Systems of First Order Linear Differential Equations

Size: px
Start display at page:

Download "Systems of First Order Linear Differential Equations"

Transcription

1 Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no prrquisi for his cours, w hv o limi ourslvs o h simpls insncs: hos sysms of wo quions nd wo unknowns only Bu firs, w shll hv brif ovrviw nd lrn som noions nd rminology A sysm of n linr firs ordr diffrnil quions in n unknowns (n n n sysm of linr quions hs h gnrl form: n n g n n g n n g (* : : : : : : n n n nn n g n Whr h cofficins ij s, nd g i s r rbirry funcions of If vry rm g i is consn zro, hn h sysm is sid o b homognous Ohrwis, i is nonhomognous sysm if vn on of h g s is nonzro 8, Zchry S Tsng D- -

2 8, Zchry S Tsng D- - Th sysm (* is mos ofn givn in shorhnd form s mri-vcor quion, in h form: A g n n nn n n n n n n g g g g : : : : : : : : : : : : : : A g Whr h mri of cofficins, A, is clld h cofficin mri of h sysm Th vcors,, nd g r n :, n :, g g n g g g : For homognous sysm, g is h zro vcor Hnc i hs h form A

3 Fc: Evry n-h ordr linr quion is quivln o sysm of n firs ordr linr quions Empls: (i Th mchnicl vibrion quion m u γ u k u F( is quivln o k m γ m F( m No h h sysm would b homognous (rspcivly, nonhomognous if h originl quion is homognous (rspcivly, nonhomognous (ii y y y y is quivln o 8, Zchry S Tsng D- -

4 This procss cn b sily gnrlizd Givn n n-h ordr linr quion n y (n n y (n n y (n y y y g( Mk h subsiuions: y, y, y,, n y (n, nd n y (n Th firs n quions follow husly Lsly, subsiu h s ino h originl quion o rwri i ino h n-h quion nd obin h sysm of h form: : : : : : : n n n n n n n n n g( n No: Th rvrs is lso ru Givn n n n sysm of linr quions, i cn b rwrin ino singl n-h ordr linr quion (Th rsul is no uniqu Thr r mulipl wys o do his 8, Zchry S Tsng D- -

5 Erciss D-: onvr ch linr quion ino sysm of firs ordr quions y y y y y 9y cos y ( y πy πy 6y Rwri h sysm you found in ( Ercis, nd (b Ercis, ino mri-vcor quion onvr h hird ordr linr quion blow ino sysm of firs ordr quion using ( h usul subsiuions, nd (b subsiuions in h rvrs ordr: y, y, y Dduc h fc h hr r mulipl wys o rwri ch n-h ordr linr quion ino linr sysm of n quions y 6y y y Answrs D-: 9 cos 6 π π ( (b 9 cos ( (b 6 6 8, Zchry S Tsng D- -

6 A rsh ours in ( Mrics Svrl wks worh of mri lgbr in n hour (Rl, w will only sudy h simpls cs, h of mrics Rviw opics: Wh is mri (pl mrics? A mri is ny rcngulr rry of numbrs (clld nris Ech nry s posiion is ddrssd by h row nd column (in h ordr whr i is locd For mpl, rprsns h nry posiiond h h row nd h nd column of h mri A Th siz of mri Th siz of mri is spcifid by numbrs [numbr of rows] [numbr of columns] Thrfor, n m n mri is mri h conins m rows nd n columns A mri h hs qul numbr of rows nd columns is clld squr mri A squr mri of siz n n is usully rfrrd o simply s squr mri of siz (or ordr n Noic h if h numbr of rows or columns is, h rsul (rspcivly, n, or n m mri is jus vcor A n mri is clld row vcor, nd n m mri is clld column vcor Thrfor, vcors r rlly jus spcil yps of mrics Hnc, you will probbly noic h similriis bwn mny of h mri oprions dfind blow nd vcor oprions h you migh b fmilir wih 8, Zchry S Tsng D- - 6

7 Two spcil yps of mrics Idniy mrics (squr mrics only Th n n idniy mri is ofn dnod by I n I, I, c Propris (ssum A nd I r of h sm siz: AI IA A I n, ny n vcor Zro mrics mrics h conin ll-zro nris Propris: A A A A A Arihmic oprions of mrics (i Addiion / subrcion c b d ± g f h ± c± g b± f d± h 8, Zchry S Tsng D- - 7

