Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Size: px
Start display at page:

Download "Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University"

Transcription

1 Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Igrl Trorm Iroducio I igrl o h orm b ( ) ( ) K( α, )d g α g(α) i clld h (igrl) rorm o () by h Krl* K(α,). Th ur o h krl di h yp o h rorm. Th vribl α d r clld cojug vribl. For mpl: rqucy d im r cojug vribl. I i lo h c o wvvcor d poiio (k d ) * Grm word or uclu Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Ivr Trorm Th ivr rorm i did by: ( ) ( ) ( ) α b g α K α, d Th imporc o h igrl rorm ppr by lookig crully quio d. Som problm r diicul o olv i hir origil rprio or i hir domi. Th id i o mp h problm i ohr domi, olvig i i h w domi d h by chooig h ppropri domi d uig h ivr rorm h oluio i h origil domi i mppd bck! Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5 Ivr Trorm Th procdur i ummrizd chmiclly i Fig. -: Figur -: Schmic igrl rorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

2 Fourir Alyi Fourir Sri d Igrl Th prcuror o h rorm wr h Fourir ri o pr ucio i ii irvl. r h Fourir rorm w dvlopd o rmov h rquirm o ii irvl. Fourir ri r bic ool or olvig ordiry diril quio (ODE) d pril diril quio (PDE) wih priodic boudry codiio. Fourir igrl or opriodic phom r dvlopd i hi chpr. Th commo m or h ild i Fourir lyi. Appdi -: Fourir Sri Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 8 Domi o Applicio Th Fourir rorm i o udml imporc i brod rg o pplicio, icludig boh ordiry d pril diril quio, probbiliy, quum mchic, wv, dircio d irromry, igl d img procig, d corol hory, c... Fourir Trorm Th ppropri krl i imply iω d i rl pr (co ω) or i imgiry pr (iω). Bcu h krl r h ucio ud o dcrib wv, Fourir rorm ppr rquly i udi o wv d h rcio o iormio rom wv, priculrly wh ph iormio i ivolvd (dircio or mpl). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Domi o Applicio Empl I opic, h dircio pr i h Fourir rorm o h "obcl" rpoibl o "dircig" h wv. Th Fruhor dircio pr i h Fourir rorm o h mpliud lvig h dircig prur. I quum mchic h phyicl origi o h Fourir rorm i h duliy wv-mr, i.. h wv ur o mr d our dcripio o mr i rm o wv (Scio ). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Domi o Applicio Empl Th oupu o llr irromr, or ic, ivolv Fourir rorm o h brigh cro llr dik. Th lcro diribuio i om my b obid rom Fourir rorm o h mpliud o crd X ry. Elcro crig prim wr ud, bck i h ' o h l cury, i ordr o di h hp o uclu. Th dircio pr" i ud i ordr o di h "rucur" o h crig uclu. By uig ivr Fourir rorm. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

3 Domi o Applicio Empl I img procig, Fourir rorm i crucil ool. Th ipu i "pil" (rl) img which i dcompod io i i d coi compo. Th oupu o h rormio, i.. h rul o pplyig h Fourir rorm, i h img i h Fourir or rqucy domi. I h Fourir domi img, ch poi rpr priculr rqucy coid i h pil domi img. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Empl - FOURIER TRANSFORM OF GAUSSIAN Th Fourir rorm o Gui ucio i: g ( ) i ω ω d ( ) K ( α, ) I ordr o clcul () w compl h qur i h po ollow: i ω ω i ω Thi yild: ω i ω g ( ω) 5 d Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5 Empl - FOURIER TRANSFORM OF GAUSSIAN A impl chg o vribl (hi o origi), giv: g ( ω) ω p ( ω ) i ω d d ω ξ d which i Gui, bu i h (Fourir) ω pc. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm dξ Th biggr i, h i, h rrowr h origil Gui i ω ~. i, h widr i i Fourir rorm Shiig h Origi Thi i juiid by pplicio o Cuchy horm o h rcgl wih vric T, T, T iω, T iω or T, oig h h igrd h o igulrii i hi rgio d h h igrl ovr h id rom ±T o ±T iω bcom gligibl or T. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7 Ohr uul Krl Thr ohr uul krl ch givig ri o priculr rorm r Krl α J ( ) α α g g g ( α) ( ) α d ( α) ( ) J ( α ) ( α) ( ) α Trorm d d plc Trorm 7 Hkl Trorm 8 Mlli Trorm 9 8 Mlli d plc W hv Mlli rorm or -. g α ( α) d Γ( α) ( α )! plc rorm o i g α ( α) d α! 9 9 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

4 iriy ir Opror All h prviou igrl rorm (Fourir, plc, Hkl d Mlli) r lir d w c wri g ( α) ( ) A ivr opror i pcd o i uch h ( ) g( α) I grl, h drmiio o h ivr rorm i h mi problm i uig igrl rorm. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Ovrviw. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm - Dvlopm o h Fourir Igrl Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Fourir Sri & Fourir Igrl Fourir ri r uul i rprig cri ucio () ovr limid rg [, ], [,], d o o, or () or h iii irvl (,), i h ucio i priodic. Fourir rorm i grlizio o Fourir ri rprig opriodic ucio ovr h iii rg. Phyiclly hi m rolvig igl pul or wv pck io iuoidl wv. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Drivig Fourir Igrl W r rom h diiio o h coici o Fourir ri. For picwi rgulr ucio, () iyig h Dirichl codiio did i h irvl [-,], w c wri: ( ) co, d b, h Fourir coici r giv by: Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm b i ( ) co d, ( ) i d. b 5

5 Sp Th rulig Fourir ri i: ( ) ( ) d co ( ) i ( ) i d, Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm uig h rigoomric idiy: co α β coαcoβ i αi w hv: ( ) β co d 5- ( ) ( ) d ( ) co ( ) d 5- Sp Th p i o l pproch, rormig h irvl [-,] io [-,]. W lo di w vribl ω ω, ω, wih. Th w hv: or ( ) ω ( ) coω( ) d, ( ) dω ( ) coω( ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm d, 7 7 Fourir Igrl No h rm h vihd umig h ( ) d i. Eq. 7 i k h Fourir igrl, udr h ollowig codiio: ) () i picwi diribl ) () i picwi coiuou ) () i boluly igrbl, i.. i ii ( ) d 8 Fourir Igrl Epoil Form Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Fourir Igrl Thorm Eq. 7 c b wri : uig h c h: ( ) dω ( ) coω( ) d, ( ) dω ( ) iω( ) d i ω ( ) dω ( ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm bcu i ω(-) i odd ucio o ω. i ω d, Eq. i clld h Fourir igrl. 8 9 Th vribl ω Th vribl ω iroducd hr i rbirry mhmicl vribl. I my phyicl problm, howvr, i corrpod o h gulr rqucy ω. W my h irpr Eq. 8 or Eq. rprio o () i rm o diribuio o iiily log iuoidl wv ri o gulr rqucy ω,, i which hi rqucy i coiuou vribl. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5

