Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Size: px
Start display at page:

Download "Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform"

Transcription

1 Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih o /. h Fourir ri i wri or a priodic ucio wih priod, ad dicr rqucy compo ar obaid or h wavorm. W aw ha h udamal rqucy ω o i rlad o h priod by h xprio ω o π/. Now coidr h ollowig wavorm. () (a) () (b) () (c) Figur Priod o rpiio gradually icrad I igur (a), h priod o rpiio i qui mall ad i (b) omwha largr. Wavorm (c) could b coidrd a o whr h priod o rpiio ha b icrad up o iiiy. hu ay o-rpiiv wavorm may b coidrd a o which ha a priod, ad π h corrpodig udamal rqucy ω o ω. I i alo ha h Fourir coici C i h ymmrical xpoial ri C ( ) j ω o d C hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

2 h rquci ivolvd ar o logr dicr bu coiuou, o ha h gral rqucy ω o corrpod o Σ ω dω ω. hu or o-rpiiv ucio, h ollowig ca b wri. ω o dω C dc ω o ω ω d ω o π π hu h xprio or h complx Fourir Coici C bcom dc dω jω ( ).. d π dividig boh id by dω, hi may b wri a dc F( ω ) Diiio o h Fourir raorm jω ( ).. d dω π h origial ucio () i ow giv a jωo jω ( ) C dc. rom h diiio, dc F(ω).dω, o ha j ω ω ) F( ).. dω ( Fourir Ivr raorm h Fourir raorm xprio ad h Fourir Ivr raorm xprio oghr ar kow a h Fourir raorm Pair. I w muliply h Fourir raorm by a coa ad divid h Ivr raorm alo by h am coa, w would agai g a modiid raorm pair. I w xami h wo raorm xprio, w ha hy look vry imilar xcp ha hr i a dirc o a gaiv ig i h xpo ad a muliplyig acor o π. hu w could di a ymmrical raorm pair by uig a acor o I hi ca h Symmric Fourir raorm i did a dc jω F ( ω ) π ( ).. d dω π ad h corrpodig Symmric Ivr raorm i did a j ω ω ( ) F ( ).. dω π π. h Fourir raorm i uul i aalyig rai i lcrical circui, pcially whr h lm ar rqucy dpda. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

3 Fourir Coiraorm A Fourir Coi raorm F (ω) may b did wh h o-rpiiv wavorm i v. () (-) o ha F ( ω ) ( ). coω d, ad π ( ) F ( ω). coω dω Fourir Siraorm A Fourir Si raorm F (ω) may b did wh h o-rpiiv wavorm i odd. () (-) o ha F ( ω ) ( ). iω d, ad π ( ) F ( ω). iω dω h Fourir raorm i omim xprd i rm o h um o a i ad coi ri, iad o h xpoial ri. whr [ A( ω).coω B( ω).iω ] ( ) dω A( ω) ( ). coω d, ad π B( ω) ( ). iω d π Wih ucio which ar o-rpiiv, ad do o dcay ill iii im (uch a h i wavorm or h coi wavorm), h Fourir Igral raorm may o b obaid. o avoid hi problm, wavorm which do o dcay may b ariicially dcayd by a xpoial acor o allow h igraio. h igrad rul i h xpoially magiid o corrc or h iiial dcay iroducd. Howvr, uch xpoial magiicaio ca alo magiy umrical rror. h Laplac raorm i did bad o hi ariicial dcay. Laplac raorm I obaiig h Laplac raorm, ay ucio () i iiially dcayd ariicially by a xpoial acor -σ, o ha h w ucio alway bcom igrabl. Howvr, h dcay would corrpod o a xpoial ri (rahr ha a dcay) wih gaiv im. h Laplac raorm i hu did oly or caual ucio (ucio ha ar caud ad hc ar o zro valu bor im zro). h Laplac raorm o a im ucio () i hu did a / [()] F() ( ) d whr σ j ω i h Laplac opraor hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 3

