CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

Size: px
Start display at page:

Download "CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC"

Transcription

1 CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will b dotd by c, d b, rspctivly (s Fig..5). c b Torm (si formul) I y trigl, sids r proportiol to t sis of t opposit gls. Tt is, i trigl C si si si C b c Proof Lt C b itr of t trigls s sow i Fig..6 (i) d (ii). Fig..5 C c c b C D b D C (i) (ii) Fig..6 T ltitud is drw from t vrt to mt t sid C i poit D [i (i) C is producd to mt t ltitud i D]. From t rigt gld trigl D i Fig..6(i), w v si, i.., c si () c d si (80 C) sic From () d (), w gt c si si C, i.., si si C c () ()

2 Similrly, w c prov tt si si b From () d (4), w gt si si si C b c For trigl C i Fig..6 (ii), qutios () d (4) follow similrly. Torm (Cosi formul) Lt, d C b gls of trigl d, b d c b lgts of sids opposit to gls, d C, rspctivly, t b + c bccos b c + ccos c + b bcosc Proof Lt C b trigl s giv i Fig..7 (i) d (ii) (4) c c b C D D b C (i) Fig..7 Rfrrig to Fig..7 (ii), w v C D + DC D + (C D) D + D + C C.D + or b + c bc cos Similrly, w c obti C C cos b c + c d cos c + b bcosc Sm qutios c b obtid for Fig..7 (i), wr C is obtus. covit form of t cosi formul, w gls r to b foud r s follows: (ii) b + c cos bc c + b cos c + b c cos C b

3 Empl 5 I trigl C, prov tt C b c t cot b + c C c t cot c + b C t cot + b Proof y si formul, w v Trfor, b c ksy ( ). si si si C b c k(si si C) b+ c k(si + si C) + C C cos si + C C si cos (+C) ( C) cot t π C cot t C t cot C b c Trfor, t cot b + c Similrly, w c prov otr rsults. Ts rsults r wll kow s Npir s logis. Empl 6 I y trigl C, prov tt si ( C) + b si (C ) + C si ( ) 0 Solutio Cosidr si ( C) [si cosc cos sic] () si si si C Now k(sy) b c Trfor, si k, si bk, si C ck Substitutig t vlus of si d sic i () d usig cosi formul, w gt + b c c + b si( C) bk ck b c

4 k k( b ( + b c c + b ) c ) Similrly, b si (C ) k (c ) d csi ( ) k ( b ) Hc L.H.S k (b c + c + b ) 0 R.H.S. Empl 7 T gl of lvtio of t top poit P of t vrticl towr PQ of igt from poit is 45 d from poit, t gl of lvtio is 60, wr is poit t distc d from t poit msurd log t li wic mks gl 0 wit Q. Prov tt d ( ) Proof From t Fig..8, w v PQ 45, Q 0, PH 60 P 5 45 d 0 60 H Q Fig..8 Clrly PQ 45, PH 0, givig P 5 gi P 5 P 50 From trigl PQ, w v P + (Wy?) or P pplyig si formul i Δ P, w gt P d si5 si50 si5 si50 i.., d si5 si 0 ( ) (wy?) Empl 8 lmp post is situtd t t middl poit M of t sid C of trigulr plot C wit C 7m, C 8m d 9 m. Lmp post subtds gl 5 t t poit. Dtrmi t igt of t lmp post. Solutio From t Fig..9, w v 9 c, C 7 d C 8 b. 4

5 Fig..9 M is t mid poit of t sid C t wic lmp post MP of igt (sy) is loctd. gi, it is giv tt lmp post subtds gl θ (sy) t wic is 5. pplyig cosi formul i ΔC, w v + b c cos C () b Similrly usig cosi formul i ΔMC, w gt M C + CM C CM cos C. Hr CM C4, sic M is t mid poit of C. Trfor, usig (), w gt M or M 7 Tus, from ΔMP rigt gld t M, w v PM t θ M 7 or t(5 ) 7 (wy?) or 7( )m. EXERCISE.5 I y trigl C, if 8, b 4, c 0, fid 4. cos, cos, cosc (s. 5, 5, 0). si, si, sic (s. 5, 4 5, ) For y trigl C, prov tt. cos + b c C si 4. si b c C cos 5