8 (ii Sclr Muliplicion b k kb k, for ny consn k c d kc kd (iii Mri muliplicion c b d g f h bg c dg f cf bh dh Th mri muliplicion AB is dfind only if hr r s mny rows in B s hr r columns in A For mpl, whn A is m k nd B is k n Th produc mri is going o b of siz m n, nd whos ij-h nry, c ij, is qul o h vcor do produc bwn h i- h row of A nd h j-h column of B Sinc vcors r mrics, w cn lso muliply oghr mri nd vcor, ssuming h bov rsricion on hir sizs is m Th produc of mri nd - nry column vcor is c b d y by c dy No : Two squr mrics of h sm siz cn lwys b muliplid oghr Bcus, obviously, hving h sm numbr of rows nd columns, hy sisfy h siz rquirmn oulind bov No : In gnrl, AB BA Indd, dpnding on h sizs of A nd B, on produc migh no vn b dfind whil h ohr produc is 8, Zchry S Tsng D- - 8

9 Drminn (squr mrics only For mri, is drminn is givn by h formul d c b d d bc No: Th drminn is funcion whos domin is h s of ll squr mrics of crin siz, nd whos rng is h s of ll rl (or compl numbrs 6 Invrs mri (of squr mri Givn n n n squr mri A, if hr iss mri B (ncssrily of h sm siz such h AB BA I n, hn h mri B is clld h invrs mri of A, dnod A Th invrs mri, if i iss, is uniqu for ch A A mri is clld invribl if i hs n invrs mri Thorm: For ny mri A is invrs, if iss, is givn by c b d, A d bc d c b Thorm: A squr mri is invribl if nd only if is drminn is nonzro 8, Zchry S Tsng D- - 9

10 8, Zchry S Tsng D- - Empls: L A nd B (i A B ( ( (ii AB On h ohr hnd: BA (iii d(a (, d(b 8 Sinc nihr is zro, s rsul, hy r boh invribl mrics (iv A / / 6 / 6 / (

11 7 Sysms of linr quions (lso known s linr sysms A sysm of linr (lgbric quions, A b, could hv zro, cly on, or infinily mny soluions (Rcll h ch linr quion hs lin s is grph A soluion of linr sysm is common inrscion poin of ll h quions grphs nd hr r only wys s of lins could inrsc If h vcor b on h righ-hnd sid is h zro vcor, hn h sysm is clld homognous A homognous linr sysm lwys hs soluion, nmly h ll-zro soluion (h is, h origin This soluion is clld h rivil soluion of h sysm Thrfor, homognous linr sysm A could hv ihr cly on soluion, or infinily mny soluions Thr is no ohr possibiliy, sinc i lwys hs, ls, h rivil soluion If such sysm hs n quions nd cly h sm numbr of unknowns, hn h numbr of soluion(s h sysm hs cn b drmind, wihou hving o solv h sysm, by h drminn of is cofficin mri: Thorm: If A is n n n mri, hn h homognous linr sysm A hs cly on soluion (h rivil soluion if nd only if A is invribl (h is, i hs nonzro drminn I will hv infinily mny soluions (h rivil soluion, plus infinily mny nonzro soluions if A is no invribl (quivlnly, hs zro drminn 8, Zchry S Tsng D- -

12 8 Eignvlus nd Eignvcors Givn squr mri A, suppos hr r consn r nd nonzro vcor such h A r, hn r is clld n Eignvlu of A, nd is n Eignvcor of A corrsponding o r Do ignvlus/vcors lwys is for ny givn squr mri? Th nswr is ys How do w find hm, hn? Rwri h bov quion, w g A r Th n sp would b o fcor ou Bu doing so would giv h prssion (A r Noic h i rquirs us o subrc numbr from n n n mri Th s n undfind oprion Hnc, w nd o furhr rfind i by rwriing h rm r r I, nd hn fcoring ou, obining (A r I This is n n n sysm of homognous linr (lgbric quions, whr h cofficin mri is (A r I W r looking for nonzro soluion of his sysm Hnc, by h horm w hv jus sn, h ncssry nd sufficin condiion for h isnc of such nonzro soluion, which will bcom n ignvcor of A, is h h cofficin mri (A r I mus hv zro drminn S is drminn o zro nd wh w g is dgr n polynomil quion in rms of r Th cs of mri is s follow: A r I c b d r r c b d r 8, Zchry S Tsng D- -