6 Impor Applicio Drivio o Dirc Dl Fucio A Uul Rprio o δ Uig h Fourir igrl w c di Dirc dl ucio δ i ω ( ) ( ) i ω( ) dω dω Appdi - Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Ovrviw. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm - Fourir Trorm Ivr Thorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Uig h Epoil Trorm u di g(ω),, h Fourir rorm o h ucio (),, by g i ω ( ω) ( ) d. Epoil Trorm Th, rom Eq.,, w hv h ivr rlio, i ω dω. ( ) g( ω) Impor Rmrk Eq. d Eq. r lmo ymmricl, dirig i h ig o i. Th ymmry i mr o choic or covic. Thi cor i omim rplcd by i o quio d h ir cor ½ i h ohr. I phyic w r mor ird i h Fourir rorm (Eq.( d Eq. ) ) rhr h Eq. (Fourir igrl) 7 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

7 Th D Form - Phyic Movig h Fourir rorm pir (Fourir rorm d i ivr) o hr- dimiol pc, h pir bcom: g ( k ) ( ) i k r ( r ) d, r i k r ( r ) ( ). b ( ) g k d k Th igrl r ovr ll pc. Eq. b my b irprd pio o Erci: Vriy Eq. d Eq. b by ubiuig h (r) l-hd i id o o coiuum quio io o h igrd pl wv o h igucio; ohr quio d uig g(k) h h hr-dimiol bcom dl h mpliud ucio. o h wv p( - i k. r). 8 Fourir Coi d Si Trorm C o Ev d Odd Fucio I () i v h Eq. d Eq.,, rpcivly, c b wri : g c c ( ω) c( ) coω d, ( ) gc( ω) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm coω dω. I () i odd h Eq. d Eq.,, rpcivly, c b wri : g ( ω) ( ) iω d, ( ) g ( ω) iω dω. 5 7 Priy Th pir, Eq. d Eq. 5 r clld h Fourir coi rorm. Th ohr pir, Eq. d Eq. 7 r h i Fourir i rorm. Th Fourir coi rorm d h Fourir i rorm ch ivolv oly poiiv vlu (d zro) Th priy o () i ud o blih h rorm; bu oc h rorm r blihd, h bhvior o h ucio d g or giv rgum i irrlv. Th rorm quio impo dii priy: v or h Fourir coi rorm d odd or h Fourir i rorm. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Phyicl Mig I Eq. 7, () i big dcribd by coiuum o i wv. Th mpliud o iω i giv by ( ) g ( ω), i which g (ω) i h Fourir i rorm o (). ( ) g( ω) iω dω. I h ollowig mpl h impor pplicio o h Fourir rorm i h roluio o ii pul o iuoidl wv, i dild. Empl FINITE WAVE TRAIN Imgi h iii wv ri iω i clippd by Krr cll or urbl dy cll hur (Fig. -) o h w hv N iω, <, ω ( ) 8 N, >. ω I Fig. -, N, which rpr h umbr o cycl o h wv ri, i qul o 5. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7

8 Ampliud i h Fourir Spc Sigl-Sli Dircio Pr 5 () i odd, hu g N ω ( ω) i ω iω d. Igrig, w id h mpliud ucio: 9 Fig. - how h ir rm. g ( ω) i ( ω ω)( N ω ) ( ω ω) i ( ω ω)( N ω ) ( ω ω). Dpdc o g(ω) o rqucy. For lrg ω d ω ω, h ir rm will domi bcu o h domior (ω-ω ). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Thi i h mpliud curv or h igl-li dircio pr! Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm N v. Sprd i rqucy ( ω ω) For lrg N, g(ω) my lo b irprd Dirc Dl diribuio. Th coribuio ouid h crl mimum big mll i hi c, ω N c b k good mur o h prd i rqucy o our wv pul. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm ω Th lrgr N i, h mllr i h rqucy prd. For mll N, h prd i lrg d h codry mim bcom mor impor. Ucriy Pricipl I w r dlig wih m wv w hv E ħ ω E ħ ω E rpr ucriy i h rgy o our pul. Thr i lo ucriy i h im bcu our wv o N cycl rquir N/ω cod o p. N Tkig ω N ω N Th produc E ħ ω h h ω N ω Th Hibrg ucriy pricipl h: ħ h E, 5 which i clrly iid i hi mpl. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7 Ovrviw 8. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm Fourir Trorm o Driviv Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 8

9 Trorm o h Driviv Srig rom h diiio o h Fourir rorm or () d or d/d d ( ω) ( ) Igrig by pr: g ( ω) g i ω d d ( ) u dv i ω Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm ( ) d d v d i ω d. du i ω ( ) i ω 7 5 Diriio bcom muliplicio W hv g i ω d. g( ω) i ω ( ω) ( ) ( i ω) ( ) W u h c h, pr rom om c, () mu vih ± i ordr or h Fourir rorm o () o i. Th ir rm o h rh vih d w obi: g( ω) i ω g( ω). 9 i.. h rorm o h driviv i (iω)( im h rorm o h origil ucio. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 8 5 Trorm o h d Driviv Coidr Igrig by pr: g g ( ω) i ω ( ω) ( i ω) g ( ω) ( i ω) g( ω) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm d d ( ) i ω u du i ω d ( ) d ( ) dv v d d d ( ) ( ) i ω d ( ) i ω g ω i ω. d d d g ( ω) d i ω 5 Grlizio h Driviv Thi my rdily b grlizd o h h driviv o yild g ( ω) ( i ω) g( ω), providd ll h igrd pr vih ±. Thi i h powr o h Fourir rorm, h ro i i o uul i olvig (pril) diril quio. Th oprio o diriio h b rplcd by muliplicio i ω-pc. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5 A impor Empl H Flow PDE Fourir' w H Coducio I h rr, coducio i h rr o h rgy by microcopic diuio d colliio o pricl or qui-pricl wihi body du o mprur grdi. Th lw o h coducio, lo kow Fourir' lw, h h im r o h rr q hrough mril i proporiol o h giv grdi i h mprur (T) d o h r, righ gl o h grdi, hrough which h h i lowig. Th diril orm o Fourir' lw, i which w look h low r or lu o rgy loclly, i giv by q k T k i h hrml coduciviy (MKS ui W.m -.K - ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 55 9