4 h Laplac opraor i alo coidrd a a complx rqucy. I w compar wih h Fourir raorm pair wih a muliplir o π, h h Laplac Ivr raorm ak h orm () π j σ j σ j F( ) d I i ha h orm o h raorm ha impliid rom ha o h Fourir raorm. Howvr, i i vry rarly ha h Ivr raorm i calculad i hi mar. I i grally obaid rom a kowldg o h raorm o commo ucio, grally oud i abulad orm. h Laplac raorm i vry uul i circui rai aalyi a i ca covr dirial quaio o liar algbraic quaio. po o a liar Paiv Bilaral Nwork Coidr a liar paiv bilaral wo-por work o which a xciaio () i giv a o por ad which cau om rpo r() a h ohr por. () Liar Paiv bilaral Nwork r() Figur rar Fucio I gral, h rpo r() would b rlad o h ipu () by a ordiary liar dirial quaio. r() F(p). () whr p d/d dirial opraor Coidr a xpoial xciaio ucio. i.. () r() F(p).. F() hu or a xpoial xciaio, h ym ha a rar ucio r()/() qual o F(). A ad arlir, ay o-rpiiv (or v rpiiv) ucio may b brok up io a ri o xpoial. h coici o h xpoial ar giv by h Laplac raorm. hu or ay ohr xciaio (), i h Laplac raorm () i coidrd, i will b rlad o h Laplac raorm () o h rpo r() by h rar ucio F(). hu or ay caual xciaio (), () F(). () O o h advaag o h Laplac raorm i ha i covr ordiary dirial quaio i o algbraic quaio, o ha h oluio i airly impl. h ivr raorm i h obaid o g h im rpo. L u ow coidr h Laplac raorm o om pcial caual ucio. Laplac raorm o Spcial Caual Fucio (a) Ui impul ucio δ() δ() h ui impul ha a valu a all valu o ohr ha a whr i ha a iii magiud. Alo h igral o h ui impul ucio ovr im i qual o. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 4

5 / [δ()] δ ( ) d I h ui impul occur a i, rahr ha a, h h ucio i δ ( i ). / [δ( i )] δ ( - i ) d (b) Ui p ucio H() h ui p ha a valu or valu o < ad a valu o or >. / [H()] H ( ) d d I h ui p occur a i, rahr ha a, h h ucio i H( i ). / [H( i )] i H ( - i ) d (c) Caual xpoial ucio a. H() / [ a.h()] a. H ( ) d (d) Caual Siuoidal ucio i(ω φ).h() / [i(ωφ).h()] F() i( ω φ ). i( ω φ ). i d d ( a) i( ω φ ). H ( ) d F( ) d ω co( ω φ) d i a iφ ω ω co( ω φ) i( ω φ) d iφ ω ω coφ F( ) ( ω ). F(). i φ ω. co φ δ(- i ) i H() H(- i ) i a.h().iφ ω.coφ F ( ) wih φ o ad 9 o h ollowig ar obaid. ω ω ω / [i ω.h()], / [co ω.h()] ω hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 5

6 d ( ) () Laplac raorm o h caual drivaiv d d ( ) d / d d ( ) d d ( ) ( ).( ).. ( ) d () ( - ). d ( ) d /. F( ) ( ) ( ).. d I i worh oig ha ulik i h ca o h ordiary drivaiv, h raorm o h drivaiv alo kp iormaio abou h iiial codiio [i.. ( - )] () A xpoial muliplicaio o a i h im domai A xpoial muliplicaio o a i h im domai corrpod o a hi o a i h -domai. /[ a. ()] a ( a) ( ).. d ( ) ( ).. d F(-a) (g) A hi i h im domai A hi i a h im domai ( a).h( a), corrpod o a xpoial dcay i h -domai. /[(-a).h(-a)] ( a). H ( a).. d a ( a) ( a). H ( a).. d( a) a a a ( τ ). τ. dτ a ( τ ). τ. dτ -a. F() (h) For a priodic wavorm () wih priod ic (τ) or τ <. /[()] ( ).. d ( ).. d ( ).. d ( ).. d uig a chag o variabl, hi may b r-wri a ollow 3 /[()] ). (. d ( ).. d ( ).. d hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 6

7 Sic h ucio i priodic, () () ().. /[()] ( ).. d ( ).. d ( ).. d [ ] ( ).. d /[()] ( ).. d h raorm o ohr caual ucio may b imilarly obaid, ad h abl giv h Laplac raorm or h commo ucio. δ() ui impul H() ui p ramp -a xpoial dcay a a - -a ( a) ( a). -a -a - -b doubl xpoial b a ( a)( b) i ω i wav ω hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 7

8 ω coφ iφ i (ω φ) ω co ω coi wav ω rcagular pul h! ordr ramp ( > ) a ih a hyprbolic i a coh a hyprbolic coi a a. () b. () addiio a.f () b.f () d ( ) d ir drivaiv F() ( - ) d ( ) d h drivaiv F() j j j d d ( ) ( ) d dii igral F( ).() (-).() d F( ) d d F( ) d -α.() xpoial muliplir F(α) (-τ) hi -τ.f() priodic ucio (priod ) ( ( ).. ) d hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 8