13 Is drminn, s o, yilds h quion d r c b d r ( r( d r bc r ( d r ( d bc I is dgr polynomil quion of r, s you cn s This polynomil on h lf is clld h chrcrisic polynomil of h (originl mri A, nd h quion is h chrcrisic quion of A Th roo(s of h chrcrisic polynomil r h ignvlus of A Sinc ny dgr n polynomil lwys hs n roos (rl nd/or compl; no ncssrily disinc, ny n n mri lwys hs ls on, nd up o n diffrn ignvlus Onc w hv found h ignvlu(s of h givn mri, w pu ch spcific ignvlu bck ino h linr sysm (A r I o find h corrsponding ignvcors 8, Zchry S Tsng D- -

14 8, Zchry S Tsng D- - Empls: A A r I r r r Is chrcrisic quion is 6 ( ( 6 ( ( d r r r r r r r r Th ignvlus r, hrfor, r nd 6 N, w will subsiu ch of h ignvlus ino h mri quion (A r I For r, h sysm of linr quions is (A r I (A I Noic h h mri quion rprsns dgnrd sysm of linr quions Boh quions r consn mulipls of h quion Thr is now only quion for h unknowns, hrfor, hr r infinily mny possibl soluions This is lwys h cs whn solving for ignvcors Ncssrily, hr r infinily mny ignvcors corrsponding o ch ignvlu

15 Solving h quion, w g h rlion Hnc, h ignvcors corrsponding o r r ll nonzro mulipls of k Similrly, for r 6, h sysm of quions is 6 (A r I (A 6 I 6 Boh quions in his scond linr sysm r quivln o Is soluions r givn by h rlion Hnc, h ignvcors corrsponding o r 6 r ll nonzro mulipls of k No: Evry nonzro mulipl of n ignvcor is lso n ignvcor 8, Zchry S Tsng D- -

16 Two shor-cus o find ignvlus: If A is digonl or ringulr mri, h is, if i hs h form b d, or d, or c d Thn h ignvlus r jus h min digonl nris, r nd d in ll mpls bov If A is ny mri, hn is chrcrisic quion is d r c b d r r ( d r ( d bc If you r fmilir wih rminology of linr lgbr, h chrcrisic quion cn b mmorizd rhr sily s r Trc(A r d(a No: For ny squr mri A, Trc(A [sum of ll nris on h min digonl (running from op-lf o boom-righ] For mri A, Trc(A d 8, Zchry S Tsng D- - 6

17 A shor-cu o find ignvcors (of mri: Similrly, hr is rick h nbls us o find h ignvcors of ny mri wihou hving o go hrough h whol procss of solving sysms of linr quions This shor-cu is spcilly hndy whn h ignvlus r compl numbrs, sinc i voids h nd o solv h linr quions which will hv compl numbr cofficins (Wrning: This mhod dos no work for ny mri of siz lrgr hn W firs find h ignvlu(s nd hn wri down, for ch ignvlu, h mri (A r I s usul Thn w k ny row of (A r I h is no consisd of nirly zro nris, sy i is h row vcor (α, β W pu minus sign in fron of on of h nris, for mpl, (α, β Thn n ngnvcor of h mri A is found by swiching h wo nris in h bov vcor, h is, k (β, α Empl: Prviously, w hv sn A Th chrcrisic quion is r Trc(A r d(a r r 6 (r (r 6, which hs roos r nd 6 For r, h mri (A r I is Tk h firs row, (,, which is non-zro vcor; pu minus sign o h firs nry o g (, ; hn swich h nry, w now hv k (, I is indd n ignvcor, sinc i is nonzro consn mulipl of h vcor w found rlir On vry rr occsions, boh rows of h mri (A r I hv ll zro nris If so, h bov lgorihm will no b bl o find n ignvcor Insd, undr his circumsnc ny non-zro vcor will b n ignvcor 8, Zchry S Tsng D- - 7

18 Erciss D-: L 7 nd D ompu: (i D nd (ii D ompu: (i D nd (ii D ompu: (i d(, (ii d(d, (iii d(d, (iv d(d ompu: (i, (ii D, (iii (D Find h ignvlus nd hir corrsponding ignvcors of nd D Answrs D-: (i, (ii 8 (i, (ii 8 (i 8, (ii, (iii 6, (iv 6 /8 /8 / /6 /6 (i, (ii 7 /8 /8, (iii / / s s (i r, k ; r, k 7s ; s ny nonzro numbr s s (ii r, k ; r, k s / ; s ny nonzro numbr s 8, Zchry S Tsng D- - 8