6 5. C b c si cos 6. (b cos C c cos ) b c 7. (cos C cos ) (b c) cos 8. si( C) si( + C) b c 9. C C ( b + + c)cos cos 0. cos + b cos + c cos C si si C.. cos cos cos C + b + c + +. (b c ) cot + (c ) cot + ( b ) cotc 0 b c bc b c c b si+ si+ sic 0 b c 4. tr stds vrticlly o ill sid wic mks gl of 5 wit t orizotl. From poit o t groud 5m dow t ill from t bs of t tr, t gl of lvtio of t top of t tr is 60. Fid t igt of t tr. (s. 5 m) 5. Two sips lv port t t sm tim. O gos 4 km pr our i t dirctio N45 E d otr trvls km pr our i t dirctio S75 E. Fid t distc btw t sips t t d of ours. (s km (ppro.)) 6. Two trs, d r o t sm sid of rivr. From poit C i t rivr t distc of t trs d is 50m d 00m, rspctivly. If t gl C is 45, fid t distc btw t trs (us.44). (s. 5.5 m) 5.7. Squr-root of Compl Numbr CHPTER 5 W v discussd solvig of qudrtic qutios ivolvig compl roots o pg of ttbook. Hr w pli t prticulr procdur for fidig squr root of compl umbr prssd i t stdrd form. W illustrt t sm by mpl. Empl Fid t squr root of 7 4i Solutio Lt + iy 7 4i T ( + iy) 7 4i or y + yi 7 4i Equtig rl d imgiry prts, w v y 7 () y 4 W kow t idtity ( ) ( ) + y y + ( y) Tus, + y 5 () 6

7 From () d (), 9 d y 6 or ± d y ±4 Sic t product y is gtiv, w v, y 4 or,, y 4 Tus, t squr roots of 7 4i r 4i d + 4i EXERCISE 5.4 Fid t squr roots of t followig:. 5 8i ( s. 4i, + 4i). 8 6i (s. i, + i). i (s. + ± μ i ) 4. i (s. ± m i ) 5. i (s. i + ± ± ) 6. + i (s. ± ± i ) 9.7. Ifiit G.P. d its Sum CHPTER 9 G. P. of t form, r, r, r,... is clld ifiit G. P. Now, to fid t formul for fidig sum to ifiity of G. P., w bgi wit mpl. Lt us cosidr t G. P., 4,,,... 9 Hr, r. W v S Lt us study t bviour of s bcoms lrgr d lrgr: W obsrvr tt s bcoms lrgr d lrgr, bcoms closr d closr to zro. Mtmti- clly, w sy tt s bcoms sufficitly lrg, bcoms sufficitly smll. I otr words s 7

8 , 0. Cosqutly, w fid tt t sum of ifiitly my trms is giv by S. Now, for gomtric progrssio,, r, r,..., if umricl vlu of commo rtio r is lss t, t ( r ) r S ( r) r r I tis cs s, r 0 sic r <. Trfor S r Symboliclly sum to ifiity is dotd by S or S. Tus, w v S r. For mpls (i) (ii) EXERCISE 9.4 Fid t sum to ifiity i c of t followig Gomtric Progrssio..,,,... (s..5). 6,.,.4,... (s. 7.5) 9. 5, 0 80,, (s. 5 ) 4.,,, (s. ) 5 5. Prov tt Lt d y + b + b +..., wr < d b <. Prov tt y + b + b y CHPTER Equtio of fmily of lis pssig troug t poit of itrsctio of two lis Lt t two itrsctig lis l d l b giv by + y + C 0 () d + y + C 0 () From t qutios () d (), w c form qutio ( ) + y+ C+ k + y + C 0 () 8

