Chapter 7 INTEGRAL EQUATIONS

Size: px
Start display at page:

Download "Chapter 7 INTEGRAL EQUATIONS"

Transcription

1 hpr 7 INTERAL EQUATIONS

2 hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios oprors - odd oprors - Lipschiz codiio - corcio opror - sccssiv pproimios - Bch id poi horm 7.3 Igrl Opror 7.4 Igrl qios - Frdholm igrl qios - Volrr igrl qios - igro-diril qios - solio o igrl qio 7.5 Solio hods or Igrl Eqios. hod o sccssiv pproimios or Frdholm IE (Nm sris). hod o sccssiv ssiios or Frdholm IE (Rsolv mhod) 3. hod o sccssiv pproimios or Volrr IE 7.6 ocio w igrl qios d iiil d odry vl prolms 7.7 Erciss. Rdcio o IVP o h Volrr IE. Rdcio o h Volrr IE o IVP 3. Rdcio o BVP o h Frdholm IE Fr Topics: 7.7 Fid poi horm (s [Hochsd Igrl qios, p.5]) (ddd i 7.) Elmry isc horms 7.8 Prcicl pplicios (s [Jrri Irodcio o Igrl Eqios wih Applicios ]) 7.9 Ivrs prolms (s [ Jrri, p.7]) 7. Frdholm s lrivs

3 hpr 7 INTERAL EQUATIONS 7. Normd Vcor Spcs W will sr wih som diiios d rsls rom h hory o ormd vcor spcs which will dd i his chpr (s mor dils i hpr ).. Eclidi vcor spc Th -dimsiol Eclidi vcor spc cosiss o ll pois { (,,..., ) } or which h ollowig oprios r did: Sclr prodc (,y) y y... y,y Norm (,)... Disc ρ (,y) y ovrgc lim i lim is compl vcor spc (Bch spc) rliv o did orm.. Vcor spc ( ) Vcor spc ( ) cosiss o ll rl vld coios cios did o h closd domi : : D coios { } Norm m ovrgc lim i lim is compl vcor spc (Bch spc) rliv o did orm. 3. Vcor spc L ( ) Th spc o cios igrl ccordig o Lsg (s Scio 3.) Ir prodc Norm L : d<,g g d, d Th ollowig propry ollows rom h diiio o h Lsg igrl d d L is compl ormd vcors spcs (Bch spcs) rliv o. 4. chy-byovsy-schwrz Iqliy (s lso Thorm., p.57) (,g) g or ll,g L Proo:,g L, h cios, g d y comiio α β g r I lso igrl d hror log o L. osidr λ g L, λ R or which w hv

4 hpr 7 INTERAL EQUATIONS ( λ g ) d d λ g d λ g d Th righ hd sid is qdric cio o λ. Bcs his cio is ogiv, is discrim ( D 4c) is o-posiiv 4 gd 4 d g d g d d g d d cs (, g) gd g d (,g) g g d, rom which h climd iqliy yilds (,g) g 5. iowsi Iqliy (3 rd propry o h orm Trigl Iqliy ), (s Empl.7 o p.57) g g or ll,g L Proo: osidr g ( g, g) (, ) (, g) ( g, ) ( g, g) (, g) ( g, ) g g g rom -B iqliy ( g ) Th rcio o h sqr roo yilds h climd rsl. No h h iowsi iqliy rdcs o qliy oly i cios d g r ql p o h sclr mlipl, αg, α R (why?).

5 hpr 7 INTERAL EQUATIONS 7. Lir Oprors L d N wo compl ormd vcors spcs (Bch spcs, s h.) wih orms d, corrspodigly. W di opror L s N mp (cio) rom h vcor spc o h vcor spc N : L : N Irodc h ollowig diiios cocrig h oprors i h vcor spcs: Opror L : N is lir i L( α βg) αl βlg or ll, g d ll α, β R Opror L : N is coios i rom i ollows L L i N (h img o h covrg sqc i is covrg sqc i N ) Opror L : N is odd i hr iss c > sch h L c or ll N Th orm o opror o sch cos c L : N c did s h grs lowr od L L sp N Thorm 7. I lir opror L : N is odd h i is coios Proo: L opror L : N odd, h ccordig o h diiio hr iss c > sch h L c. L N i. Th ms h lim. From h diiio o h limi i ollows h or y ε > hr iss N sch h < ε or ll ε. To prov h horm, show ow h lim L L N ε L L i N or h. W hv o show h or y Ε > hr iss K N sch h L L < Ε or ll K N Ε. Ε hoos ε, h c Ε L L L( ) c < c Ε or ll N N Ε c KΕ. c Rmr: I is lso r h i lir opror is coios h i is odd (prov s rcis). Thror, or lir oprors, propris coios d odd r qivl. Ε

