvlus r r our i ompl ojug pirs bu ohrwis r diffr h hr r sill orrspodig lirly idpd soluios ξ whih form fudml s of soluios. Som my b ompl-vlud bu rl-vlud soluios my b drivd from hm. This siuio will b mid i Ch 7.6. If h offii mri A is ompl h ompl igvlus d o our i ojug pirs bu soluios will sill hv h bov form if h igvlus r disi d hs soluios my b ompl-vlud. ξ r r

95 Rpd Eigvlus d Fudml Sols If som of h igvlus r r r rpd h hr my o b orrspodig lirly idpd soluios of h form r r ξ ξ I ordr o obi fudml s of soluios i my b ssry o sk ddiiol soluios of ohr form. This siuio is logous o h for h ordr lir quio wih os offiis i whih s rpd roo gv ris soluios of h form r r r This s of rpd igvlus is mid i Sio 7.8.

96 Boy/DiPrim/Md h d Ch 7.6: Compl Eigvlus Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. W osidr gi homogous sysm of firs ordr lir quios wih os rl offiis d hus h sysm b wri s ' = A whr A

97 Cojug Eigvlus d Eigvors W kow h = r is soluio of ' = A providd r is igvlu d is igvor of A. Th igvlus r r r h roos of da ri = d h orrspodig igvors sisfy A ri =. If A is rl h h offiis i h polyomil quio da ri = r rl d h y ompl igvlus mus our i ojug pirs. Thus if r = l + im is igvlu h so is r = l - im. Th orrspodig igvors r ojugs lso. To s his rll A d I hv rl ris d h A riξ A riξ A Iξ r

98 Cojug Soluios I follows from h prvious slid h h soluios orrspodig o hs igvlus d igvors r ojugs ojugs s wll si ξ ξ r r ξ ξ r r

99 Empl : Dirio Fild of 7 Cosidr h homogous quio ' = A blow. / / A dirio fild for his sysm is giv blow. Subsiuig = r i for d rwriig sysm s æ ç ç ç è ç A ri = w obi - - r r ö æ ç è ø ö æ = ø è ç ö ø

100 Empl : Compl Eigvlus of 7 W drmi r by solvig da ri =. Now Thus Thrfor h igvlus r r = / + i d r = / i. 5 / / / r r r r r i i r 5/

101 Empl : Firs Eigvor of 7 Eigvor for r = / + i: Solv by row rduig h ugmd mri: Thus / / i i i i r r r ξ I A i i i i i hoos ξ ξ i ξ

102 Empl : Sod Eigvor of 7 Eigvor for r = / i: Solv by row rduig h ugmd mri: Thus / / i i i i r r r ξ I A i i i i i hoos ξ ξ i ξ

103 Empl : Grl Soluio 5 of 7 Th orrspodig soluios = r of ' = A r Th Wroski of hs wo soluios is Thus u d v r rl-vlud fudml soluios of ' = A wih grl soluio = u + v. os si os si si os si os / / / / v u os si si os / / / / W

104 Empl : Phs Pl 6 of 7 Giv blow is h phs pl plo for soluios wih / / os si si os Eh soluio rjory pprohs origi log spirl ph s si oordis r produs of dyig poil d si or osi fors. Th grph of u psss hrough si u =. Similrly h grph of v psss hrough. Th origi is spirl poi d is sympoilly sbl. / /

105 Empl : Tim Plos 7 of 7 Th grl soluio is = u + v: As lriv o phs pl plos w grph or s fuio of. A fw plos of r giv blow h o dyig osillio s. os si si os / / / /

106 Grl Soluio To summriz suppos r = r = d h r r r ll rl d disi igvlus of A. L h orrspodig igvors b Th h grl soluio of ' = A is whr r r ξ ξ v u i i ξ ξ ξ b ξ b ξ os si si os b v b u l + im l - im

107 Rl-Vlud Soluios Thus for ompl ojug igvlus r d r h orrspodig soluios d r ojugs lso. To obi rl-vlud soluios us rl d imgiry prs of ihr or. To s his l = + i b. Th whr ξ i ib os isi os bsi i si bos u i v os bsi v si bos u r rl vlud soluios of ' = A d b show o b lirly idpd.