19 Soluion of sysms of firs ordr linr quions onsidr sysm of simulnous firs ordr linr quions b c d I hs h lrn mri-vcor rprsnion b c d Or, in shorhnd A, if A is lrdy known from con W know h h bov sysm is quivln o scond ordr homognous linr diffrnil quion As rsul, w know h h gnrl soluion conins wo linrly indpndn prs As wll, h soluion will b consisd of som yp of ponnil funcions Thrfor, ssum h k r is soluion of h sysm, whr k is vcor of cofficins (of nd Subsiu nd r k r ino h quion A, nd w hv r k r A k r Sinc r is nvr zro, w cn lwys divid boh sids by r nd g r k A k W s h his nw quion is cly h rlion h dfins ignvlus nd ignvcors of h cofficin mri A In ohr words, in ordr for funcion k r o sisfy our sysm of diffrnil quions, h numbr r mus b n ignvlu of A, nd h vcor k mus b n ignvcor of A corrsponding o r Jus lik h soluion of scond ordr homognous linr quion, hr r hr possibiliis, dpnding on h numbr of disinc, nd h yp of, ignvlus h cofficin mri A hs 8, Zchry S Tsng D- - 9

20 Th possibiliis r h A hs I Two disinc rl ignvlus II ompl conjug ignvlus III A rpd ignvlu A rld no, (from linr lgbr, w know h ignvcors h ch corrsponds o diffrn ignvlu r lwys linrly indpndn from ch ohrs onsqunly, if r nd r r wo diffrn ignvlus, hn hir rspciv ignvcors k nf k, nd hrfor h corrsponding soluions, r lwys linrly indpndn 8, Zchry S Tsng D- -

21 s I Disinc rl ignvlus If h cofficin mri A hs wo disinc rl ignvlus r nd r, nd hir rspciv ignvcors r k nd k Thn h sysm A hs gnrl soluion r r k k Empl: W hv lrdy found h h cofficin mri hs ignvlus r nd 6 And hy ch rspcivly hs n ignvcor k, k Thrfor, gnrl soluion of his sysm of diffrnil quions is 6 8, Zchry S Tsng D- -

22 8, Zchry S Tsng D- - Empl:, ( Th chrcrisic quion is r r (r (r Th ignvlus r r nd Thy hv, rspcivly, ignvcors For r, h sysm is (A r I (A I Solving h boom quion of h sysm:, w g h rlion Hnc, k, For r, h sysm is (A r I (A I Solving h firs quion of h sysm:, w g h rlion Hnc, k

23 8, Zchry S Tsng D- - Thrfor, gnrl soluion is Apply h iniil vlus, ( Th is W find nd, hnc w hv h priculr soluion

24 s II ompl conjug ignvlus If h cofficin mri A hs wo disinc compl conjug ignvlus λ ± µi Also suppos k b i is n ignvcor (ncssrily hs complvlud nris of h ignvlu λ µi Thn h sysm A hs rl-vlud gnrl soluion λ ( µ bsin( µ ( sin( µ b cos( µ λ cos( A lil dil: Similr o wh w hv don bfor, firs hr ws h compl-vlud gnrl soluion in h form ( λ µ i ( λµ i k k W filr ou h imginry prs by crfully choosing wo ss of cofficins o obin wo corrsponding rl-vlud soluions h r lso linrly indpndn: u v λ λ ( cos( µ b sin( µ ( sin( µ b cos( µ Th rl-vlud gnrl soluion bov is jus u v In priculr, i migh b usful o know how u nd v could b drivd by pnding h following compl-vlud prssion (h fron hlf of h compl-vlud gnrl soluion: k ( λ µ i λ λ ( bi λ ( µ i ( cos( µ isin( µ ibcos( µ i ( cos( µ bsin( µ i λ ( bi(cos( µ isin( µ λ bsin( µ ( sin( µ bcos( µ Thn, u is jus h rl pr of his compl-vlud funcion, nd v is is imginry pr 8, Zchry S Tsng D- -