9 wr k is rbitrry costt clld prmtr. For y vlu of k, t qutio () is of first dgr i d y. Hc it rprsts fmily of lis. prticulr mmbr of tis fmily c b obtid for som vlu of k. Tis vlu of k my b obtid from otr coditios. Empl 0 Fid t qutio of li prlll to t y-is d drw troug t poit of itrsctio of 7y d + y 7 0 Soluio T qutio of y li troug t poit of itrsctio of t giv lis is of t form 7 y k( + y 7) 0 () i.., ( + k) + ( k 7) y + 5 7k 0 If tis li is prlll to y-is, t t cofficit of y sould b zro, i.., k 7 0 wic givs k 7. Substitutig tis vlu of k i t qutio (), w gt 44 0, i.., 0, wic is t rquird qutio. EXERCISE 0.4. Fid t qutio of t li troug t itrsctio of lis + 4y 7 d y + 0 d wos slop is 5. (s. 5 7y ). Fid t qutio of t li troug t itrsctio of lis + y 0 d 4 y d wic is prlll to 5 + 4y 0 0 (s. 5 + y 7 0). Fid t qutio of t li troug t itrsctio of t lis + y 4 0 d 5y 7 tt s its -itrcpt qul to 4. (s y ) 4. Fid t qutio of t li troug t itrsctio of 5 y d + y 0 d prpdiculr to t li 5 y 0. (s y 78 0.) 0.7. Siftig of origi qutio corrspodig to st of poits wit rfrc to systm of coordit s my b simplifid by tkig t st of poits i som otr suitbl coordit systm suc tt ll gomtric proprtis rmi ucgd. O suc trsformtio is tt i wic t w s r trsformd prlll to t origil s d origi is siftd to w poit. trsformtio of tis kid is clld trsltio of s. T coordits of c poit of t pl r cgd udr trsltio of s. y kowig t rltiosip btw t old coordits d t w coordits of poits, w c study t lyticl problm i trms of w systm of coordit s. Fig. 0. To s ow t coordits of poit of t pl cgd udr trsltio of s, lt us tk poit P (, y) rfrrd to t s OX d OY. Lt O X d O Y b w s prlll to OX d OY rspctivly, wr O is t w origi. Lt (, k) b t coordits of O rfrrd to t old s, i.., OL d LO k. lso, OM d MP y (s Fig.0.) 9 Y O L Y' 0' M' k P{(, y) ( ', y')} M X' X

10 Lt O M d M P y b rspctivly, t bsciss d ordits of poit P rfrrd to t w s O X d O Y. From Fig.0., it is sily s tt OM OL + LM, i.., + d MP MM + M P, i.., y k + y Hc, +, y y + k Ts formul giv t rltios btw t old d w coordits. Empl Fid t w coordits of poit (, 4) if t origi is siftd to (, ) by trsltio. Solutio T coordits of t w origi r, k, d t origil coordits r giv to b, y 4. T trsformtio rltio btw t old coordits (, y) d t w coordits (, y ) r giv by + i.., d y y + k i.., y y k Substitutig t vlus, w v d y 4 6 Hc, t coordits of t poit (, 4) i t w systm r (, 6). Empl Fid t trsformd qutio of t strigt li y + 5 0, w t origi is siftd to t poit (, ) ftr trsltio of s. Solutio Lt coordits of poit P cgs from (, y) to (, y ) i w coordit s wos origi s t coordits, k. Trfor, w c writ t trsformtio formul s + d y y. Substitutig, ts vlus i t giv qutio of t strigt li, w gt ( + ) (y ) or y Trfor, t qutio of t strigt li i w systm is y EXERCISE 0.5. Fid t w coordits of t poits i c of t followig css if t origi is siftd to t poit (, ) by trsltio of s. (i) (, ) (s (4, )) (ii) (0, ) (s. (, )) (iii) (5, 0) (s. (8, ) ) (iv) (, ) (s. (, 0)) (v) (, 5) (s. (6, )). Fid wt t followig qutios bcom w t origi is siftd to t poit (, ) (i) + y y y + 0 (s. y + y + 6y+ 0) (ii) y y + y 0 (iii) y y + 0 (s. y y 0 ) (s. y 0 ) CHPTER.5. Limits ivolvig potil d logritmic fuctios for discussig vlutio of limits of t prssios ivolvig potil d logritmic fuctios, w itroduc ts two fuctios sttig tir domi, rg d lso sktc tir grps rougly. 0

11 Lord Eulr (707D 78D), t grt Swiss mtmtici itroducd t umbr wos vlu lis btw d. Tis umbr is usful i dfiig potil fuctio d is dfid s f (), R. Its domi is R, rg is t st of positiv rl umbrs. T grp of potil fuctio, i.., y is s giv i Fig... Y O grp of y X Fig.. Similrly, t logritmic fuctio prssd s log : R + Ris giv by log y, if d oly if y. Its domi is R + wic is t st of ll positiv rl umbrs d rg is R. T grp of logritmic fuctio y log is sow i Fig... Y O X grp of y log Fig.. I ordr to prov t rsult lim, w mk us of iqulity ivolvig t prssio 0 wic rus s follows: + + ( ) olds for ll i [, ] ~ {0}.