108 Spirl Pois Crs Eigvlus d Trjoris I prvious mpl grl soluio ws / / os si si os Th origi ws spirl poi d ws sympoilly sbl. If rl pr of ompl igvlus is posiiv h rjoris spirl wy uboudd from origi d h origi would b usbl spirl poi. If rl pr of ompl igvlus is zro h rjoris irl origi ihr pprohig or dprig. Th origi is lld r d is sbl bu o sympoilly sbl. Trjoris priodi i im. Th dirio of rjory moio dpds o ris i A. / /

109 Empl : Sod Ordr Sysm wih Prmr of Th sysm ' = A blow ois prmr. Subsiuig = r i for d rwriig sysm s A ri = w obi N solv for r i rms of : - r - -r æ è ç ö ø æ è ç ö ø = æ è ç ö ø 6 r r r r r r r

110 Empl : r Eigvlu Alysis of 6 Th igvlus r giv by h qudri formul bov. For < boh igvlus r rl d giv d h origi is sympoilly sbl od. For > boh igvlus r rl d posiiv d h h origi is usbl od. For < < igvlus r ompl wih giv rl pr d h origi is sympoilly sbl spirl poi. For < < igvlus r ompl wih posiiv rl pr d h origi is usbl spirl poi. For = igvlus r purly imgiry origi is r. Trjoris losd urvs bou origi & priodi. For = ± igvlus rl & qul origi is od Ch 7.8

111 Sod Ordr Soluio Bhvior d Eigvlus: Thr Mi Css For sod ordr sysms h hr mi ss r: Eigvlus r rl d hv opposi sigs; = is sddl poi. Eigvlus r rl disi d hv sm sig; = is od. Eigvlus r ompl wih ozro rl pr; = spirl poi. Ohr possibiliis is d our s rsiios bw wo of h ss lisd bov: A zro igvlu ours durig rsiio bw sddl poi d od. Rl d qul igvlus our durig rsiio bw ods d spirl pois. Purly imgiry igvlus our durig rsiio bw sympoilly sbl d usbl spirl pois. b r b

112 Empl : Mulipl Sprig-Mss Sysm of 6 Th quios for h sysm of wo msss d hr sprigs disussd i Sio 7. ssumig o rl fors b prssd s: Giv h quios bom ' d ' whr ' d ' or d y y y y y k k y k y m y k y k k m y k k k d d m k k k d d m 5/ d 9/ k k k m m / ' d / ' ' ' y y y y y y y y y y

113 y ' y y' y y' y / y d y' / y Empl : Mulipl Sprig-Mss Sysm of 6 Wriig h sysm of quios i mri form: y Assumig soluio of h form y = r whr r mus b igvlu of h mri A d is h orrspodig igvor h hrrisi polyomil of A is r 5r r r yildig h igvlus: r i r i r i d r i

114 Empl : Mulipl Sprig-Mss Sysm of 6 For h igvlus h orrspodig igvors r Th produs yild h ompl-vlud soluios: Ay y y' / / i r i r i r i r d i i i i i i i i 8 6 d 8 6 i i d ξ ξ 8os 6os si si 8si 6si os os si os 8 6 os os si si si si os os si os i i i i i i i i i i i i v u v u

115 Empl : Mulipl Sprig-Mss Sysm of 6 Afr vlidig h u v u v r lirly idpd h grl soluio of h sysm of quios b wri s æ ç y = ç è ç os os -si -si ö æ si ç si + ç os ø è ç os ö æ os ç - os + ç -6si ø è ç 8si whr r rbirry oss. y ' y y' y y' y / y d y' / y ö æ si ç -si + ç 6os ø è ç -8os Eh soluio will b priodi wih priod π so h rjory is losd urv. Th firs wo rms of h soluio dsrib moios wih frquy d priod π whil h sod wo rms dsrib moios wih frquy d priod π. Th moios of h wo msss will b diffr rliv o o ohr for soluios ivolvig oly h firs wo rms or h sod wo rms. ö ø y

116 y d y rprs h moio of h msss d y y' y ' y Empl : Mulipl Sprig-Mss Sysm 5 of 6 To obi h fudml mod of vibrio wih frquy ours wh y y d y y y To obi h fudml mod of vibrio wih frquy ours wh y y d y y Plos of y d y d prmri plos y y r show for sld soluio wih frquy

117 y d y rprs h moio of h msss d y y' y ' y Empl : Mulipl Sprig-Mss Sysm 6 of 6 Plos of y d y d prmri plos y y r show for sld soluio wih frquy

118 Boy/DiPrim/Md h d Ch 7.7: Fudml Mris Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. Suppos h form fudml s of soluios for ' = P o < < b. Th mri Ψ whos olums r is fudml mri for h sysm ' = P. This mri is osigulr si is olums r lirly idpd d h d Y. No lso h si r soluios of ' = P Y sisfis h mri diffril quio Y' = P Y.