6 hpr 7 INTERAL EQUATIONS Diiio Lir opror L: N sisis h Lipschiz codiio wih cos i L Lg g or ll,g Oviosly h i lir opror sisis h Lipschiz codiio (i is clld Lipschiz opror) h i is odd ( vcor g ) d, hror, i is coios. Diiio Lir opror L: N is corcio i i sisis h Lipschiz codiio wih cos <. disc w imgs coms smllr L S closd ss o Bch spc, S, d l L:S S opror. Diiio Solio o opror qio L is clld id poi o opror L. Diiio Sccssiv pproimios is sqc {,,,... } cosrcd i h ollowig wy: S is srig poi L L L Schmic vislizio o sccssiv pproimios:

7 hpr 7 INTERAL EQUATIONS Sccssiv pproimios c sd or solio o opror qio L For mpl, i his cs, h sccssiv pproimios covrg o h id poi: B hy do o lwys covrg o h id poi o opror qio. This mpl shows h v h choic o h srig poi clos o h id poi yilds h divrg sqc o sccssiv pproimios (pprly hy r o vry sccssiv ): Th ollowig horm slishs h sici codiio or covrgc o sccssiv pproimios o h id poi o opror qio.

8 hpr 7 INTERAL EQUATIONS Thorm (Bch Fid Poi Thorm, 9) Proo: L S o-mpy closd ss o Bch spc, S, S. Ad l L:S S corcio opror wih cos <. Th h sqc o sccssiv pproimios L, S covrgs o h iq id poi { } S, L or y srig poi S d h ollowig sim is vlid Usig mhmicl idcio, show h ( ) Vriy or Assm or : Show or : r Idd, Show h { } osidr L L diiio o s.. Lipschiz codiio ssmpio is chy sqc, i.. lim m,m m m Lm Lm L L (dd d src) Apply iowsi iqliy wic: m m Lm Lm L L m Lm m L Lipschiz codiio m Lm L m m m diiio o s.. qio ( ) m wh m,

9 hpr 7 INTERAL EQUATIONS Bcs vcor spc is compl, chy sqc { } covrgs o som pois), S. Ad cs S d s S is closd (iclds ll limiig. Thror i limi, qio o sccssiv pproimios L lim lim L lim covrgs o L Ad hror, S is id poi. L lim (Uiqss) L,g S wo id pois o opror L : L g Lg Th rom g L Lg g yilds ( ) g Bcs > g Th is possil oly i g Thror, g So h id poi is iq. Hgo Sihs, h collg d rid o S Bch, ormld h id poi horm i h ollowig wy: hdghog co comd

10 hpr 7 INTERAL EQUATIONS 7.3 Igrl Opror osidr opror clld igrl opror giv y h qio K K (, y) ( y) dy R Oviosly, h igrl opror is lir. Fcio (, y) rls K(, y) L ( ), hror K(, y) ddy < K is clld rl o h igrl opror. W will cosidr I cs o R, h domi (,), whr, c ii or iii. Thorm 7. L K h igrl opror wih rl K (, y) coios i [,] [,]. Th opror K is odd, d, hror, coios. orovr: ) K : L (,) [,] K or L (,) ) K : L (,) L (,) K ( ) or L (,) 3) K : [,] [,] K ( ) or [,] Proo: Sic K(, y) is coios i h closd domi [,] [,] > sch h m K(, y).,y [, ] ) L L (,). Th cs cio (, y) [,] [,], h cio ( K ) is coios i [,] K : L (,) [,]. osidr, hr iss K is coios i, d, hror K diiio o orm i [, ] m K [,] m K, y y dy [,] diiio o igrl opror ( ) ir prodc i L (, ) m K, y, y [,] m K chy-byowsi iqliy [,] m K (, y) dy [, ] diiio o orm i L (, ) m dy [, ] rplc y m K,y [, ] (, y) clclig dii igrl