10 H Equio I ordr o id h mprur ild ψ(,) (Tmprur i ) or giv ym, o h o olv h h quio (which c b drivd rom Fourir' lw) ψ(, ) ψ, i co clld h hrml diuiviy, lo kow Fourir co. i rld o h hrml coduciviy o mril o diy ρ by h impl rlio: k c P ρ whr c P i h h cpciy co prur. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5 Tmprur Fild Diig h Fourir rorm o ψ(,) i ω Ψ( ω, ) ψ(, ) d 5 Tkig h Fourir rorm o boh id o Eq. w g ( ) Ψ ω Th prviou quio i ODE or h Fourir rorm Ψ o ψ i h im vribl. Igrig w obi (,) ω lc l Ψ ω, ω Ψ ω (, ). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm or ω Ψ( ω, ) C 57 Th Igrio Co Th igrio co C my ill dpd o ω d, i grl, i drmid by iiil codiio. I c, CΨ(ω,) i h iiil pil diribuio o Ψ, o i i giv by h rorm (i ) o h iiil diribuio o ψ, mly, ψ(, ). Puig hi oluio bck io our ivr Fourir rorm, hi yild ψ (, ) C( ω) ω i ω dω. 7 Ψ( ω, ) 58 δ Fucio Iiil Tmprur Diribuio Tkig ψ(ω,) δ(ω,), C i ω-idpd. Igrig Eq. 7 by complig h qur w did i Empl (whr w clculd h Fourir rorm o Gui*), w g ψ ( ) p,, C *ψ(,) i h ivr Fourir rorm o C p (- ω ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Ovrviw. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm 5 - Covoluio Thorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

11 Covoluio - Diiio Covoluio i ud o olv diril quio, o ormliz momum wv ucio ( cio), d o ivig rr ucio. u coidr wo ucio () d g() wih Fourir rorm F() d G(),, rpcivly. W di h oprio * g Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm g( y) ( y) dy h covoluio o h wo ucio d g ovr h irvl (,).. Som uhor u h Grm word Flug (which m oldig) id o covoluio. 9 Covoluio - U Thi orm o igrl ppr i probbiliy hory i h drmiio o h probbiliy diy o wo rdom, idpd vribl Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Covoluio Grphicl Illurio ) y, (y) d For (y) d ( y) r plod i Fig. -.. Clrly, (y) d ( y) r mirror img o ch ohr i rlio o h vricl li y /, i..,, w could gr (y) by oldig ovr (y) o h li y /. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Bck o h Elcroic Alog Th oluio o Poio' quio (Chpr( Eq. 9), i.. ( ) ( ). ρ r ψ r dτ 5 ε r r c b wri ψ ( r ) ρ( r ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm ε r r τ. d ( ) g r ( r r ) which w my irpr h covoluio o chrg diribuio ρ( r ) d wighig ucio, ε r r 5 5 Fourir Trorm d Covoluio ' rorm Eq. by iroducig h Fourir rorm i ( ) ( ) ( ) ( ) ( y) g y y dy g y F F F( ) g( y) i y [ dy] G( ) ( ) G( ) i d * g d dy i d 5 Fourir Trorm d Covoluio For h pcil c, Eq. 5 giv F ( ) G( ) d ( y) g( y) dy Th miu ig i y ugg h modiicio b rid. W ow do hi wih g id o g uig dir chiqu. 5 7 Thi rul my b irprd ollow: Th Fourir ivr rorm o produc o Fourir rorm i h covoluio o h origil ucio, g. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

12 Prvl' Rlio Uiriy o Fourir Trorm Prvl' Rlio Eq. 5 d h corrpodig i d coi covoluio r o lbld Prvl rlio by logy wih Prvl horm or Fourir ri (Ark( Chpr 9- h, Chpr i h 7 h diio). Th Prvl' rlio F * * ( ω) G ( ω) dω ( ) g ( ) rl h produc o h ucio d g* o hir rpciv Fourir rorm (F( d G*) (i h rorm (Fourir) pc) d 5 9 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Drivio o h Prvl' Rlio Uig dl ucio rprio, w c wri * i ω * ( ) g ( ) d F ( ω) dω G ( ) Igrig ovr d uig δ w hv i ( ) ( ω ) i ( ω ω d ) i d d Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm * * ( ) g ( ) d F ( ω) G ( ) δ( ω) F * ( ω) G ( ω) dω, d d dω Spcil c () g() I h vry impor c whr () ) g(),, h igrl o boh id o Eq. 5 r ohig l bu ormlizio igrl. * * d F ω F ω dω 57 ( ) ( ) ( ) ( ) Thi impor rlio gur h i () i ormlizd i h "-pc",, h i Fourir rorm F(ω) (i h rorm (rqucy) pc) i ormlizd oo! Thi i wh w cll h uiriy o Fourir rorm which h lrg imporc i quum phyic. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7 7 Uiriy o Fourir Trorm I my b how h h Fourir rorm i uiry oprio (i h Hilbr pc, qur igrbl ucio). Th Prvl' rlio i rlcio o hi uiry propry. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Applicio I Fruhor dircio opic h dircio pr (mpliud) ppr h rorm o h ucio dcribig h prur. Wih iiy proporiol o h qur o h mpliud h Prvl rlio impli h h rgy pig hrough h prur m o b omwhr i h dircio pr m o h corvio o rgy. Prvl rlio my b dvlopd idpdly o h ivr Fourir rorm d h ud rigorouly o driv h ivr rorm. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7

13 Empl Sigl Sli Dircio A rcgulr pul i dcribd by, <, ( ), >. ) Th Fourir poil rorm i F ( ) ( ) i i i i d i i Thi i h igl-li dircio problm. Th li i dcribd by (). Th dircio pr mpliud i giv by h Fourir rorm F(). d 7 Empl Sigl Sli Dircio ) b) ) Nrrow li ucio o i d o high d b) i Fourir Trorm 77 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Empl Sigl Sli Dircio 78 Ovrviw 79 b) U Prvl' rlio o vlu i d ( ) F W lv hi clculio rci.. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm - Momum Rprio Cojug Vribl W I dvcd dymic d i quum mchic, lir momum d pil poiio r pir o vribl did i uch wy h hy bcom Fourir rorm dul o o ohr. Spil poiio d lir momum (or wvumbr pħk) ) r h EXAMPE o cojug vribl. Aohr pir i h im, rqucy pir. 8 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