119 Empl : Cosidr h homogous quio ' = A blow. I Empl of Chpr 7.5 w foud h followig fudml soluios for his sysm: Thus fudml mri for his sysm is Ψ

120 Fudml Mris d Grl Soluio Th grl soluio of ' = P b prssd = whr is os vor wih ompos : Ψ Y

121 Fudml Mri & Iiil Vlu Problm Cosidr iiil vlu problm ' = P = whr < d < b is giv iiil vor. Now h soluio hs h form = Y h w hoos so s o sisfy =. Rllig Y is osigulr i follows h Ψ Ψ Thus our soluio = Y b prssd s Ψ Ψ

122 Rll: Thorm 7.. L L b soluios of ' = P o I: h sisfy h iiil odiios Th r fudml soluios of ' = P. < < b

123 Fudml Mri & Thorm 7.. Suppos form h fudml soluios giv by Thm 7... Do h orrspodig fudml mri by. Th olums of r d h Thus = I d h h grl soluio o h orrspodig iiil vlu problm is I follows h for y fudml mri I Φ Φ Φ Ψ Ψ Φ Φ Ψ Ψ F F F F

124 Th Fudml Mri F. d Vryig Iiil Codiios Thus wh usig h fudml mri h grl soluio o IVP is Φ Φ Φ This rprsio is usful if sm sysm is o b solvd for my diffr iiil odiios suh s physil sysm h b srd from my diffr iiil ss. Also o F hs b drmid h soluio o h s of iiil odiios b foud by mri mulipliio s idid by h quio bov. F Thus rprss lir rsformio of h iiil odiios io h soluio im. F

125 Empl : Fid for Sysm of 5 Fid suh h = I for h sysm blow. Soluio: Firs w mus obi d suh h W kow from prvious rsuls h h grl soluio is Evry soluio b prssd i rms of h grl soluio d w us his f o fid d. F F F

126 Empl : Us Grl Soluio of 5 Thus o fid prss i rms of h grl soluio d h fid h offiis d. To do so us h iiil odiios o obi or quivlly

127 Empl : Solv for of 5 To fid w hrfor solv by row rduig h ugmd mri: Thus / / / / /

128 Empl : Solv for of 5 To fid w similrly solv by row rduig h ugmd mri: Thus / / / / /

129 Empl : Obi 5 of 5 Th olums of r giv by d d hus from h prvious slid w hv No is mor omplid h foud i E. Howvr i is ow muh sir o drmi h soluio o y s of iiil odiios. Φ Ψ F F Y F

130 Mri Epoil Fuios Cosidr h followig wo ss: Th soluio o ' = = is = whr =. Th soluio o ' = A = is = whr = I. Comprig h form d soluio for boh of hs ss w migh p o hv poil hrr. Idd i b show h = A whr A F A I is wll dfid mri fuio h hs ll h usul propris of poil fuio. S for dils. Thus h soluio o ' = A = is = A. F A!! F F

131 Coupld Sysms of Equios Rll h our os offii homogous sysm wri s ' = A wih is sysm of oupld quios h mus b solvd simulously o fid ll h ukow vribls. A

132 Uoupld Sysms & Digol Mris I ors if h quio hd oly o vribl solvd for idpdly of ohr quios h sk would b sir. I his s our sysm would hv h form or ' = D whr D is digol mri: d d d d d d D

133 Uouplig: Trsform Mri T I ordr o plor rsformig our giv sysm ' = A of oupld quios io uoupld sysm ' = D whr D is digol mri w will us h igvors of A. Suppos A is wih lirly idpd igvors d orrspodig igvlus. Dfi mris T d D usig h igvlus & igvors of A: No h T is osigulr d h T - iss. D T... l...l

134 Uouplig: T - AT = D Rll hr h dfiiios of A T d D: Th h olums of AT r A A d h I follows h T AT = D. D T A AT TD

135 Similriy Trsformios Thus if h igvlus d igvors of A r kow h A b rsformd io digol mri D wih T AT = D This pross is kow s similriy rsformio d A is sid o b similr o D. Alrivly w ould sy h A is digolizbl. D T A

136 Similriy Trsformios: Hrmii Cs Rll: Our similriy rsformio of A hs h form T AT = D whr D is digol d olums of T r igvors of A. If A is Hrmii h A hs lirly idpd orhogol igvors ormlizd so h... i i = i k = for i = d for i k. Wih his slio of igvors i b show h T = T *. I his s w wri our similriy rsform s T * AT = D