11 hpr 7 INTERAL EQUATIONS ) K (( K ),( K ) ) diiio o orm i L (, ) ( K ) d ir prodc i L (, ) K(, y) ( y) dy d diiio o igrl opror K d chy-byowsi iqliy K(, y) dy d corig dy d rplc y m K,y [, ] (, y) dy d clclig dii igrl ( ) 3) K diiio o orm i [, ] m K [,] m K, y y dy [,] diiio o igrl opror m K, y y dy [ ], m y dy [ ] rplc y, m K,y [, ] (, y) y dy dos o dpd o m y dy y [,] dy diiio o orm i [, ] dy ( ) clclig dii igrl

12 hpr 7 INTERAL EQUATIONS 7.4 Igrl Eqios Igrl qios r qios i which h ow cio is dr h, igrl sig. Th ypicl igrl qios or ow cio (i his chpr, w cosidr (,) i h orm o igrl opror wih h rl K (, y) K K,y y dy ) icld igrl rm Th mi yps o igrl qios r h ollowig: I Frdholm igrl qio ) Frdholm s igrl qio o h s id: K,y y dy K o-homogos q K,y y dy K homogos q ) Frdholm s igrl qio o h d id: λ is prmr λ K,y y dy λ K o-homogos q λ K,y y dy λk homogos q II Volrr igrl qio ) Volrr s igrl qio o h s id: K (, y) ( y) dy ) Volrr s igrl qio o h d id: λ K(, y) ( y) dy No h Volrr s qios c viwd s spcil cs o Frdholm s qios wih K (, y) or < < y < (i is clld Volrr rl). y

13 hpr 7 INTERAL EQUATIONS III Igro-Diril Eqio iclds ow cio dr h igrl sig d lso y driviv o h ow cio. For mpl: d K(, y) ( y) dy d A impor rprsio o h igro-diril qio is Rdiiv Trsr Eqio dscriig rgy rspor i h sorig, miig d scrig mdi (logos qios ppr i h hory o ro rspor). Solio o igrl qio is y cio sisyig his qio: λ K o-homogos qio λk homogos qio Th vl o h prmr λ or which h homogos igrl qio hs o-rivil solio L which is clld igvl o h rl K (, y), d h corrspodig solio is clld igcio o his rl. Eigvl prolm W will disigish igvl prolms or h igrl rl (igrl qio): λk d or h igrl opror K λ Th igvls o h igrl opror r rcipicl o igvls o h igrl rl, d igcios r h sm i oh css. Eisc o h solio o Frdholm s igrl qio osidr Frdholm s igrl qio o h d id: λ K ( ) wih odd igrl opror K which lso sisis h Lipschiz codiio: K K, Rwri igrl qio i h orm T ( ) whr opror T is did y T λk No h opror T is o lir. Oviosly, i is id poi o opror qio ( ), h is solio o igrl qio ( ). osidr T T λk λk λk λk ( ) λ K λ I λ <, h opror T is corcio d ccordig o Bch id poi horm, hr is iq id poi o qio ( ). This iq id poi is lso solio o Frdholm s qio ( ). Thror, h ollowig coclsio c md: Frdholm s igrl qio o h d id wih odd rl hs iq solio or sicily smll λ, i c λ <.

14 hpr 7 INTERAL EQUATIONS 7.5 Solio hods or Igrl Eqios. Th hod o Sccssiv Approimios or Frdholm s Igrl Eqio For h igrl qio λ K h ollowig irios o h mhod o sccssiv pproimios r s y: K λ,,... Lmm 7. λ K whr K K( K( K )) ims Proo y mhmicl idcio (ssm h h orml or is r): K λ coirmd K λ y diiio K λ λ K y ssmpio λ K liriy p p λ K chg o id p p λ K p λ K p p p p λ K p λ K chg o id p Nm Sris K λ is clld o h Nm Sris Esimio o irios K K K ( ) K Thorm 7. (3) ( ) K ( )