12 Torm 6 Prov tt lim 0 Proof Usig bov iqulity, w gt lso + lim lim + ( ), [, ] ~ {0} d lim[ + ( ) ] + ( )lim + ( )0 0 0 Trfor, by Sdwic torm, w gt lim 0 log( + ) Torm 7 Prov tt lim 0 Proof Lt log (+ ) log ( + ) y + y y y or. y y y. T y lim lim y (sic 0 givs y 0) y 0 y 0 y lim y s lim 0 y 0 y log ( + ) lim 0 Empl 5 Comput lim 0 Solutio W v lim lim 0 0 y lim, wry y 0 y.

13 Empl 6 Comput lim 0 si si si Solutio W v lim lim 0 0 si lim lim log Empl 7 Evlut lim Solutio Put +, t s 0. Trfor, log log ( + ) log ( + ) lim lim sic lim 0 0 EXERCISE. Evlut t followig limits, if ist 4 +. lim (s. 4). lim si. lim (s. 5 ) 4. lim lim log( + ) lim 0 (s. ) 6. (s. ) 8. ( ) lim 0 cos log ( + ) lim 0 si (s. ) (s. ) (s. ) (s. )

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper SET - GSE tch : 0th Std. Eg. Medium MHESH TUTILS SUJET : Mths(0) First Prelimiry Exm Model swer Pper PRT -.. () like does ot exist s biomil surd. () 4.. 6. 7. 8. 9. 0... 4 (c) touches () - d () -4 7 (c)

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities P E PESIT Bglo South Cpus Hosu od, k bfo Elctoic Cit, Bgluu -00 Dptt of Bsic Scic d Huitis INTERNAL ASSESSMENT TEST Dt : 0/0/07 Mks: 0 Subjct & Cod : Egiig Mthtics I 5MAT Sc : ALL N of fcult : GVR,GKJ,RR,SV,NHM,DN,KR,

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Rectangular Waveguides

Rectangular Waveguides Rtgulr Wvguids Wvguids tt://www.tllguid.o/wvguidlirit.tl Uss To rdu ttutio loss ig rquis ig owr C ort ol ov rti rquis Ats s ig-ss iltr Norll irulr or rtgulr W will ssu losslss rtgulr tt://www..surr..u/prsol/d.jris/wguid.tl

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

IV. The z-transform and realization of digital filters

IV. The z-transform and realization of digital filters www.tuworld.com www.tuworld.com Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs,

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Math 1272 Solutions for Fall 2004 Final Exam

Math 1272 Solutions for Fall 2004 Final Exam Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1. PROBLEMS Us grhic rrsttio to dtrmi th zros of th followig fuctios to o corrct dciml : ( 4 4si ; (b ; (c ( ; (d 4 8 ; ( ; (f ; (g t I ordr to obti grhicl solutio of f ( o th itrvl [,b], ty th followig sttmts

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES Capter LIMITS AND DERIVATIVES. Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Problem Session (3) for Chapter 4 Signal Modeling

Problem Session (3) for Chapter 4 Signal Modeling Pobm Sssio fo Cht Sig Modig Soutios to Pobms....5. d... Fid th Pdé oimtio of scod-od to sig tht is giv by [... ] T i.. d so o. I oth wods usig oimtio of th fom b b b H fid th cofficits b b b d. Soutio

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

LIMITS AND DERIVATIVES NCERT

LIMITS AND DERIVATIVES NCERT . Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is te epected value of f at a give

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative MAT 7 Tst Rviw (Spring ) Tst on April in PSA Sction.7 Implicit Drivativ Rmmbr: Equation of t tangnt lin troug t point ( ab, ) aving slop m is y b m( a ). dy Find t drivativ y d. y y. y y y. y 4. y sin(

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information