137 Nodigolizbl A Filly if A is wih fwr h lirly idpd igvors h hr is o mri T suh h T AT = D. I his s A is o similr o digol mri d A is o digolizbl. D T A

138 Empl : Fid Trsformio Mri T of For h mri A blow fid h similriy rsformio mri T d show h A b digolizd. W lrdy kow h h igvlus r = = wih orrspodig igvors Thus A ξ ξ D T l l

139 Empl : Similriy Trsformio of To fid T ugm h idiy o T d row rdu: Th Thus A is similr o D d h A is digolizbl. / / / / / / / / / / T D AT T 6 / / / / / / / /

140 Fudml Mris for Similr Sysms of Rll our origil sysm of diffril quios ' = A. If A is wih lirly idpd igvors h A is digolizbl. Th igvors form h olums of h osigulr rsform mri T d h igvlus r h orrspodig ozro ris i h digol mri D. Suppos sisfis ' = A l y b h vor suh h = Ty. Th is l y b dfid by y = T. Si ' = A d T is os mri w hv Ty' = ATy d h y' = T ATy = Dy. Thrfor y sisfis y' = Dy h sysm similr o ' = A. Boh of hs sysms hv fudml mris whih w mi.

141 Fudml Mri for Digol Sysm of A fudml mri for y' = Dy is giv by Q = D. Rllig h dfiiio of D w hv!!!! D Q

142 Fudml Mri for Origil Sysm of To obi fudml mri for ' = A rll h h olums of osis of fudml soluios sisfyig ' = A. W lso kow = Ty d h i follows h Th olums of giv h pd fudml soluios of ' = A. TQ Ψ Y Y Y

143 Empl : Fudml Mris for Similr Sysms W ow us h lysis d rsuls of h ls fw slids. Applyig h rsformio = Ty o ' = A blow his sysm boms y' = T ATy = Dy: A fudml mri for y' = Dy is giv by Q = D : Thus fudml mri for ' = A is y y Q TQ Ψ Y

144 Boy/DiPrim/Md h d Ch 7.8: Rpd Eigvlus Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. W osidr gi homogous sysm of firs ordr lir quios wih os rl offiis ' = A. If h igvlus r r of A r rl d diffr h hr r lirly idpd igvors... d lirly idpd soluios of h form r ξ ξ If som of h igvlus r r r rpd h hr my o b orrspodig lirly idpd soluios of h bov form. I his s w will sk ddiiol soluios h r produs of polyomils d poil fuios. r

145 Empl : Eigvlus of W d o fid h igvors for h mri: Th igvlus r d igvors sisfy h quio A ri = or To drmi r solv da ri = : Thus r = d r =. r r r r r r r r r A = - æ è ç ö ø

146 Empl : Eigvors of To fid h igvors w solv by row rduig h ugmd mri: Thus hr is oly o lirly idpd igvor for h rpd igvlu r =. ξ A ri hoos ξ ξ

147 Empl : Dirio Fild of Cosidr h homogous quio ' = A blow. A dirio fild for his sysm is giv blow. Subsiuig = r i for whr r is A s igvlu d is is orrspodig igvor h prvious mpl showd h is of oly o igvlu r = wih o igvor: ξ

148 Empl : Firs Soluio; d Sod Soluio Firs Amp of Th orrspodig soluio = r of ' = A is Si hr is o sod soluio of h form = r w d o ry diffr form. Bsd o mhods for sod ordr lir quios i Ch.5 w firs ry =. Subsiuig = io ' = A w obi or ξ ξ ξ Aξ ξ Aξ

149 Empl : Sod Soluio Sod Amp of From h prvious slid w hv ξ ξ Aξ I ordr for his quio o b sisfid for ll i is ssry for h offiis of d o boh b zro. From h rm w s h = d h hr is o ozro soluio of h form =. Si d ppr i h bov quio w osidr soluio of h form ξ η

150 Empl : Sod Soluio d is Dfiig Mri Equios of Subsiuig = + io ' = A w obi or ξ ξ η A ξ η Equig offiis yilds A = d A = + or A I ξ d A I η Th firs quio is sisfid if is igvor of A orrspodig o h igvlu r =. Thus ξ η Aξ ξ Aη ξ ξ h h h

151 Empl : Solvig for Sod Soluio 5 of Rll h Thus o solv A I = for w row rdu h orrspodig ugmd mri: k η η ξ A h h

152 Empl : Sod Soluio 6 of Our sod soluio = + is ow Rllig h h firs soluio ws w s h our sod soluio is simply si h ls rm of hird rm of is mulipl of. k h