15 hpr 7 INTERAL EQUATIONS λ K λ K chy-byovsy iqliy ( ) λ Thorm 7. 3) [ ( ) ] λ gomric sris λ ( ) covrgs i λ < ( ) Thror, h Nm sris λ K covrgs or Do h sm o h Nm sris s cio : λ <. ( ) λ K Show h his cio sisis h igrl qio irios λ K h lim λ K lim (, y) lim ( y) dy λ K λ K (, y) ( y) dy Ad, rcllig simio, λ ( ) λ K. osidr show h his solio is iq. For h, i is ogh o show h h homogos qio λk hs oly rivil solio. Idd, i λ, d, ccordig o Thorm 6. 3),, h [ ] λ ( ) ( ) K [ λ ], h [ ] > Bcs λ <, ( ) ( ) yilds, h or ll [,] homogos qio. λ d, hror,. Th. So, oly h rivil solio iss or h Th o-homogos qio λk c rwri i h orm ( I λ K ) whr I is idiy opror Th solio o his qio c rd s ivrsio o h opror I λ K Thror, i λ <, h hr iss ivrs opror ( I K ) ( ) λ. Th ov miod rsls c ormld i h ollowig horm:

16 hpr 7 INTERAL EQUATIONS Thorm 7.3 Frdholm s igrl qio λ K wih λ < d coios rl (, y) ( ) iq solio [,] or y [,]. This solio is giv y covrg Nm sris d sisis I λ < ( I K ) λ. ( ) λ K λ ( ). K hs, h hr iss ivrs opror odiios o Thorm 7.3 r oly js sici codiios; i hs codiios r o sisid, solio o h igrl qio sill c iss d h Nm sris c covrg. Empl 7. Fid h solio o h igrl qio ( y) dy y h mhod o sccssiv pproimios d i h orm o h Nm sris. Idiy: K (, y) λ hc codiio: λ < < < ( ) ) irios: dy ( y) ( y) dy [ ] dy dy dy ( y) Th solio o h igrl qio is limi o irios lim lim This rsl c vlidd y dirc ssiio io h giv igrl qio.

17 hpr 7 INTERAL EQUATIONS ) Nm sris: λ K λ K λ K K dy K ( ) dy K Th h Nm sris is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) So, h Nm sris pproch prodcs h sm solio.

18 hpr 7 INTERAL EQUATIONS. Th hod o Sccssiv Ssiios or Frdholm s Igrl Eqio (h Rsolv hod) Ird rl L igrl opror K hs coios rl K (, y) Rpd opror K K( K ) ( K )K, h di:,3,... I hs rl K (, y) K(, y ) K ( y, y) dy Idd, ( K )( ) K,y K (,y ) ( K ) [ K( K )] y dy K (, y ) K( y, y) ( y) dy dy K (,y ) K ( y,y) dy ( y) dy K (,y) Krl K (, y) K(, y ) K ( y, y) dy K is clld ird rl. Krls (, y) (,), h K (, y) ( ) (, y ) K( y, y) dy K r coios, d i domi Rsolv Fcio did y h iii sris is clld rsolv. R (, y, λ ) λ K (, y) Thorm 7.4 Solio o igrl qio λk wih coios rl K (, y) is iq i [,] y [,] is giv y or λ R(, y, λ) ( y)dy i.. hr iss ivrs opror ( I λ K ) I λr, λ < ( ) λ < ( ), d or

19 hpr 7 INTERAL EQUATIONS Empl 7. Fid solio o igrl qio 3 y( y) dy 6 8 y h rsolv mhod. Idiy: K (, y) y 3 6 λ 8 hc codiio: Ird rls: (, y) K y λ < < < 8 ( ) 3 y y,y dy y y ydy y 3 K (, y) K (,y ) K y K,y K y,y dy y ydy 3 K 3 (, y) y 3 3 y 3 y 3 y 3 K (, y) y 3 Rsolv: R (, y,λ) λ K (, y) Solio: y y y y y y y 4 4 y 3 λ R(, y, λ) ( y)dy y 3 y dy y 3 ydy

20 hpr 7 INTERAL EQUATIONS 3. Th hod o Sccssiv Approimios or h Volrr Igrl Eqio o h d id osidr h Volrr igrl qio o h d id λ K (,y) ( y) dy whr K (, y) is coios rl, K (,y) ( [,] [,] ). Th mhod o sccssiv pproimio is did y h ollowig irios: λ K λ K Thorm 7.5 Th Volrr igrl qio o h d id λ K,y y dy wih coios rl (, y) K d wih y λ R hs iq solio [,] or y [,]. This solio is giv y iormly covrg Nm sris λ ( K ) d is orm sisis λ Empl 7.3 Fid solio o igrl qio ( y) dy y h mhod o sccssiv pproimios. Idiy: K (, y) λ K K K(, y)( K )( y)dy dy [ y ] K K(, y)( K )( y)dy ydy y K 3 y K(, y)( K )( y)dy dy K! Solio: ( K ) 3 y λ 3! 3 3