25 8, Zchry S Tsng D- - Empl: Th chrcrisic quion is r, giving ignvlus r ± i Th is, λ nd µ Tk h firs (h on wih posiiv imginry pr ignvlu r i, nd find on of is ignvcors: (A r I i i Solving h firs quion of h sysm: ( i, w g h rlion ( i Hnc, bi i i k b Thrfor, gnrl soluion is cos( sin( sin( sin( cos( cos( cos( sin( sin( cos(

26 8, Zchry S Tsng D- - 6 Empl: 6, ( Th chrcrisic quion is r r, giving ignvlus r ± i Thus, λ nd µ Tk r i nd find on of is ignvcors: (A r I 6 ( 6 ( i i i i Solving h scond quion of h sysm: ( i, w g h rlion ( i Hnc, bi i i k Th gnrl soluion is sin( sin( cos( cos( sin( cos( cos( sin( sin( cos(

27 8, Zchry S Tsng D- - 7 Apply h iniil vlus o find nd : cos( sin( sin( cos( ( Thrfor, nd onsqunly, h priculr soluion is sin( cos( sin( sin( sin( cos( cos( sin( cos(

28 s III Rpd rl ignvlu Suppos h cofficin mri A hs rpd rl ignvlus r, hr r sub-css (i If r hs wo linrly indpndn ignvcors k nd k Thn h sysm A hs gnrl soluion k r k r No: For mrics, his possibiliy only occurs whn h cofficin mri A is sclr mulipl of h idniy mri Th is, A hs h form α α α, for ny consn α Empl: Th ignvlu is r (rpd Thr r ss of linrly indpndn ignvcors, which could b rprsnd by ny nonzro vcors h r no consn mulipls of ch ohr For mpl k, Thrfor, gnrl soluion is k 8, Zchry S Tsng D- - 8

29 (ii If r, s i usully dos, only hs on linrly indpndn ignvcor k Thn h sysm A hs gnrl soluion k r (k r η r Whr h scond vcor η is ny soluion of h nonhomognous linr sysm of lgbric quions (A r I η k Empl: 7, ( Th ignvlu is r (rpd Th corrsponding sysm is (A r I 7 Boh quions of h sysm r, w g h sm rlion Hnc, hr is only on linrly indpndn ignvcor: k 8, Zchry S Tsng D- - 9

30 8, Zchry S Tsng D- - N, solv for η: η I hs soluion in h form η η η hoos η, w g η / A gnrl soluion is, hrfor, Apply h iniil vlus o find nd Th priculr soluion is

31 Summry: Solving Homognous Sysm of Two Linr Firs Ordr Equions in Two Unknowns Givn: A Firs find h wo ignvlus, r, nd hir rspciv corrsponding ignvcors, k, of h cofficin mri A Dpnding on h ignvlus nd ignvcors, h gnrl soluion is: I Two disinc rl ignvlus r nd r : r r k k II Two compl conjug ignvlus λ ± µi, whr λ µi hs s n ignvcor k b i: λ ( µ bsin( µ ( sin( µ b cos( µ λ cos( III A rpd rl ignvlu r: (i Whn wo linrly indpndn ignvcors is k r k r (ii Whn only on linrly indpndn ignvcor is k r (k r η r No: Solv h sysm (A r I η k o find h vcor η 8, Zchry S Tsng D- -

32 Erciss D-: Rwri h following scond ordr linr quion ino sysm of wo quions y y 6y Thn: ( show h boh h givn quion nd h nw sysm hv h sm chrcrisic quion (b Find h sysm s gnrl soluion 7 Find h gnrl soluion of ch sysm blow Solv h following iniil vlu problms 8, ( 9, (, ( 6 8 8, ( 6 6, ( 8, Zchry S Tsng D- -

33 8, Zchry S Tsng D- - 9, ( 6, ( For ch of h iniil vlu problms #8 hrough #, how dos h soluion bhv s? 6 Find h gnrl soluion of h sysm blow, nd drmin h possibl vlus of α nd β such h h iniil vlu problm hs soluion h nds o h zro vcor s 7, ( β α Answrs D-: ( r r 6, (b sin( sin( cos( cos( sin( cos( 6 6 6

34 8, Zchry S Tsng D- - sin( sin( cos( cos( sin( cos( sin cos sin cos For #8 nd 9, ( lim For #,,, nd, h limis do no is, s ( movs infinily fr wy from h origin For #, 9 ( lim 6 7 ; h priculr soluion will nd o zro s providd h, which cn b chivd whnvr h iniil condiion is such h α β (i, α β, including h cs α β