153 Empl : Grl Soluio 7 of Th wo soluios of ' = A r Th Wroski of hs wo soluios is Thus d r fudml soluios d h grl soluio of ' = A is W

154 Empl : Phs Pl 8 of Th grl soluio is Thus is uboudd s d s. Furhr i b show h s sympoi o h li = drmid by h firs igvor. Similrly s is sympoi o li prlll o =. - -

155 Empl : Phs Pl 9 of Th origi is impropr od d is usbl. S grph. Th pr of rjoris is ypil for wo rpd igvlus wih oly o igvor. If h igvlus r giv h h rjoris r similr bu r rvrsd i h iwrd dirio. I his s h origi is sympoilly sbl impropr od.

156 Empl : Tim Plos for Grl Soluio of Tim plos for r giv blow whr w o h h grl soluio b wri s follows.

157 Grl Cs for Doubl Eigvlus Suppos h sysm ' = A hs doubl igvlu r = d sigl orrspodig igvor. Th firs soluio is = r whr sisfis A r I =. As i Empl h sod soluio hs h form ξ η whr is s bov d h sisfis A - rih =. r r Ev hough da I = i b show h A - rih = lwys b solvd for h. Th vor h is lld grlizd igvor.

158 Empl Esio: Fudml Mri of Rll h fudml mri for ' = A hs lirly idpd soluio for is olums. I Empl our sysm ' = A ws d h wo soluios w foud wr Thus h orrspodig fudml mri is Ψ = - æ è ç ö ø = - æ è ç ö ø + - æ è ç ö ø Y

159 Empl Esio: Fudml Mri of Th fudml mri h sisfis = I b foud usig whr whr is foud s follows: Thus Ψ Ψ Φ F F = YY - F Y

160 Jord Forms If A is wih lirly idpd igvors h A b digolizd usig similriy rsform T AT = D. Th rsform mri T osisd of igvors of A d h digol ris of D osisd of h igvlus of A. I h s of rpd igvlus d fwr h lirly idpd igvors A b rsformd io rly digol mri J lld h Jord form of A wih T AT = J.

161 Empl Esio: Trsform Mri of I Empl our sysm ' = A ws wih igvlus r = d r = d igvors Choosig k = h rsform mri T formd from h wo igvors d is k η ξ T h

162 Empl Esio: Jord Form of Th Jord form J of A is dfid by T AT = J. Now d h No h h igvlus of A r = d r = r o h mi digol of J d h hr is dirly bov h sod igvlu. This pr is ypil of Jord forms. T T T AT J

163 Boy/DiPrim/Md h d Ch 7.9: Nohomogous Lir Sysms Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. Th grl hory of ohomogous sysm of quios prllls h of sigl h ordr lir quio. This sysm b wri s ' = P + g whr g p p p g p p p g p p p p p p p p p p p p g g g P g

164 Grl Soluio Th grl soluio of ' = P + g o I: < < b hs h form v whr is h grl soluio of h homogous sysm ' = P d v is priulr soluio of h ohomogous sysm ' = P + g.

165 Digolizio Suppos ' = A + g whr A is digolizbl os mri. L T b h osigulr rsform mri whos olums r h igvors of A d D h digol mri whos digol ris r h orrspodig igvlus of A. Suppos sisfis ' = A l y b dfid by = Ty. Subsiuig = Ty io ' = A w obi or or Ty' = ATy + g. y' = T ATy + T g y' = Dy + h whr h = T g. No h if w solv digol sysm y' = Dy + h for y h = Ty is soluio o h origil sysm.

166 Solvig Digol Sysm Now y' = Dy + h is digol sysm of h form whr r r r h igvlus of A. Thus y' = Dy + h is uoupld sysm of lir firs ordr quios i h ukows y k whih b isold d solvd sprly usig mhods of Sio.: h h h y y y r r r y y y h y r y y y h y y r y y h y y y r y k h y r y k k k k ds s h y r k k s r r k k k k

167 Solvig Origil Sysm Th soluio y o y' = Dy + h hs ompos y k r k rk s rk h s ds k For his soluio vor y h soluio o h origil sysm ' = A + g is h = Ty. k Rll h T is h osigulr rsform mri whos olums r h igvors of A. k Thus wh muliplid by T h sod rm o righ sid of y k produs grl soluio of homogous quio whil h igrl rm of y k produs priulr soluio of ohomogous sysm.