21 hpr 7 INTERAL EQUATIONS 7.6 ocio w igrl qios d iiil d odry vl prolms. Rdcio o IVP o h Volrr igrl qio Empl 7.4 Rdc IVP 3 o h Volrr igrl qio. Igr h diril qio rom o : y 3y y dy dy 3y dy s h iiil codiio 3 y y dy is Volrr qio wih K (,y) y 3 y y dy. Rdcio o h Volrr igrl qio o IVP Rcll h Liiz rl or diriio o prssios wih igrls: d g(, y) dy d I priclrly, g,y d d dy g, g, d d d d g ( y) dy g d g g(, y) (, y ) dy d dy g (, ) Rdcio o h Volrr igrl qio o IVP is prormd y cosciv diriio o h igrl qio wih rspc o vril d ssiio or sig o h iiil codiios. Empl 7.5 Rdc h Volrr igrl qio 3 ( y) ( y) iiil vl prolm. dy ssi o g iiil codiio 3 3 ( y) ( y) dy ( ) y y dy

22 hpr 7 INTERAL EQUATIONS 3 ( y) ( y) dy 3 ( y) ( y) dy 3 ( y) dy 3 ( y) dy 6 Thror, h igrl qio is rdcd o IVP or 3 rd ordr ODE: 6 3. Rdcio o BVP o h Frdholm igrl qio Rcll rpd igrio orml: d d d d d 3 ( ) ( )! Empl 7.6 Rdc h odry vl prolm y y, y y( ) o h Frdholm igrl qio. S y igr y () d () y d y igr [ y ( ) y ] d ( ) d d Us h irs odry codiio I his prssio, y y y d y y ( ) d d y y ( ) d rpd igrio y ( ) d y is o ow. Ssi d pply h scod odry codiio

23 hpr 7 INTERAL EQUATIONS d y y d y Solv or y d y Th y d d () ()d d Now ssi his prssio or y d y io h origil diril qio d d () () d d () ()d d d d d () () d d d () () ()d d d ()d d () ()d d I yilds Frdholm igrl qio K, d wih rl, K

24 hpr 7 INTERAL EQUATIONS 7.7 Erciss. Prov pr 3) o h Thorm 7... lssiy ch o h ollowig igrl qios s Frdholm or Volrr igrl qio, lir or o-lir, homogos or o-homogos, idiy h prmr λ d h rl K (,y ) : ) y( y )dy ) ( ) y ( y )dy c) y ( y)dy d) ( ) ) y ( y )dy dy 4 y ( y) 3. Rdc h ollowig igrl qio o iiil vl prolm ( ) y y dy 4. Fid h qivl Volrr igrl qio o h ollowig iiil vl prolm y y cos y y 5. Driv h qivl Frdholm igrl qio or h ollowig odry vl prolm (,) y y y y 6. Solv h ollowig igrl qios y sig h sccssiv pproimio mhod d h rsolv mhod: ) λ y y dy ) cos y dy 4 7. Solv h ollowig igrl qio y sig h sccssiv pproimios mhod ( ) y y dy

25 hpr 7 INTERAL EQUATIONS 8. Solv h ollowig igrl qios: ) ( ) si s si s ds s ) ( s) ds 9. Usig mhmicl idcio prov idiy or ird rl (7.5 ): K (, y) K(, y ) K ( y, y) dy. Usig mhmicl idcio vriy h ollowig sim or ird rls (7.5 ): K (, y) ( ). Vriy rsl o Empl 7.4 y solvig oh IVP d drivd igrl qio.

26 hpr 7 INTERAL EQUATIONS S Bch (89-945) Scoish é Lvov Th Scoish cé i Lvov (Uri) ws mig plc or my mhmicis icldig Bch, Sihs, Ulm, zr, Kc, Schdr, Kczmrz d ohrs. Prolms wr wri i oo p y h ldlord. A collcio o hs prolms pprd lr s h Scoish Boo. R D ldi, Th Scoish Boo, hmics rom h Scoish é (98) cois h prolms s wll s som solios d commris. Ivr Frdholm (866 97) Frdholm is s rmmrd or his wor o igrl qios d spcrl hory. Fid o mor : hp://www-hisory.mcs.s-drws.c./hisory/hmicis/frdholm.hml Vio Volrr (86-94) Volrr plishd pprs o pril diril qios, priclrly h qio o cylidricl wvs. His mos mos wor ws do o igrl qios. H plishd my pprs o wh is ow clld ' igrl qio o Volrr yp'. Fid o mor : hp://www-hisory.mcs.s-drws.c./hisory/hmicis/volrr.hml