14 Empl - Thrmodymic I hrmodymic mprur T d ropy S r cojug vribl. Prur (P) d volum (V) r lo cojug vribl. Th pir (T,S) or h pir (P,V) r ud o di ll h propri o hrmodymic ym uch h irl rgy. I c ll hrmodymic poil r prd i rm o cojug vribl. 8 Impor Coquc i Phyic Th duliy ld urlly o ucriy pricipl i phyic clld h Hibrg ucriy pricipl. 8 I iicl phyic, pir o iv d iiv propri o giv ym orm pir o cojug vribl Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Rl Spc I hi cio w hll r wih h uul pc diribuio d driv h corrpodig momum diribuio. For h o dimiol c our wv ucio ψ() h h ollowig propri: ) ψ * () ψ() d i h probbiliy o idig h quum ym bw d d. ) ψ() d i ormlizd (ol probbilii ) ) Th pcio vlu, i.. h vrg poiio o h pricl log h -i i * * P( ) d ψ ( ) ψ( ) d 58 ψ ( ) ψ( ) d 59 8 Momum Spc W w ucio g(p) h will giv h m iormio bou h momum: ) g * (p) g(p) dp i h probbiliy h h pricl h momum bw p d pdp. ) g(p) i ormlizd (ol probbilii ) ( p) g( p) dp. ) Th pcio vlu, momum o h pricl i * g g ( p) p g( p). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm * 85 i.. h vrg p d Momum (Fourir) Spc Such ucio i giv by Fourir rorm o h pc ucio ψ(), i.. i p ħ ( p) ψ( ) d, g g ħ Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm * i p ħ ( p) ψ ( ) d. * ħ Prvl' rlio gur h ormlizio o g(p) i ψ() i ormlizd. Th corrpodig D momum ucio i g ( p) ψ ħ ( ħ) ( r ) i r p d r. 8 Epcio Vlu Chckig propry () m howig h * * ħ d p g ( p) p g( p) d ψ ( ) ψ( ) d i d whr p i h momum opror i h pc rprio, W rplc h momum ucio by Fourir rormd pc ucio, d h ir igrl bcom i p * ħ p Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm p ( ) ħ ( ) ( ). ψ ψ dpd d 5 87

15 Epcio Vlu Uig h pl wv idiy i p( ) ħ d ħ ( ) i p ħ p, 7 d i Hr p i co, o opror. Subiuig io Eq. d igrig by pr, holdig d p co, w obi ( ) [ ] i p ħ ψ * ħ d p dp ( ) ψ( ) d d. ħ i d Hr w um ψ() vih ±, limiig h igrd pr. Uig h Dirc dl ucio, Eq. 8 rduc o Eq. 5 o vriy our momum rprio (qd( qd). Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 8 88 Ovrviw. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8. plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Fourir Trr Fucio 9 Ovrviw 9 Sl Rdig Ark h Ediio Scio 5.7, pg: 9-9 Ark 7h Ediio Scio.5, pg: 997- S boh cio.. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum Rprio 7. Trr Fucio 8.plc Trorm 9. plc Trorm o Driviv.Ohr Propri.Covoluio (Flug) Thorm.Ivr plc Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 8- plc Trorm Diiio Th plc rorm () or o ucio F() i did by ( ) { F ( ) } lim F ( ) d F ( ) d. Th igrl 9 F ( ) d, d o i! For ic, F() my divrg poilly or lrg.. Howvr, i hr i om co uch h F ( ) M, 7 9 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 5

16 Courmpl whr M i poiiv co or uicily lrg, >, h plc rorm (Eq.( ) ) will i or > ; F() i id o b o poil ordr. A courmpl, ( ) 9 do o iy h codiio giv by Eq. 7 d i o o poil ordr. do o i. F { } "Filur" i Th plc rorm my lo il o i bcu o uicily rog igulriy i h ucio F() ; ; h i, divrg h origi or.. Th plc rorm { } do o i or. d 7 95 Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm iriy Sic, or wo ucio F() d G(),, or which h igrl i { F ( ) bg( ) } { F ( ) } b { G( ) } 7 Th oprio dod by i lir. 9 Elmry Fucio Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Elmry Fucio 98 Sl Rdig Ark h Ediio pg: 95-9 Ark 7 h Ediio pg: 8- Ivr Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm

17 Diiio Th plc rorm o F() i (Eq.( 9) ( ) { F( ) } F ( ) d. Th ivr i, by diiio, F 7 ( ) { ( ) } ( ) d. Thi ivr rorm i o uiqu. Uiciy o - rch' Thorm Two ucio F () d F () my hv h m rorm, (). Howvr, i hi c F () F () N() whr N() i ull ucio, idicig h ( ) d, For ll poiiv. (rch' horm) I phyic, w d - hror w k N(). N 7 o b uiqu d Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Drmiio o - Svrl Mhod i: () A bl o rorm c b buil up d ud o crry ou h ivr rormio, cly bl o logrihm c b ud o look up ilogrihm, ) A grl chiqu or uig h clculu o ridu, (Ark i Scio 5. ), Pril Frcio Epio ) Numricl ivrio. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Uig Tbl Uilizio o bl o rorm (or ivr rorm) i cilid by pdig () i pril rcio. O, h plc rorm () occur i h orm o rcio g()/h(), whr g() d h() r polyomil wih o commo cor, g() big o lowr dgr h h(). I h cor o h() r ll lir d diic, h by h mhod o pril rcio w my wri ( ) c c c Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm whr h c i r idpd o. Th i r h roo o h(). 75 Pril Frcio Epio I y o o h roo, y,, i mulipl (occurrig m im), h () h h orm c, m, m, ( ) c i ci Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm Filly, i o o h cor i qudric, ( p q), h h umror, id o big impl co, will hv h orm (S Empl ) b c p q i

18 Empl Pril Frcio Epio ( ) k 78 ( k ) Th pril rcio mhod coi i wriig h prviou rcio h um o wo rcio. (No h dgr o h polyomil i h umror i h rh) c b ( ) 79 ( k ) Th lh i dvlopd d lik powr o r qud, i.. k c ( k ) ( b) 8 c, ; b ; c k k which giv, or, c, b d -, Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm. Empl Pril Frcio Epio W illy hv ( ) 8 ( ), k F() i obid by clculig h plc rorm o h wo rcio i h rh. W hv (S Ark, Elmry Fucio, pg 95-9). { } d { cok } 8 k d coquly: { ( ) } cok 8 ( k ) Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm 7 9- plc Trorm o Driviv 9 9- plc Trorm o Driviv Sl Rdig S ) cur by Dr. Rd Almomi ) Ark h Ediio Scio 5.9 pg: h Ediio Scio.8 pg: -8. Dr. Nidl M. Erhid - Mhmicl Phyic - Phy. - Chpr Igrl Trorm لقققةةةة الا لا لا لا خخخخييييررررةةةة cur اللللحححح Dr. Nidl M. Erhid 8

19 Chpr Igrl Trorm Appdi - Fourir Sri Iroducio Picwi rgulr ucio Diiio: A picwi rgulr ucio i ucio () which h ii umbr o dicoiuii d ii umbr o rm vlu ovr igl irvl. or }, { Empl: ( ) or Aohr Empl Th wooh ucio ( ) or < < or < < Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dirichl Codiio A picwi ucio () which i ) priodic o priod, b) igl vlud ovr h irvl [, ] d ( ) c) d i ii. i id o iy h Dirichl codiio Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Fourir Sri A picwi ucio () which vrii h Dirichl codiio c b prd i Fourir ri o i d coi, i.. co b i ( ) Whr,, d b coici. r clld h Fourir A Fourir ri i pio o priodic ucio () i rm o iii um o i d coi. Fourir ri mk u o h orhogoliy rliohip o h i d coi ucio. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