168 Empl : Grl Soluio of Homogous Cs of 5 Cosidr h ohomogous sysm ' = A + g blow. = æ è ç - - ö ø + æ - ç è No: A is Hrmii mri si i is rl d symmri. Th igvlus of A r r = - d r = - wih orrspodig igvors ξ ξ Th grl soluio of h homogous sysm is h æ = è ç - ö æ ø - + è ç ö ø ö ø = A + g -

169 Empl : Trsformio Mri of 5 Cosidr h rsformio mri T of igvors. Usig Sio 7.7 omm d A Hrmii w hv T = T * = T T providd w ormliz d so h = d =. Thus ormliz s follows: Th for his hoi of igvors ξ ξ T T

170 Empl : Digol Sysm d is Soluio of 5 Udr h rsformio = Ty w obi h digol sysm y' = Dy + T g: Th usig mhods of Sio. y y y y y y y y y y y y 9

171 Empl : Trsform Bk o Origil Sysm of 5 W us h rsformio = Ty o obi h soluio o h origil sysm ' = A + g: 5 6 k k k k k k k k y y

172 Empl : Soluio of Origil Sysm 5 of 5 Simplifyig furhr h soluio b wri s No h h firs wo rms o righ sid form h grl soluio o homogous sysm whil h rmiig rms r priulr soluio o ohomogous sysm. 5 5 k k k k k k

173 Nodigol Cs If A o b digolizd rpd igvlus d shorg of igvors h i b rsformd o is Jord form J whih is rly digol. I his s h diffril quios r o olly uoupld bus som rows of J hv wo ozro ris: igvlu i digol posiio d i dj posiio o h righ of digol posiio. Howvr h quios for y y sill b solvd osuivly srig wih y. Th h soluio o origil sysm b foud usig = Ty.

174 Udrmid Coffiis A sod wy of solvig ' = P + g is h mhod of udrmid offiis. Assum P is os mri d h h ompos of g r polyomil poil or siusoidl fuios or sums or produs of hs. Th produr for hoosig h form of soluio is usully dirly logous o h giv i Sio.6. Th mi diffr riss wh g hs h form u l whr l is simpl igvlu of P. I his s g mhs soluio form of homogous sysm ' = P d s rsul i is ssry o k ohomogous soluio o b of h form l + b l. This form diffrs from h Sio.6 log l.

175 Empl : Udrmid Coffiis of 5 Cosidr gi h ohomogous sysm ' = A + g: = æ è ç - - ö ø + æ - ç è ö ø = æ - è ç - Assum priulr soluio of h form v b ö ø + æ è ç d ö æ ø - + è ç whr h vor offis b d r o b drmid. Si r = - is igvlu of A i is ssry o ilud boh - d b - s miod o h prvious slid. ö ø

176 Empl : Mri Equios for Coffiis of 5 Subsiuig i for i our ohomogous sysm ' = A + g = æ è ç w obi v - - b ö ø + æ è ç d ö æ ø - + è ç Equig offiis w olud h æ A = - Ab = - b - è ç ö ø A = - æ è ç ö ø b - + = A - + Ab - + A + Ad + æ è ç ö ø Ad = ö æ ø - + è ç ö ø

177 Empl : Solvig Mri Equio for of 5 Our mri quios for h offiis r: A Ab b A Ad From h firs quio w s h is igvor of A orrspodig o igvlu r = - d h hs h form W will s o h slid h = d h

178 Empl : Solvig Mri Equio for b of 5 Our mri quios for h offiis r: Subsiuig = io h sod quio Thus = d solvig for b w obi Ad A b Ab A b b b b b b b b Ab hoos b b k k T

179 Empl : Priulr Soluio 5 of 5 Our mri quios for h offiis r: A Ab b A Ad Solvig hird quio for d h fourh quio for d i is srighforwrd o obi T = d T = / 5/. Thus our priulr soluio of ' = A + g is v = æ è ç ö æ ø - - è ç ö æ ø - + è ç Comprig his o h rsul obid i Empl w s h boh priulr soluios would b h sm if w hd hos k = ½ for b o prvious slid isd of k =. ö ø - æ è ç 5 ö ø

180 Vriio of Prmrs: Prlimiris A mor grl wy of solvig ' = P + g is h mhod of vriio of prmrs. < < b Assum P d g r oiuous o d l Y b fudml mri for h homogous sysm. Rll h h olums of Y r lirly idpd soluios of ' = P d h Y is ivribl o h irvl < < b d lso Y' = PY. N rll h h soluio of h homogous sysm b prssd s = Y. Alogous o Sio.7 ssum h priulr soluio of h ohomogous sysm hs h form = Yu whr u is vor o b foud.

