Green's Functions at Zero Temperature

Size: px
Start display at page:

Download "Green's Functions at Zero Temperature"

Transcription

1 MPP Cap Bo E Srliu MPP Cap Bo E Srliu Capr Gr' Fucio a Zro Tmpraur Wic i low iic mpraur vr acivd i a laboraory? Awr: 5m K wa acivd i 988 by a group a Ecol Normal Supériur: A Apc, E Arimodo, R Kair, N Vai, C CoTaoudji, Py Rv L 6, 86 (988) Sic r a b a icrad aciviy i lowmpraur pyic ad low mpraur i 997 i 6 K T Gr' fucio ciu ar ud w o ca o olv problm xacly L u aum a w ar ryig o dduc propri of a ym dcribd by Hamiloia H wic may o b olvd xacly T uual approac i o H H V, wr H i a Hamiloia wic ca b olvd xacly T rm V rpr all rmaiig par of H O ri o coo H o a ffc of V ar mall T baic procdur i o ar wi a ym complly dcribd by H T ffc of V ar iroducd, ad w ry o fid ow i cag ym w udrad Ti i baic procdur i maybody ory B Hibrg I i poibl o olv uaum mcaical problm aor way wic giv am awr bu y u mod a loo ui diffr T Hibrg rpraio a followig propri: T wav fucio ar idpd of im T opraor ar im dpd, ad i dpdc i giv by ih / ih / O () O( ) or, uivally, o i ryig o olv uaio wic i drivd from i: i O () [ O (), H] I pyic o i uually ryig o valua marix lm I Scrödigr rpraio, marix lm of opraor O() bw wo a i INTERACTION REPRESENTATION A Scrödigr Elmary uaum mcaic i aug i Scrödigr rpraio, wic i bad o formula i H j () j (), wic a opraor formal oluio / ih j() j( ) T u of i formula ruir om aumpio: T wav fucio ar im dpd Opraor ar a o b idpd of im ih / ih / j () O( ) j () j ( ) O( ) j ( ) I Hibrg rpraio o obai rul ih / ih / j ( ) O ( ) j ( ) j ( ) O( ) j ( ) T wo rpraio produc am rul C Iracio T iracio rpraio i aor way of doig ig Hr bo wav fucio ad opraor ar im dpd Ti i do by paraig Hamiloia io wo par, H H V,

2 MPP Cap Bo E Srliu wr H i uprurbd par ad V i prurbaio Ti paraio ca b do i diffr way Uually H i lcd a Hamiloia wic i xacly olvabl Opraor ad wav fucio i iracio rpraio will b dod by a car Tir im dpdc i giv by: Wav fucio av a im dpdc ih / ih / ih / jˆ( ) j() j( ) Opraor av a im dpdc ˆ( ) ih / ih / O O () I Hibrg rpraio im dpdc wa a away from wav fucio ad wa giv o opraor Hr, ju par of im dpdc comig from H i rafrrd L' cc if i produc am marix lm a bfor: ih / ih / ih / ih / ih / ih / jˆ ()ˆ( O)ˆ j () j ( ) O j ( ) ( ) ih / ih / j ( ) O j ( ) T im dpdc of opraor i govrd by uprurbd Hamiloia, H : i O ˆ( ) O ˆ( ), H [ ] T im dpdc of wav fucio i govrd by prurbaio, V: i i i ih H H ih j / / ˆ( ) ( ) j ( ) ih / ih / ih / ih / ih / ih / V j( ) V( ) j( ) 4444 ih / ih / ih / ih / 44V 44 j( ) V ˆ( ) jˆ( ) V ˆ( )ˆ( j ) MPP Cap Bo E Srliu 4 opraig wi im dvlopm opraor U(): ih / ih / U () Ti fucio a valu uiy a : U( ) Furrmor, i oby followig diffrial uaio: i U () VU ˆ( ) () W wi o olv i uaio O way of procdig i by igraig bo id of uaio wi rpc o im: i U () U( ) d Vˆ( ) U ( ) fl i U () d Vˆ( ) U ( ) If i uaio i rpadly irad, w g i i U () d Vˆ( ) Ê ˆ d d Vˆ( ) Vˆ( ) Ë L i Ê ˆ Â d d dvˆ( ) Vˆ( ) Vˆ( ) Ë L L Now w iroduc Tim ordrig opraor T I ac upo a group of imdpd opraor ad i ju a irucio o arrag opraor wi arli im o rig For xampl, [ ] > > TV ˆ( ) V ˆ( ) V ˆ( ) V ˆ( ) V ˆ( ) V ˆ( ) if I lp o iroduc followig p fucio: W from E () a wav fucio a im i obaid from o a by