9 rai Aalyi o Circui uig h Laplac raorm lcrical Circui ar uually govrd by liar dirial quaio. Sic drivaiv ad igral g covrd o muliplicaio ad diviio i h -domai, h oluio o circui quaio ca b covrd o h oluio o algbraic quaio. L u ir coidr h rpraio o h hr baic circui compo i Laplac raorm aalyi. (a) iiv lm i() I() I() v() V() V() v(). i() V(). I() i ( ) v( ) I ( ) V ( ) hu h rior may b rprd by a impdac o valu v i h -domai. (b) Iduciv lm L i() L I() L L. i( - ) V() I() L v() d i( ) v() L. d V() V() L. I() L.i( - ) i( ) i ( ) v( ). d i( ) I ( ). V ( ) L L hu h iducor may b rprd by a impdac o valu L ad ihr a ri volag ourc or a paralll curr ourc. h ourc rpr h iiial rgy ord i h iducor a im. I i o b od ha h iiial curr i( - ) appar i boh orm o h quaio ad ha o orm ca b obaid algbraically rom h ohr, wihou rorig o ay addiioal iormaio. (c) Capaciiv lm L v ( ) V() i() C I() C I() C i( v() v ( ) i( ). d v( C d v( ) i() C. d ) V() v( ) V ( ). I( ) C C. v( - ) I() C. I() C.v( - ) hu h capacior may b rprd by a impdac o valu ad ihr a ri C volag ourc or a paralll curr ourc. A wih h iducor h ourc rpr h iiial rgy ord i h capacior a im. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 9

10 I addiio o Ohm Law ad Kircho law, Suprpoiio, hvi ad Noro horm may alo b applid o h raormd circui i h -domai. Uig h circui, ad h raorm o ourc volag ad/or curr, h ym rai could b obaid. You would by ow hav ralid ha hi mhod i much l diou ha h oluio o h dirial quaio o id h rai oluio ad h ubiuig h iiial ad ial codiio applicabl. xampl Fid h Laplac raorm o h ollowig wavorm. (a) (b) () () / Soluio (a) uig ir pricipl / [()] ( ).. d... d ( ).. d () i ω or < < / () lwhr d...( ) ( ). ( )..( ) ( ) [ ].[ ] 3 uig propri rom abl (hi i o alway poibl) () () h par o h ramp rom o ca b coidrd a h addiio o a poiiv ramp a, a gaiv ramp a ad a gaiv p o magiud a im. h rmaiig par o h wavorm ca b coidrd o b mad up o a gaiv p wavorm o magiud a, ad a poiiv p alo o magiud a. Suprpoiio o h wavorm will giv h rula wavorm. h will hav Laplac raorm which will add up a ollow. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

11 / [()] [ ].[ ] 3 which i h idical rul ha wa obaid rom h ormal mhod. (b) () () / / W may alo work hi problm uig abl. h giv wavorm ca alo b coidrd a b buil up o a caual i wav arig a, ad a gaiv o ha wavorm arig a /. hu h raorm o h wavorm i giv by / [()] ω ω. ω xampl Drmi h rai volag apparig acro h capacior wh h wich i clod a A i ω im. Capacior C i iiially uchargd. Soluio h raormd circui i how. h capacior ha o b aociad wih a ourc a hr i o iiial charg (or volag) o h capacior. A. ω Uig poial dividr acio ω V ( ) ou C A. ω C C ω A ω A. α ω V ou ( ).., whr α C ω α ω C hi ca b pli up a ollow. A. ω. α α V ou ( ) ω α α ω Uig h abl, h ivr raorm i h giv a A. ω. α α α vou ( ) coω iω ω α ω C C v ou V ou () hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

12 xampl 3 I a ri LC circui, iiially h capacior i chargd o a volag o V o ad h iducor do o carry ay curr. A im, a p volag o magiud i applid o h ri combiaio. Drmi h rai volag acro L. Soluio V i() C I() C V.H() v() V() L L h circui i ir raormd o h Laplac domai. h volag ourc orm i lcd or h capaciac bcau h circui i a ri circui ad ha orm mak calculaio air. Sic hr i o iiial curr i h iducor, o ourc ha b aociad wih h iducor. I ( ) L ω LC V L C V() L.I() v( ) ( V ) co xampl 4 V L L C, V ( ) ( V ) LC V LC LC ω o ( V ) LC Figur how a circui which ha rachd ady a wih wich clod. I h wich S i opd a im, obai a xprio or h uig curr hrough h iducor. Ω S C µf L mh V Ω Soluio From poial dividr acio, udr ady a codiio, hal h upply volag will drop acro ad hal h volag acro. hror h volag acro h capacior iiially will b / 5 V, ad h iducor curr will b / 5 A. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