181 Vriio of Prmrs: Soluio W ssum priulr soluio of h form = Yu. Subsiuig his io ' = P + g w obi Y'u + Yu' = P Yu + g Si Y' = P Y h bov quio simplifis o u' = Y g Thus u Ψ g d whr h vor is rbirry os of igrio. Th grl soluio o ' = P + g is hrfor Ψ Ψ Ψ s g s ds rbirry

182 Vriio of Prmrs: Iiil Vlu Problm For iiil vlu problm ' = P + g = h grl soluio o ' = P + g is Ψ Ψ Ψ Alrivly rll h h fudml mri sisfis = I d h h grl soluio is F Φ Φ I pri i my b sir o row rdu mris d solv ssry quios h o ompu Y d subsiu io quios. S mpl. Ψ Ψ s g s ds s g s ds F

183 Empl : Vriio of Prmrs of Cosidr gi h ohomogous sysm ' = A + g: W hv prviously foud grl soluio o homogous s wih orrspodig fudml mri: Usig vriio of prmrs mhod our soluio is giv by = u whr u sisfis u' = g or = - - æ è ç ö ø + - æ è ç ö ø = - - æ è ç ö ø + æ è ç ö ø - + æ è ç ö ø Ψ u u Y Y

184 Empl : Solvig for u of Solvig u' = g by row rduio I follows h / / / / / / / u u u = u u æ è ç ö ø = / - / + / / - / + æ è ç ç ö ø Y

185 Empl : Solvig for of Now = u d h w muliply o obi fr ollig rms d simplifyig No h his is h sm soluio s i Empl. / / 6 / / / = - æ è ç ö ø - + æ è ç ö ø - + æ è ç ö ø æ è ç ö ø - + æ è ç ö ø - 5 æ è ç ö ø Y

186 Lpl Trsforms Th Lpl rsform b usd o solv sysms of quios. Hr h rsform of vor is h vor of ompo rsforms dod by Xs: Th by dig Thorm 6.. w obi s L L L L X X s s L

187 Empl : Lpl Trsform of 5 Cosidr gi h ohomogous sysm ' = A + g: Tkig h Lpl rsform of h rm w obi whr Gs is h rsform of g d is giv by Gs = s + s æ è ç ç ç ç ö ø s s s s G AX X

188 Empl : Trsfr Mri of 5 Our rsformd quio is sx s AX s G s If w k = h h bov quio boms sx s AX s G s or si A X s G s Solvig for Xs w obi X s si A G s Th mri si A is lld h rsfr mri.

189 Empl : Fidig Trsfr Mri of 5 Th Solvig for si A w obi s s s A I A s s s s s A I

190 Empl : Trsfr Mri of 5 N Xs = si A Gs d h or s s s s s s s X s s s s s s s s s s s s s X

191 Empl : Trsfr Mri 5 of 5 Thus To solv for = L - {Xs} us pril frio psios of boh ompos of Xs d h Tbl 6.. o obi: Si w ssumd = his soluio diffrs slighly from h prvious priulr soluios. s s s s s s s s s s s s s X = - - æ è ç ö ø - + æ è ç ö ø - + æ è ç ö ø - + æ è ç ö ø - 5 æ è ç ö ø

192 Summry of Th mhod of udrmid offiis rquirs o igrio bu is limid i sop d my ivolv svrl ss of lgbri quios. Digolizio rquirs fidig ivrs of rsformio mri d solvig uoupld firs ordr lir quios. Wh offii mri is Hrmii h ivrs of rsformio mri b foud wihou lulio whih is vry hlpful for lrg sysms. Th Lpl rsform mhod ivolvs mri ivrsio mri mulipliio d ivrs rsforms. This mhod is priulrly usful for problms wih disoiuous or impulsiv forig fuios.

193 Summry of Vriio of prmrs is h mos grl mhod bu i ivolvs solvig lir lgbri quios wih vribl offiis igrio d mri mulipliio d h my b h mos ompuiolly omplid mhod. For my smll sysms wih os offiis ll of hs mhods work wll d hr my b lil rso o sl o ovr ohr.