3 MPP Cap Bo E Srliu 5 MPP Cap Bo E Srliu 6 ( x) if x > if x < if x Tu for wo opraor, xplici dfiiio of T ordrig giv [ ] TV ˆ( ) V ˆ( ) ( ) Vˆ( ) Vˆ( ) ( ) Vˆ( ) Vˆ( ) Now w rarrag igral by uig abov idiy:! [ ] d d T V ˆ( ) V ˆ( ) d d V ˆ( ) V ˆ( ) d d V ˆ( ) V ˆ( )!! T rm o rig ad id ar ual Tu w g! [ ] d d T V ˆ( ) V ˆ( ) d d V ˆ( ) V ˆ( ) Similarly w ca ow a L [ ˆ( ) ˆ( ) L ˆ( ) ] d d d T V V V! L d d d Vˆ( ) Vˆ( ) LVˆ( ) Now, av w rordrd opraor from rig o lf i acdig im ordr, or av w ju rordrd im argum? I i difficul o ll raig away ic opraor ar all am i i ca Prformig am drivaio a abov bu for diffr opraor w fid awr T awr i a w av ju rordrd im argum W opraor ar all am i i ju a uio of maic W ca ually wll rgard rordrig a a rarragm of opraor T im ordrig opraor i rally a opraor a rarrag ordr of opraor W will com bac o i lar If w ow rur o our xpaio of U(), w obai U () i! ( ) Â È i T xp Ê d Vˆ( ) ˆ Î Í Ë d d L d T Vˆ( ) Vˆ( ) LVˆ( ) [ ] (6) S MATRIX T im dvlopm opraor a wav fucio from zro im o im Now w iroduc a mor gral opraor a a wav fucio from ' o Sic i a wo argum i i calld a marix, S marix S(,'): jˆ( ) S(,')ˆ( j ') Now, i opraor i cloly rlad o opraor U: U ()ˆ( j ) jˆ( ) S (,')ˆ( j ') S(,') U(')ˆ( j ) fl U () S (,') U (') fl S (,') UU () (') W av i la p ud fac a U i a uiary opraor, i U U T S marix a followig propri: S(,) S (,') S(',) S(,')S(','') S(,'') 4 S(,') ca b xprd a a imordrd opraor, S i (,') VS ˆ( ) (,'), wic a oluio È i S (,') T xp Ê d Vˆ( ) ˆ () Î Í Ë ' A wav fucio (ad opraor) i r rpraio coicid A zro mpraur oly wav fucio of pcial ir i groud a wav fucio T ig w wa o calcula ar xprd a grouda xpcaiovalu For our Gr' fucio w all d o dfi j() a xac groud a wav fucio