20 Orhogoliy Th ollowig igrl idii (or m,#): i co i ( m ) i( ) ( m ) co( ) ( m ) co ( ) d δ d δ d m m i ( m ) d co ( m ) δ m Krockr ymbol d rpr h orhogoliy rliohip o h i d coi ucio. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Hrmoic Alyi Compuio o Fourir Sri Th compuio d udy o Fourir ri i kow hrmoic lyi d i rmly uul wy o brk up rbirry priodic ucio io o impl rm h c b pluggd i, olvd idividully, d h rcombid o obi h oluio o h origil problm or pproimio o i o whvr ccurcy i dird or prcicl. Clculio o Fourir Coici Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Coici o Fourir Sri For hi purpo w igr boh id o h Fourir pio, i..: d d co d b i d ( ) Compuig Accordig o h orhogoliy rlio w hv: which giv: ( ) d ( ) Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri d Clculio o For hi purpo w ir muliply boh id o h Fourir pio by co m d igr ovr h priod [, ], i..: ( ) co m d co m d co m co d δ b co m i d m Accordig o h orhogoliy rlio w hv: ( ) co m d δ m m Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

21 Clculio o b Now w ir muliply boh id o h Fourir pio by im d igr ovr h priod [, ], i..: ( ) i md i md i m co d b i m i d δ m Accordig o h orhogoliy rlio w hv: ( ) i m d b δ bm m m Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Orhogoliy Th orhogoliy rlio or priodic ucio o h irvl [-, ] bcom: i co i ( m ) i( ) ( m ) co( ) ( m ) co( ) d d δ m δ m d i ( m ) d co( m ) δ m Krockr ymbol d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Coici o Fourir Sri Th FS coici r hu giv by h ollowig rlio: d ( ) co( ) d ( ) ( ) i( ) d,,,. No h w diiguih h coici o h co rm by wriig i i pcil orm i ordr o prrv ymmry wih h diiio o d b. b Covrgc o Fourir Sri A Fourir ri covrg o h ucio qul o h origil ucio poi o coiuiy or o h vrg o h wo limi poi o dicoiuiy) lim lim ( ) lim ( ) ( ) lim ( ) I ii h Dirichl codiio. or < < or, Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Fourir Sri or y priodic Fucio Grlizio For ucio () priodic o irvl [-, ] id o [-, ], impl chg o vribl c b ud o rorm h irvl o igrio rom [-, ] o [-, ]. d d ( ) co b i Thror ( ) d, ( ) co d, b ( ) i d. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8

22 Grl Form o Fourir Sri Uig h diiio o h coici, h Fourir ri i wri : ( ) ( u) du [ co ( u) i ( u) co udu] co udu Applicio Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Empl Empl: Fid h Fourir pio or h priodic ucio: - ( ) - - or or Soluio compu h Fourir coici d ( ) ( ) ( ) co( ) d or or d d co ( ) d ( ) i ( ) b d i ( ) d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Soluio W d o compu h igrl ( ) ( ) ( ) co d i i d u v v du u dv whr w ud h igrio by pr: u, dv co( ) d v co( ) d i ( ) i( ) i [ ] ( ) d [ co( ) co( ) ] ( ) Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Thu w hv: ( ) d ( ) I i v I i odd [ ] co Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

23 b Now w compu b, W procd or, i.. b i( ) d ( ) co ( ) co d u v v du u dv co co ( ) co( ) ( ) ( ) ( ) d Soluio Th Fourir ri or h ucio i ( ) ( ) or or [( ) ] ( ) co i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Aohr Empl Th wooh ucio or < < ( ) or < < - - Soluio compu h Fourir coici ( ) ( ) d ( ) d ( ) d ( ) co ( ) d b ( ) i( ) d or < < or < < ( ) co ( ) d ( ) co( ) ( ) i( ) d ( ) i( ) d d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Soluio W d o compu h ollowig igrl: co co ( ) d ( ) d ( ) i ( ) d co( ) ( ) ( ) i ( ) d co ( ) ( ) Soluio d h igrl co co ( ) d i( ) i( ) ( ( ) ) ( ) d i( ) i( ) ( ( ) ) d d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

24 Soluio d h igrl i ( ) d co( ) ( ) co d i co ( ) ( ) d co ( ) co( ) co ( ) d Uul Igrl co co i ( ) d ( ) d ( ) ( ) d ( ) ( ) i ( ) d ( ) ( ) co co i i ( ) d ( ) ( ) ( ) d ( ) ( ) d ( ) ( ) d ( ) Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri ( ) co ( ) d ( ) co( ) d ( ) co ( ) co co ( ) d co ( ) ( ) d ( ) co ( ) ( ( ) ) ( ) ( ) d d d b Now w compu b, W procd or, i.. b ( ) i( ) d ( ) i( ) d ( ) i( ) i i ( ) d i( ) ( ) d ( ) i( ) ( ) ( ) ( ) ( ) d ( ) d d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Th Sri Th Fourir ri or h ucio i ( ) ( ) or < < or < < ( ) i Eio o Compl Coici - Applicio Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5

25 Compl Form o Fourir Sri Uig h diiio: i i i ( ), co( ), i Subiuig i h diiio o Fourir ri co b i w g: i i ( ) i b i ( ) [ ] [ ] i i i [ ] i i b [ i b ] i Compl Form o Fourir Sri Th prviou quio i i b i ( ) [ ] [ ] i c b wri i h orm i [ ] i i b [ i b ] ( ) i Th limi - k io ccou h rm -i c i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Th Compl Coici For >, w hv c c i b c * i b c I ordr o id c w muliply boh id o h quio: i c by m i ( ) d igr ovr h irvl [, ], i.. i m i ( m ) ( ) d c c m ( ) d i m d c δm Som Propri d U o Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Covrgc Th problm, w hv, i o drmi h umbr o coici o hould clcul i ordr o g clo poibl o h hp o h priodic ucio (). Th r o covrgc o h ri giv id wh o op. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Covrgc - Propri - I h ucio () i dicoiuou, h om o h Fourir coici will vry /. Th covrgc i grl i low d my rm r dd o giv h hp o () S Empl. - I h ucio () i coiuou, h h Fourir coici vry /. Th covrgc i grl i d w rm r dd o giv h hp o (). S Empl. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

26 Igrio o Fourir Sri Igrio o Fourir Sri Coidr om priodic ucio () o priod l. Th Fourir ri i did by: ( ) co b i l l Igrig h prviou quio bw d giv: ( ) d co b i d l l i.. ( ) l bl d i co l l Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Igrio o Fourir Sri ( ) d ( ) l bl i co l l l b i i l l co co l l Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Applicio (), - < < Coidr h ucio () o priod. Compu h igrio o h Fourir ri o () ovr h limi d. ( ) d d ( ) ( ( ) ) l i i l l b co co l l b i co b i ( co ) Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Applicio (), - < < W c ily h, W hv: i.. which giv: i.. ( ) [ co ] b ( ) ( ) ( ) ( ) ( ) co co Diriio o Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7