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Bo/DiPima/Mad h d Ch.: High Od Lia ODEs: Gal Tho Elma Diffial Eqaios ad Boda Val Poblms h diio b William E. Bo Rihad C. DiPima ad Dog Mad 7 b Joh Wil & Sos I. A h od ODE has h gal fom d d P P P d d W assm

More information

Special Curves of 4D Galilean Space

Special Curves of 4D Galilean Space Irol Jourl of Mhml Egrg d S ISSN : 77-698 Volum Issu Mrh hp://www.jms.om/ hps://ss.googl.om/s/jmsjourl/ Spl Curvs of D ll Sp Mhm Bkş Mhmu Ergü Alpr Osm Öğrmş Fır Uvrsy Fuly of S Dprm of Mhms 9 Elzığ Türky

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

ON THE STABILITY AND PERFORMANCE OF ADAPTIVE SYSTEMS WITH TIME-VARYING PARAMETERS: Roger Skjetne

ON THE STABILITY AND PERFORMANCE OF ADAPTIVE SYSTEMS WITH TIME-VARYING PARAMETERS: Roger Skjetne Rogr Sj Ju O h sbiliy prform of im-vryig prmrs i piv sysms. ON HE SABILI AND PERFORMANCE OF ADAPIE SSEMS WIH IME-ARING PARAMEERS: -lysis of piv bsppig shms sig for os prmrs. Rogr Sj Ju Proj o s pr of h

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Vardhaman Mahaveer Open University, Kota

Vardhaman Mahaveer Open University, Kota MA/MS MT-9 Vrdh Mhvr Uivrsiy, Ko rl Trsfors d rl Equio MA/MS MT-9 Vrdh Mhvr Uivrsiy, Ko rl Trsfors d rl Equio Ui No. Ui N P No. Ui - l Trsfor - 4 Ui - Th vrs l Trsfor 4-8 Ui -3 Soluio of rdiry Diffril

More information

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder Nolr Rgrsso Mjor: All Egrg Mjors Auhors: Aur Kw, Luk Sydr hp://urclhodsgusfdu Trsforg Nurcl Mhods Educo for STEM Udrgrdus 3/9/5 hp://urclhodsgusfdu Nolr Rgrsso hp://urclhodsgusfdu Nolr Rgrsso So populr

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

On the Hubbard-Stratonovich Transformation for Interacting Bosons

On the Hubbard-Stratonovich Transformation for Interacting Bosons O h ubbrd-sroovh Trsformo for Irg osos Mr R Zrbur ff Fbrury 8 8 ubbrd-sroovh for frmos: rmdr osos r dffr! Rdom mrs: hyrbol S rsformo md rgorous osus for rg bosos /8 Wyl grou symmry L : G GL V b rrso of

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2 ChE 39 - Chicl iics & Rcor Dsig - Sprig 9 Soluio o Howor ssig. Dvis progrssio of sps h icluds ll h spcis dd for ch rcio. L M C. CH C CH3 H C CH3 H C CH3H 4 Us h hrodyic o clcul h rgis of h vrious sgs of

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm . Mhmicl ools which mk you lif much simpl.. Usful ppoimio fomul usig ul logihm I his chp, I ps svl mhmicl ools, which qui usful i dlig wih im-sis d. A im-sis is squc of vibls smpd by im. As mpl of ul l

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Axe Wo. Blood Circle Just like with using knives, when we are using an axe we have to keep an area around us clear. Axe Safety Check list:

Axe Wo. Blood Circle Just like with using knives, when we are using an axe we have to keep an area around us clear. Axe Safety Check list: k Ax W ls i ms im s i sfly. f w is T x, ls lk g sci Bld Cicl Js lik wi sig kivs, w w sig x w v k d s cl. Wi xs; cl (bld cicl) is s lg f y m ls lg f x ll d s d bv s. T c b bcs, wigs, scs, c. isid y bld

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1 8 Sprg ME854 - Z Pg r Sym Rvw r Sym Rvw r Sym Rvw crpo of r Sym: p m R y R R y FT : & U Y Trfr Fco : y or : & : d y d r Sym Rvw orollbly d Obrvbly: fo 3.: FT dymc ym or h pr d o b corollbl f y l > d fl

More information

The Heat and Mass Transfer Modeling with Time Delay

The Heat and Mass Transfer Modeling with Time Delay 465 A pliio of HEMIAL ENGINEERING TRANSATIONS OL 57 07 Gs Ediors: Sro Piri Jiří Jromír Klmš Lr Pi Srfim Bklis opyrigh 07 AIDI Srii Srl ISBN 978-88-95608-48-8; ISSN 83-96 Th Ili Assoiio of hmil Egirig Oli

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information