4 MPP Cap Bo E Srliu 7 Sic oal Hamiloia i H, xac groud a mu av low igvalu of i Hamiloia T problm i a w do o ow ay igvalu or iga of i Hamiloia Ti i o of ig w wa o calcula Tu w av problm a all our formalim i bad o wav fucio wic w do o y ow T oly groud a wav fucio w ow i a of H, f Somow w av o drmi uow wav fucio j() i rm of ow fucio f Ti rlaio wa ow by GllMa ad Low o b: j( ) S(, ) f W aum a r i o prurbaio o ar wi T ym i i groud a of H A prurbaio i gradually urd o ad ym dvlop adiabaically io a j() W alo av o bor abou or xrm im limi O way i o aum a iracio i lowly urd off agai i fuur T ym will rur o oiracig groud a (a la if f i odgra) Ti a ca diffr from f by a mo a pa facor: MPP Cap Bo E Srliu 8 o craio ad o drucio opraor i ma a o paricl i rafrrd from o a o aor, o crad or aiilad W will ow fir dicu lcro Gr' fucio Ti dicuio i alo valid for or frmio wi propr modificaio i pi ummaio I i ligly diffr for boo wi ma Wr diffrc occur w will poi m ou Elcro: A zro mpraur lcro Gr' fucio i dfid a G( l, ') i Tcl ( ) cl ( ') T uaum umbr l ca b ayig dpdig o problm of ir, bu of w will a i o b uaum umbr of frlcro ga l (p,) Som am ar dd: T Gr' fucio i xprd i Hibrg picur; i ma a a ar im idpd ad im dpdc of opraor i giv by ad il f j ˆ( ) S(, ) j ( ) S(, ) f, il f S(, ) f ih / ih / cl() cl T a > i iracig groud a, i, iga of H wi low rgy W ould rmmbr a w ma baic aumpio a ym dvlop adiabaically from oiracig groud a io iracig groud a; w xclud ymmry braig, pa raiio ad caoic bavior GREEN'S FUNCTIONS I i cio w will dicu lcro ad poo Gr' fucio T poo ca i vry imilar o a for poo, bu mor complicad du o variou coic of gaug T poo i rad i cio of x boo T lcro par of Hamiloia w av dicud bfor ar valid o oly for lcro bu for all frmio, g H T oly diffrc i i ummaio ovr a diffr of pi uaum umbr I i furrmor valid for "ral" boo, g 4 H T poo ad poo ar mal boo, wic lad o poibiliy a umbr of paricl cag Hamiloia coai par wr paricl ar crad or aiilad T opraor for paricl wi ma alway appar a produc of T opraor c l ar dfid i rm of compl of a f l, wic ar iga o uprurbd Hamiloia H ; w ar uppod o ow a 4 T imordrig opraor T i ligly gralizd T opraor acig o vral opraor ordr m from rig o lf i acdig ordr ad add a facor () P, wr P i umbr of ircag of frmio opraor from origial giv ordr Ti dfiiio agr wi arlir o, bcau V' a w coidrd arlir i cocio wi T opraor coai a v umbr of frmio opraor Tu ac prmuaio of V' ma a v umbr of prmuaio of frmio opraor ad c o ig cagta rul cag ig for ac prmuaio of frmio opraor ma a rul for frmio ad boo ar diffr L u ry o g om flig for wa Gr' fucio ma For > ' w av G( l, > ') i cl ( ) cl ( ')

5 MPP Cap Bo E Srliu 9 A ' a paricl i addd o ym Afr i im ym dvlop i im Sic w a i o a iga of H addd paricl car io or igl paricl a Tr i om probabiliy a paricl i ill i a l a im T Gr' fucio i ju projcio of a o a c l (), i i i rlad o probabiliy a lcro a wa pu i a l a ' i ill i am a a For or im arragm ' > w av MPP Cap Bo E Srliu 4 il S(, ) S(, ) fl S(, ) S(, ) Similarly, w fid G( l, ' > ) i cl ( ') cl ( ), wr w av cagd ig ic wo frmio opraor av cagd poiio A a lcro i rmovd from ym ad pu bac a ' T Gr' fucio i a maur of probabiliy a a l i ill mpy a ' Aor way o loo upo i i a w cra a ol a im i a l ad Gr' fucio i a maur of probabiliy a ol i ill i a l a ' Now, w wi o xpr Gr' fucio i ow uaii; iad of iracig groud a w wa o u oiracig or uprurbd groud a >, i groud a of H ; u S(, ) S(, ) W u i o rplac lf brac i xprio for Gr' fucio ad fid G( l, ') i ( ') S(, ) S(, ) S(, ) S(, )ˆ cl () S(, ) S(, ) Nx w cag opraor o iracio rpraio: S (, ) S(,')ˆ cl (') S (', ) S(, ) S (,') S (', ) ih / ih / ih / ih / cl() cˆ l() U ()ˆ cl() U() S(, )ˆ cl () S(, ), wic lad o: i (' ) S(, ) S(, ) S(, ) S(, ')ˆ cl (') S(, ') G( l, ') i( ') S(, ) S(, )ˆ cl () S(, ) S(,')ˆ cl (') S(', ) S(, ) i (' ) S(, ) S(,')ˆ cl (') S(', ) S(, )ˆ cl () S(, ) S(, ) T im argum i i xprio go from o ; from o arli of ad '; from a im o ; from o la of ad '; from a im o ; from o W wa o rwri xprio i uc a way a im argum ar icraig W lard from prviou cio a S (', ) S(, c )ˆ l () S (, ) S(, ) S ( ', ) S (, ) Tu, Gr' fucio ca b rwri a: G( l, ') i ( ') S(, ) S(, )ˆ cl () S(,')ˆ cl (') S(', ) i (' ) S(, ) S(, ')ˆ cl (') S(', )ˆ cl () S(, ) Ti ca b xprd a