27 Diriio o Fourir Sri Coidr om priodic ucio () o priod l. Th FS i did by: ( ) co b i l l Th driviv i, i pricipl, giv by: ( ) d d i Hr o hould b crul wh () i dicoiuou, ic h driviv i o did dicoiuii. l l b co l l Th driviv i lowly covrg Fourir ri i () i coiuou bcu ppr cor i h Fourir coici Chpr Igrl Trorm Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Empl Th Fourir ri or h ucio ( ) or or Fourir Sri or Dicoiuou Fucio i ( ) ( ) ] ( ) co [ i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Coici () i priodic o priod : i v ucio ( ) d d Coici co( ) d co( ) d co( ) d i( ) [ ] i( ) [ co( ) ] ( co( ) ) ( ) ) d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5

28 Coici b b i i ( ) ( ) ( ) [ co( ) ] co( ) [ co] d d d Coici b b b ( ) i d i( ) d odd Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 55 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 57 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri w 58 Th Fir Thr Trm ( ) [ co ] i ( ) [ co ] i i ( ) ( ) i ( ) co co i i i 9 ( ) ( ) co i 9 Fourh d Fih Trm ( ) co co i i i i 9 ( ) ( ) i 5 5( ) co co co 5 i i i i i ( ) ( ) co i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 59 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

29 ( ) i i co i co 9 i co 5 5 i 5 5 i 5( ) co co co 5 i i i i i ( ) ( ) 5 i 5 ( ) ( ) 9 8 i7 7 co 7 i8 8 co 9 i9 9 co i i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Soluio Th Fourir ri or h ucio Th Swooh Fucio i ( ) ( ) or < < or < < ( ) i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri Th Fir Trm ( ) i ( ) i i ( ) ( ) i ( ) i i i ( ) ( ) i Th Fir Trm 5 ( ) i i i i ( ) ( ) i 5 ( ) i i i i i ( ) ( ) i 5 5 ( ) ( ) i7 i8 i i i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 5 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

30 Fourir Sri or Coiuou Fucio Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Empl Th Fourir ri or h ucio ( ) or Fourir Sri or ( ) or - i ( ) ( ) co Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Th Fir Four Trm ( ) co ( ) co co ( ) ( ) co co co co 9 ( ) ( ) co 9 ( ) 9 ( ) ( ) co ( ) co co co co Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7

31 Ohr Trm ( ) ( ) co 5 co 8 co 9 co co 8 co Fourir Sri or h Trigulr Fucio ( ) or Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Empl Th Fourir ri or h ucio or i ( ) d ( ) ( ) ( ) () ( k ) (( k ) ) co Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 75 Coici () i priodic o priod : i v ucio ( ) d d d d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 7 Coici co( ) d co co ( ) ( ) co( ) d ( ) co( ) ( ) d [ i( ) ] i( ) d [ co( ) ] ( co( ) ) ( ) ) d d Coici b b b ( ) i d i( ) d odd Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 77 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 78

32 Empl 5 () Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 79 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Fourir Sri or ( ) or < < or < < Empl : Fourir Si Sri Th Fourir ri or h ucio or < < ( ) or < < () i ( ) odd i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Fourir Coici Th Fourir ri or h ucio l ( ) d b ( ) i d i d l odd odd co ( ( ) ) b odd v, ( ) co d l odd v ( ) odd i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Th Fir Trm i odd ( ) i i.7 5 ( ) ( ) i i ( ) i ( ) i i i 5 ( ) i 5 7 ( ) ( ) i Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8

33 Fourir Sri or h Squr Wv Squr Wv Th Fourir ri or h ucio h or ( ) h or i h ( ) i, odd Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 8 Coici d Th ucio h or < < ( ) h or < < i priodic o priod : ( ) d co d, ( ) Coici b b ( ) b h co h odd v i d ( ) i d h ( ) h [ ( ) ] i d Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 87 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 88 5 Th Fir Trm ( ) i ( ) i i ( ) ( ) i 5 5( ) i i i 5 5 5( ) ( ) i 5 5 ( ) i, odd Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9

34 Uul ik hp:// hp:// Chpr Igrl Trorm Appdi - Dirc Dl Fucio Drivio Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 9 Ivrig Fourir Igrl Th Fourir igrl horm giv i ω ( ) dω ( ) I h ordr i rvrd w my rwri i : i ω ( ) ( ) ( ). dω d Apprly h quiy i curly brck bhv dl ucio δ(). W migh k Eq. prig u wih rprio o h Dirc dl ucio. Alrivly, w k i clu o w drivio o h Fourir igrl horm. Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 95 i ω d, Drivig Fourir Trorm uig δ Shiig h igulriy rom o, w hv ( ) ( ) δ ( ) d, lim whr δ (-) i quc diig h diribuio δ (-). Eq. um h () i coiuou. W k δ (-) o b: i ( ) ( ) δ ( ) Phy. Chpr : Igrl Trorm Dr. Nidl M. Erhid - Appdi - Clculig Fourir Sri 9 i ω( ) dω, Subiuig Eq. io Eq., w hv: i ω ( ) lim ( ) ( ). dωd 5 Drivig Fourir Trorm uig δ Irchgig h ordr o igrio i Eq. 5 d kig h limi w rriv h Fourir igrl horm. dωd. i ω ( ) ( ) ( ) lim Th idiicio δ( ) i ω( ) dω provid vry uul rprio o h dl ucio. i ω ( ) dω ( ) i ω d 7 Chpr Igrl Trorm Appdi - Mlli Trorm Th Pl wv mpl Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 97

35 Mlli Trorm o ik ' clcul h Mlli rorm d how h α α i k i d α k α! W orc h igrl io rcbl orm by irig covrgc cor -b α i k b α ( b i k d ) d α α α ( b i k) d ( b i k) Γ( α ) whr w ud chg o vribl (b-ik) ( ) Soluio Tkig h limi b, w hv uig i k d Im co k d R d k α α i k α α ( α )!i α α i k α α α α i i α i k w g d i d k ( α )!co S Ark h Ediio - Erci 5.. pg 95 α α k ( α )! 5 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri 99 Dr. Nidl M. Erhid Phy. Chpr : Igrl Trorm - Appdi - Clculig Fourir Sri

36 Phyic Dprm, Yrmouk Uivriy, Irbid Jord Phy. Mhmicl Phyic Dr. Nidl M. Erhid Doc. APACE TRANSFORM ECTURE BY DR. RAID AMOMANI DEPARTMENT OF MATHEMATICS YARMOUK UNIVERSITY A) INTEGRA TRANSFORMS Th igrl rorm or y ucio ( ) c b wri whr ( ) β α { ( ) } F( ) K( ) ( ) T, d () K, i h krl (uclu) o h rormio. W lo di h ivr (igrl) rorm by: β α ( ) T { F( ) } K ( ) F( ), d () B) APACE TRANSFORM Wh h krl ( ) K,, α d β h h rorm (Eq. ) i clld h plc rorm (ymbol ) d w wri { ( ) } F( ) ( ) Applicio Elmry Fucio d () d > () { }, No h or < h krl which do o i (5)