13 raorm h circui o h Laplac domai. I() S No h dircio o h wo ourc. h corrpod o h dircio o h iiial volag acro h capacior ad h iiial curr hrough h iducor. No alo ha ic wich S i ow opd a, oly h ohr wo brach will bcom par o h circui hu I() ( 5) I() ( 5) 3.5 ( 5) 3.5 ( 5) 3.5 Fidig h ivr raorm rom h adard xprio, i() 5 co i 3.5 A hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 3

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional Mlil idd variabls March 9 Mlidisioal Parial Dirial Eaios arr aro Mchaical Egirig 5B iar i Egirig Aalsis March 9 Ovrviw Rviw las class haracrisics ad classiicaio o arial dirial aios Probls i or ha wo idd

More information

1.7 Vector Calculus 2 - Integration

1.7 Vector Calculus 2 - Integration cio.7.7 cor alculus - Igraio.7. Ordiary Igrals o a cor A vcor ca b igrad i h ordiary way o roduc aohr vcor or aml 5 5 d 6.7. Li Igrals Discussd hr is h oio o a dii igral ivolvig a vcor ucio ha gras a scalar.

More information

Signal & Linear System Analysis

Signal & Linear System Analysis Pricipl of Commuicaio I Fall, Sigal & Liar Sym Aalyi Sigal & Liar Sym Aalyi Sigal Modl ad Claificaio Drmiiic v. Radom Drmiiic igal: complly pcifid fucio of im. Prdicabl, o ucraiy.g., < < ; whr A ad ω ar

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region. INEL495 SIGNALS AND SYSEMS FINAL EXAM: Ma 9, 8 Pro. Doigo Rodrígz SOLUIONS Probl O: Copl Epoial Forir Sri A priodi ri ar wav l ad a daal priod al o o od. i providd wi a a 5% d a.- 5 poi: Plo r ll priod

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

Chapter 13 Laplace Transform Analysis

Chapter 13 Laplace Transform Analysis Chapr aplac Tranorm naly Chapr : Ouln aplac ranorm aplac Tranorm -doman phaor analy: x X σ m co ω φ x X X m φ x aplac ranorm: [ o ] d o d < aplac Tranorm Thr condon Unlaral on-dd aplac ranorm: aplac ranorm

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π Soluios Maual. (a) (b) (c) (d) (e) (f) (g) liear oliear liear liear oliear oliear liear. The Fourier Series is: F () 5si( ) ad he fudameal frequecy is ω f ----- H z.3 Sice V rms V ad f 6Hz, he Fourier

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

Green's Functions at Zero Temperature

Green's Functions at Zero Temperature MPP Cap Bo E Srliu MPP Cap Bo E Srliu Capr Gr' Fucio a Zro Tmpraur Wic i low iic mpraur vr acivd i a laboraory? Awr: 5m K wa acivd i 988 by a group a Ecol Normal Supériur: A Apc, E Arimodo, R Kair, N Vai,

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

PWM-Scheme and Current ripple of Switching Power Amplifiers

PWM-Scheme and Current ripple of Switching Power Amplifiers axon oor PWM-Sch and Currn rippl of Swiching Powr Aplifir Abrac In hi work currn rippl caud by wiching powr aplifir i analyd for h convnional PWM (pulwidh odulaion) ch and hr-lvl PWM-ch. Siplifid odl for

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Chapter 7 - Sampling and the DFT

Chapter 7 - Sampling and the DFT M. J. Rober - 8/7/04 Chaper 7 - Samplig ad he DT Seleced Soluio (I hi oluio maual, he ymbol,, i ued or periodic covoluio becaue he preerred ymbol which appear i he ex i o i he o elecio o he word proceor

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116 IESRT INTERNTIONL OURNL OF ENGINEERING SCIENCES & RESERCH TECHNOLOGY HYBRID FIED POINT THEOREM FOR NONLINER DIFFERENTIL EQUTIONS Sidhshwar Sagram Bllal*, Gash Babrwa Dapk * Dparm o Mahmaics, Daaad Scic

More information

Digital Modulation Schemes

Digital Modulation Schemes Digial Modulaio cheme Digial ramiio chai igal repreeaio ime domai Frequecy domai igal pace Liear modulaio cheme Ampliude hi Keyig (AK) Phae hi Keyig (PK) Combiaio (APK, QAM) Pule hapig Coiuou Phae Modulaio

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω Fourier rasform Coiuous-ime Fourier rasform (CTFT P. Deoe ( he Fourier rasform of he sigal x(. Deermie he followig values, wihou compuig (. a (0 b ( d c ( si d ( d d e iverse Fourier rasform for Re { (

More information