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116 IESRT INTERNTIONL OURNL OF ENGINEERING SCIENCES & RESERCH TECHNOLOGY HYBRID FIED POINT THEOREM FOR NONLINER DIFFERENTIL EQUTIONS Sidhshwar Sagram Bllal*, Gash Babrwa Dapk * Dparm o Mahmaics, Daaad Scic

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Finite Fourier Transform

Finite Fourier Transform Chp Th gl Tsom Mhods.3 Fii Foi Tsom Novmb 6 7 755.3 Fii Foi Tsom.3. odcio - Fii gl Tsom 756 Tbl Fii Foi Tsom 76.3. H Eqio i h Fii y 76.3.3 Codcio d Advcio 768.3.4 H Eqio i h Sph 774.3.5 Empls plg low ov

More information

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No.

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No. Dpm o Mhmics Bi Isi o Tchoog Ms Rchi MA Advcd gg. Mhmics Sssio: 7---- MODUL IV Toi Sh No. --. Rdc h oowig i homogos dii qios io h Sm Liovi om: i. ii. iii. iv. Fid h ig-vs d ig-cios o h oowig Sm Liovi bod

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

On commutative and non-commutative quantum stochastic diffusion flows

On commutative and non-commutative quantum stochastic diffusion flows Jorl of Applid hmic & Bioiformic, vol.5, o.3, 5, 97- ISSN: 79-66 pri, 79-6939 oli Scipr Ld, 5 O commiv d o-commiv qm ochic diffio flow Pgioi N. Komo, Olivr R. Kik, Evgli S. Ahido 3 d Pioi K. Pvlko 4 Arc

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem iol ol o L choloy i Eii M & Alid Scic LEMAS Vol V Fy 8 SSN 78-54 hl S o Si-ii Al B: Dic Pol Viv Fl M. S. Wh d N. W. hod 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi M.S di 3 D o

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 1, July 2014

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 1, July 2014 7 hrl Srsss o Si Iii Rcglr B wih Irl H Sorc Schi Chhl; A. A. Nlr; S.H. Bg N. W. Khorg r o hics J ciol Cs R Ngr irsi Ngr Ii. Asrc- his r is cocr wih irs rsi hrolsic rol i which w o ri h rr isriio islc cio

More information

DETERMINATION OF THERMAL STRESSES OF A THREE DIMENSIONAL TRANSIENT THERMOELASTIC PROBLEM OF A SQUARE PLATE

DETERMINATION OF THERMAL STRESSES OF A THREE DIMENSIONAL TRANSIENT THERMOELASTIC PROBLEM OF A SQUARE PLATE DRMINAION OF HRMAL SRSSS OF A HR DIMNSIONAL RANSIN HRMOLASIC PROBLM OF A SQUAR PLA Wrs K. D Dpr o Mics Sr Sivji Co Rjr Mrsr Idi *Aor or Corrspodc ABSRAC prs ppr ds wi driio o prr disribio ow prr poi o

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional Mlil idd variabls March 9 Mlidisioal Parial Dirial Eaios arr aro Mchaical Egirig 5B iar i Egirig Aalsis March 9 Ovrviw Rviw las class haracrisics ad classiicaio o arial dirial aios Probls i or ha wo idd

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Bo/DiPima/Mad h d Ch.: High Od Lia ODEs: Gal Tho Elma Diffial Eqaios ad Boda Val Poblms h diio b William E. Bo Rihad C. DiPima ad Dog Mad 7 b Joh Wil & Sos I. A h od ODE has h gal fom d d P P P d d W assm

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 Approm Igro M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 7 L d Rg Edpo Ruls Rm sum ppromo o grl L dpo ppromo Rg dpo ppromo clculus ppls d * L d R d

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

NAME: SOLUTIONS EEE 203 HW 1

NAME: SOLUTIONS EEE 203 HW 1 NAME: SOLUIONS EEE W Problm. Cosir sigal os grap is so blo. Sc folloig sigals: -, -, R, r R os rflcio opraio a os sif la opraio b. - - R - Problm. Dscrib folloig sigals i rms of lmar fcios,,r, a comp a.