35 Th Lplc Trnsform Mhod of Solving Sysms of Linr Equions (Opionl opic Th mhod of Lplc rnsforms, in ddiion o solving individul linr diffrnil quions, cn lso b usd o solv sysms of simulnous linr quions Th sm bsic sps of rnsforming, simplifying, nd king h invrs rnsform of h soluion sill pply Empl: 7, ( Bfor w sr, l us rwri h problm ino h plici form of individul linr quions: ( 7 ( W hn firs rnsform boh quions using h usul ruls of Lplc rnsform: sl{ } ( sl{ } L{ } L{ } ( sl{ } ( sl{ } L{ } 7L{ } ( Prilly simplifying boh quions (s L{ } L{ } (* L{ } (s 7L{ } (* 8, Zchry S Tsng D- -

36 Thn muliply q (* by nd q (* by s (s L{ } 6L{ } 8 (** (s L{ } (s (s 7L{ } s (** Subrc q (** from q (** [(s (s 7 ( 6]L{ } s 9 (s 6s 9L{ } s 9 Thrfor, s 9 L{ } ( s s ( s Similrly, muliply q (* by s 7 nd q (* by (s (s 7L{ } (s 7L{ } (s 7 ( 6L{ } (s 7L{ } ( Subrc q ( from q ( [(s (s 7 6]L{ } s 8 (s 6s 9L{ } s 8 s8 L{ } ( s s ( s 8, Zchry S Tsng D- - 6

37 Thrfor, Which gr wih h soluion w hv found rlir using h ignvcor mhod Th mhod bov cn lso, wihou ny modificion, b usd o solv nonhomognous sysms of linr diffrnil quions I givs us wy o solv nonhomognous linr sysms wihou hving o lrn spr chniqu In ddiion, i lso llows us o ckl linr sysms wih disconinuous forcing funcions, if ncssry Empl:, ( Rwri h problm plicily nd rnsform: ( ( sl{ } L{ } L{ } s ( sl{ } L{ } L{ } s (6 s Simplify: 8, Zchry S Tsng D- - 7

38 s (s L{ } L{ } s s (* s s L{ } (s L{ } s s s (6* Muliplying q (* by s nd q (6* by, hn subrc h lr from h formr W limin L{ }, o find L{ } s 7s (s s L{ } s s Thrfor, s L{ } s 7s s ( s ( s ( s s s Likwis, muliplying q (* by nd q (6* by s, hn dd hm oghr W find L{ } s s s (s s L{ } s Thrfor, s L{ } s s s ( s ( s ( s s 9 s 9 8, Zchry S Tsng D- - 8

39 Finlly, Ercis D-: Us Lplc rnsforms o solv ch nonhomognous linr sysm, ( 6, ( 8 sin, ( cos 8, ( 6 8, Zchry S Tsng D- - 9

40 8, Zchry S Tsng D- - Answrs D-: 7 7 sin cos sin cos sin cos sin cos

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI #: PHA 527 Scond Exm Fll 20 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pu ll nswrs on h bubbl sh OAL /200 ps Nm: UFI #: Qusion S I (ru or Fls) (5 poins) ru (A)

More information

Equations and Boundary Value Problems

Equations and Boundary Value Problems Elmn Diffnil Equions nd Bound Vlu Poblms Bo. & DiPim, 9 h Ediion Chp : Sond Od Diffnil Equions 6 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ กด วล ยร ชต Topis Homognous

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Stability of time-varying linear system

Stability of time-varying linear system KNWS 39 Sbiliy of im-vrying linr sysm An Szyd Absrc: In his ppr w considr sufficin condiions for h ponnil sbiliy of linr im-vrying sysms wih coninuous nd discr im Sbiliy gurning uppr bounds for diffrn

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wv hnon hyscs 5c cur 4 Coupl Oscllors! H& con 4. Wh W D s T " u forc oscllon " olv h quon of oon wh frcon n foun h sy-s soluon " Oscllon bcos lr nr h rsonnc frquncy " hs chns fro 0 π/ π s h frquncy ncrss

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Midterm. Answer Key. 1. Give a short explanation of the following terms. ECO 33-00: on nd Bnking Souhrn hodis Univrsi Spring 008 Tol Poins 00 0 poins for h pr idrm Answr K. Giv shor xplnion of h following rms. Fi mon Fi mon is nrl oslssl produd ommodi h n oslssl sord, oslssl

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information