37 ( ) d ( ), >. (7) i (8) { } { }. Th ivr plc rorm o Eq. 8 i -, >. (9) A priculr mpl { i } i d u dv i co d I ordr o compu h igrl o h lh o Eq. w igr by pr (wic) ollow i I i d d co u dv u dv co J co d i u dv Thi yild J u d dv J I I I I () d icidlly J co d ( ) Uig h diiio o h compl poil i i plc rormig i, w hv { co ii } liriy o h igrl rorm, w c wri { i } { co } i { i }. I () () () () co ii d. Thk o h (5) Combiig Eq. 8, Eq. d Eq. ld o h compl idiy: i i ()

38 C) APACE TRANSFORM OF DERIVATIVES clcul h plc rorm or h driviv y ( ); Igrio by pr; { y ( )} { y ( ) d. (7) u dv { y ( )} y( ) y( ) d { y( )} y( ) ow clcul h plc rorm or h cod driviv y ( ) Igrig, gi, by pr w hv ; (8) { y ( )} { y ( ) d. (9) u dv { y ( )} y ( ) y ( ) d { y ( )} y ( ) { y( )} y( ) y ( ). () W rwri h prviou quio (Eq. 7 d Eq. 9) bw h plc rorm o ucio d h o i driviv, uig h oio ( ) { y( )} Y, { y ( ) } Y( ) y ( ) { y ( )} Y( ) y( ) y ( ) Grlizio o h h driviv, y ( ) (igrio by pr i ud) d w hv (), i lmo righ orwrd { y ( )} Y( ) y( ) y( ) y ( ) y ( ). () W u h oio whr U d or u U { U (, ) } U (, ) d. () ( ) U,. { U (, ) } { U (, ) d U (, ) U (, ) dv ( ) U(, ). d ()

39 Th ucio i h ir rm o h rh dpd ow o o vribl oly. All h prviou rlio (Eq., Eq. d Eq. ) r il i h oluio o pril diril quio. Applicio: Th D H Equio Empl: Solv h quio U α U or < < d < <. Th boudry codiio or giv problm r: U (, ) BC U (,) BC Thi i h h low quio i D. U (, ) (5) Soluio: W w o id h mprur ild. For hi purpo w k h plc rorm o boh id o Eq. 5, i.. { U } α { } U ( ) U (,) ( ). W hv U d U α () d W rwri hi quio (uig h boudry codiio (BC)) d U d ( ) α U ( ) which i homogou cod-ordr ordiry diril quio. Th oluio i o h orm r r ( ) C C U (7) (8) Whr r d r r h roo o h uiliry quio D. α Hc U ( ) C α C α Th igrio co C mu b zro bcu o h diiio o h rg o h mprur ild, (h cod rm go o ). I ddiio h boudry codiio BC giv C d w hv d Eq. 9 c b wri ollow (9) C ()

40 U ( ) α () Th mprur ild i h ivr plc rorm o h prviou ucio. W hu hv U (, ) α. () No: Evidly, w c lo olv hi mpl uig Fourir rorm. D) FIRST TRANSATION THEOREM Th ir rlio horm i did { ( ) } F( ). () I i uul i plc oprio o orm rm h c b ir o rorm. Noio Th vribl my hv o b "ubiud" or om mipulio o. I hi c, vricl br i plcd r h plc oio wih wih rrow poiig o h mipulio o. For mpl, { ( ) } { ( ) } Th i, w olv plc rorm or ( ) ubiu -, io h rul or. Empl { i } ( ) ( ), h { } F( ). (). (b) { i } F( ) Empl: Solv h quio y y i ( ) giv h ( ) y (5) Soluio: Tkig h plc rorm, or boh id w g { y } { y} { i }, () Y y( ) Y ( ) Y 5 (7) 5

41 which giv ( ) ( )( ) 5 Y (8) uig h pril rcio w hv ( ) C B A Y (9) Equig h powr coici i h umror o h prviou wo quio w obi ( ) ( )( ) ( ) ( ) ( ) 5.,, 5 C A C B B A C B A () Solvig or A, B d C w hv.,, 8 C B A Filly w hv ( ). 8 Y () Coquly, h grl oluio o Eq. 5 i ( ) ( ) { } Y y i co () Ohr mpl ( ) { } ( ) ( ) ( ) ( ) y y y Y Y () { }! d E) USEFUNESS OF APACE TRANSFORM IN SOVING PDE S W c u i or olvig diril quio o h -ordr. Th u o plc rorm ld o h grl oluio, i.. hr i o d o id y priculr oluio whovr. Coquly, hr i o d o id h roo o chrcriic quio or h co or h grl oluio

42 7 F) INTEGRA EQUATIONS Empl: Solv h igrl quio ( ) ( ). τ τ τ d () Th igrl ( ) τ τ τ d I i h covoluio o ( ) τ d τ. Th chiqu i lwy h m. W k h plc rorm o boh id o h prviou quio d w g ( ) { } { } { } ( ) { } { } ( ) { } { } d τ τ τ τ (5) ( ) ( ) F F () Or ( ) ( ) F F (7) ( ) ( ) ( ) ( ) ( ) F (8) () i h ivr plc rorm o F(), i.. ( ) ( ) { } ( ) ( ) F (9) W d o clcul ( ). For hi w u h pril rcio mhod: ( ) ( ) B A B A (5) ( ) ( ) (5) Hc ( ) ] [ (5) Erci: Chck hi rul!

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam iol oul o L choloy i Eii M & Alid Scic LEMAS Volu V u Fbuy 8 SSN 78-54 v holic Pobl o Si-ii Cicul B Shlu D Bi M. S. Wbh d N. W. Khobd 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Available online at ScienceDirect. Physics Procedia 73 (2015 )

Available online at  ScienceDirect. Physics Procedia 73 (2015 ) Avilbl oli www.cicdi.co ScicDi Pic Procdi 73 (015 ) 69 73 4 riol Cofrc Pooic d forio Oic POO 015 8-30 Jur 015 Forl drivio of digil ig or odl K.A. Grbuk* iol Rrc Srov S Uivri 83 Arkk. Srov 41001 RuiR Fdrio

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 Approm Igro M lculus II Tcqus o Igros: Approm Igro -- pr 8.7 7 L d Rg Edpo Ruls Rm sum ppromo o grl L dpo ppromo Rg dpo ppromo clculus ppls d * L d R d