More information

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1 8 Sprg ME854 - Z Pg r Sym Rvw r Sym Rvw r Sym Rvw crpo of r Sym: p m R y R R y FT : & U Y Trfr Fco : y or : & : d y d r Sym Rvw orollbly d Obrvbly: fo 3.: FT dymc ym or h pr d o b corollbl f y l > d fl

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

CHAPTER 7. X and 2 = X

CHAPTER 7. X and 2 = X CHATR 7 Sco 7-7-. d r usd smors o. Th vrcs r d ; comr h S vrc hs cs / / S S Θ Θ Sc oh smors r usd mo o h vrcs would coclud h s h r smor wh h smllr vrc. 7-. [ ] Θ 7 7 7 7 7 7 [ ] Θ ] [ 7 6 Boh d r usd sms

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM Mmic A Vol. 2 22 o. 6 54-547 AN INTGRO-IRNTIAL QUATION O VOLTRRA TYP WITH UMUU TRANORM R Ji cool o Mmic d Allid cic Jiwji Uiviy Gwlio-474 Idi mil - ji3@dimil.com i ig pm o Applid Mmic Ii o Tcology d Mgm

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

Axe Wo. Blood Circle Just like with using knives, when we are using an axe we have to keep an area around us clear. Axe Safety Check list:

Axe Wo. Blood Circle Just like with using knives, when we are using an axe we have to keep an area around us clear. Axe Safety Check list: k Ax W ls i ms im s i sfly. f w is T x, ls lk g sci Bld Cicl Js lik wi sig kivs, w w sig x w v k d s cl. Wi xs; cl (bld cicl) is s lg f y m ls lg f x ll d s d bv s. T c b bcs, wigs, scs, c. isid y bld

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Numerical Solution of a non-linear Volterra Integrodifferential Equation via Runge-Kutta-Verner Method

Numerical Solution of a non-linear Volterra Integrodifferential Equation via Runge-Kutta-Verner Method Iriol Jorl of Siifi Rsrh Pliios Volm 3 Iss 9 Spmr 3 ISSN -33 Nmril Solio of o-lir Volrr Igroiffril Eqio vi Rg-K-Vrr Mho Ali Filiz * * Dprm of Mhmis A Mrs Uivrsiy 9 AYDIN-TURKEY Asr- I his ppr highr-orr

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

1. Introduction. ) only ( See theorem

1. Introduction. ) only ( See theorem O Sovbiiy or Higher Order Prboic Eqios Mrí López Mores Deprme o Comper Sciece Moerrey Isie o echoogy Meico Ciy Cmps Ce de PeeNo Ejidos de HipcopCP438 Meico DF MEXICO Absrc: - We cosider he Cchy probem

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

counting statistics in thermal transport in nanojunctions

counting statistics in thermal transport in nanojunctions rs bhvor d fll cog sscs hrml rspor ojcos J-Shg Wg Dp PhysNUS Ol of h lk rodco Mhod of oqlbrm r s fcos Applcos hrml crrs D ch d obs rs problm Fll cog sscs MS workshop Forr s lw for h codco J [ ] f f d Forr

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

MAT244H1a.doc. A differential equation is an equation involving some hypothetical function and its derivatives.

MAT244H1a.doc. A differential equation is an equation involving some hypothetical function and its derivatives. MATHdo Iodio INTRODUCTION TO DIFFERENTIAL EQUATIONS A diffil qio is qio ivolvig som hpohil fio d is divivs Empl is diffil qio As sh, h diffil qio is dsipio of som fio (iss o o A solio o diffil qio is fio

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

DIFFERENCE EQUATIONS

DIFFERENCE EQUATIONS DIFFERECE EQUATIOS Lier Cos-Coeffiie Differee Eqios Differee Eqios I disree-ime ssems, esseil feres of ip d op sigls pper ol speifi iss of ime, d he m o e defied ewee disree ime seps or he m e os. These

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Solving Wave and Diffusion Equations on Cantor Sets

Solving Wave and Diffusion Equations on Cantor Sets Proceedigs o he Pkis Acdemy o Scieces 5 : 8 87 5 Copyrigh Pkis Acdemy o Scieces ISSN: 77-969 pri 6-448 olie Pkis Acdemy o Scieces Reserch Aricle Solvig Wve d Disio qios o Cor Ses Jmshd Ahmd * d Syed Tsee

More information