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2

ChemE Chemical Kinetics & Reactor Design - Spring 2019 Solution to Homework Assignment 2 ChE 39 - Chicl iics & Rcor Dsig - Sprig 9 Soluio o Howor ssig. Dvis progrssio of sps h icluds ll h spcis dd for ch rcio. L M C. CH C CH3 H C CH3 H C CH3H 4 Us h hrodyic o clcul h rgis of h vrious sgs of

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

ArXiv v1 [physics.plasm.ph] INTEGRAL EQUATION FOR SOURCE OF IONIZATION IN HOLLOW CATHODE

ArXiv v1 [physics.plasm.ph] INTEGRAL EQUATION FOR SOURCE OF IONIZATION IN HOLLOW CATHODE Ari9655 [phyiplph] UDC 53397 INTEGRAL EQUATION FOR SOURCE OF IONIZATION IN HOLLOW CATHODE ldiir Gori Nl Tr Shho Uiriy Rdiophyil Fuly Prop Gluho /5 3 Kyi Uri gori@uiiu Abr To iul h ilu o pdulu i hollow

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM Mmic A Vol. 2 22 o. 6 54-547 AN INTGRO-IRNTIAL QUATION O VOLTRRA TYP WITH UMUU TRANORM R Ji cool o Mmic d Allid cic Jiwji Uiviy Gwlio-474 Idi mil - ji3@dimil.com i ig pm o Applid Mmic Ii o Tcology d Mgm

More information

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1 8 Sprg ME854 - Z Pg r Sym Rvw r Sym Rvw r Sym Rvw crpo of r Sym: p m R y R R y FT : & U Y Trfr Fco : y or : & : d y d r Sym Rvw orollbly d Obrvbly: fo 3.: FT dymc ym or h pr d o b corollbl f y l > d fl

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Structural Hazard #1: Single Memory (1/2)! Structural Hazard #1: Single Memory (2/2)! Review! Pipelining is a BIG idea! Optimal Pipeline! !

Structural Hazard #1: Single Memory (1/2)! Structural Hazard #1: Single Memory (2/2)! Review! Pipelining is a BIG idea! Optimal Pipeline! ! S61 L21 PU ig: Pipliig (1)! i.c.bly.u/~c61c S61 : Mchi Sucu Lcu 21 PU ig: Pipliig 2010-07-27!!!uco Pul Pc! G GE FLL SESN KES NW! Foobll Su So ic ow o-l o icomig Fhm, f, Gu u (hʼ m!). h i o log xcu fo yo

More information

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs

More information

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem iol ol o L choloy i Eii M & Alid Scic LEMAS Vol V Fy 8 SSN 78-54 hl S o Si-ii Al B: Dic Pol Viv Fl M. S. Wh d N. W. hod 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi M.S di 3 D o

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm . Mhmicl ools which mk you lif much simpl.. Usful ppoimio fomul usig ul logihm I his chp, I ps svl mhmicl ools, which qui usful i dlig wih im-sis d. A im-sis is squc of vibls smpd by im. As mpl of ul l

More information

U1. Transient circuits response

U1. Transient circuits response U. Tr crcu rpo rcu ly, Grdo Irí d omucco uro 6-7 Phlp Sm phlp.m@uh. Dprmo d Torí d l Sñl y omucco Idx Rcll Gol d movo r dffrl quo Rcll Th homoou oluo d d ordr lr dffrl quo Exmpl of d ordr crcu Il codo

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

A Bessel polynomial framework to prove the RH

A Bessel polynomial framework to prove the RH A Bl poloil frwork o prov h RH Dr lu Bru Friburg i Br wwwri-hpohid Jur Abrc Th Gu-Wirr di fucio f : bl rprio of Ri duli quio i h for f d f d Th odifid Bl-Hkl fucio : rc Y / J J Y co d dd ih coh : coh r

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Opening. Monster Guard. Grades 1-3. Teacher s Guide

Opening. Monster Guard. Grades 1-3. Teacher s Guide Tcr Gi 2017 Amric R Cr PLEASE NOTE: S m cml Iiii ci f Mr Gr bfr y bgi i civiy, i rr gi cc Vlc riig mii. Oig Ifrm y r gig lr b vlc y f vlc r. Exli r r vlc ll vr rl, i Ui S, r, iclig Alk Hii, v m civ vlc.

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

CHAPTER 7. X and 2 = X

CHAPTER 7. X and 2 = X CHATR 7 Sco 7-7-. d r usd smors o. Th vrcs r d ; comr h S vrc hs cs / / S S Θ Θ Sc oh smors r usd mo o h vrcs would coclud h s h r smor wh h smllr vrc. 7-. [ ] Θ 7 7 7 7 7 7 [ ] Θ ] [ 7 6 Boh d r usd sms

More information

WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU MATHEMATICS. FORMULA BOOKLET (New Specification)

WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU MATHEMATICS. FORMULA BOOKLET (New Specification) WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU Gl Ciic o Eucio Avc Lvl/Avc Susii Tssgi Asg Giol So Uwch/Uwch Gol MATHEMATICS FORMULA BOOKLET Nw Spciicio Issu 004 Msuio Suc o sph 4π A o cuv suc

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage?

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage? Bu Mb Nx Gi Cud-f img, hwig Eh ufc i u c, hv b cd + Bhymy d Tpgphy fm y f mhy d. G d p, bw i xpd d ufc, bu i c, whi i w. Ocb 2004. Wh fm f w c yu idify Eh ufc? Why wud h c ufc hv high iiy i m, d w iiy

More information

Anti-sway Control Input for Overhead Traveling Crane Based on Natural Period

Anti-sway Control Input for Overhead Traveling Crane Based on Natural Period Mmoirs of h Fculy of Egirig, Kyushu Uivrsiy, Vol.67, No.4, Dcmbr 7 Ai-swy Corol Ipu for Ovrhd rvlig Cr Bsd o Nurl Priod by Pgfi GAO *, Mooji YAMAMOO ** d Yoshiki HAYASHI * Rcivd Novmbr 5, 7 Absrc For sf

More information

Multipath Interference Characterization in Wireless Communication Systems

Multipath Interference Characterization in Wireless Communication Systems Muliph Inrfrnc Chrcrizion in Wirl Communicion Sym Michl ic BYU Wirl Communicion Lb 9/9/ BYU Wirl Communicion 66 Muliph Propgion Mulipl ph bwn rnmir nd rcivr Conruciv/druciv inrfrnc Drmic chng in rcivd

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

SHINGLETON FOREST AREA Stand Level Information Compartment: 44 Entry Year: 2009

SHINGLETON FOREST AREA Stand Level Information Compartment: 44 Entry Year: 2009 iz y U oy- kg g vg. To. i Ix Mg * "Compm Pk Gloy of Tm" oum lik o wb i fo fuh ipio o fiiio. Coiio ilv. Cii M? Mho Cu Tm. Pio v Pioiy Culul N 1 5 3 13 60 7 50 42 blk pu-wmp ol gowh N 20-29 y (poil o ul)

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information