6 MPP Cap Bo E Srliu 4 MPP Cap Bo E Srliu 4 i Tcˆ l ()ˆ cl (') S(, ) G( l, ') S(, ) () T opraor S(, ) coai opraor wic ac i r im irval [, mi(,')], [mi(,'), max(,')], ad [max(,'), ] T T opraor auomaically or o a y ac i ir propr uc I do o mar wr w wri S(, ) i umraor, ic im ordrig opraor pu pic i rig plac A Gr' fucio ca alo b dfid for pcial ca wr iracio V ad c S marix i uiy Ti Gr' fucio, oiracig Gr' fucio, play a pcial rol i formalim, ad w diga i by G () : ( ) G ( l, ') i Tcˆ l ()ˆ cl (') I i alo ow udr am uprurbd Gr' fucio or fr propagaor Tr ar wo ui diffr yp of lcroic ym i wic w wa o mploy Gr' fucio aalyi T wo av ui diffr oiracig ad iracig groud a T wo ym ar followig A Empy Bad Hr w wi o udy propri of a lcro i a rgy bad i wic i i oly lcro A xampl i w w pu a lcro i coducio bad of a micoducor or a iulaor I i ca groud a i paricl vacuum, wic w do a > Ti a a propry a c a p, wr c p ad a ar drucio opraor for lcro ad poo, rpcivly Trfor bo H ad V giv zro w opraig upo vacuum I follow a S marix giv uiy w opraig upo vacuum: S (, ) Ti ma a bo of groud a, > ad >, ar vacuum T Gr' fucio ca xi oly for im ordrig G( l, ') i( ') cl ( ) cl ( ') T uprurbd Gr' fucio G () i paricularly ay o valua: ( ) i ( ')/ G ( l, ') i( ') l clcl i ( ')/ i( ') l T Fourir raform of G () (l,) wi rpc o i dfid a iw G( l, w) d G( l, ) To ma igral covrg, w d o add ifiiimal uaiy id o xpo 4 : ( ) i( w / id) G ( l, w) i d l G ( ) ( l, w) w l / id A Dgra Elcro Ga Our cod xampl i wr lcro ar i a Frmi a a zro mpraur T adard xampl i a impl mal I ca alo b a avily dopd micoducor T ym a a cmical poial m, ad all lcro a wi E < m ar occupid If uprurbd lcro (iga of H ) ar caracrizd by a rgy,, groud a > a all a, < m filld ad a, > m mpy T groud a > ad > ar o logr am T uprurbd groud a ca ill b coidrd a paricl vacuum if w coidr paricl abov m o b lcro ad paricl blow m o b ol Proc wr a lcro blow m i card o a a abov m i rgardd a a craio of a lcrool pair I i covi o maur lcro' rgy rlaiv o cmical poial, o dfi x,, m Somim w u m a a rfrc rgy ad omim w u boom of bad Wi m a a rfrc rgy w obai c c,, lim F x bx, b Æ, ( ) c c,, F( x, ) 4 Ti i o ju a mamaical ric T Gr' fucio w g w icludig ifiiimal id' i limi of iracig o w iracio go o zro W ca vr av xacly zro iracio or xprd i aor way: a lcro placd i a crai a will o ay r for vr Tu w av a propr limi

7 MPP Cap Bo E Srliu 4 T uprurbd Gr' fucio i ow ( ) ( F, ) F, G (, ') i Tc, ( ) c, ( ') ix i x x ( ')/ ( ') ( ) ( ' ) ( ), [ ] T fir par of i fucio giv coribuio for a ouid Frmi a ad i am a mpybad Gr' fucio T cod par giv coribuio oly if a i wii Frmi a T fir rm ca b rgardd a lcro par of Gr' fucio ad cod rm a ol par T Fourir raformd Gr' fucio i, i( w x, / id) È ( ) ( ) i( w x id G w i F x d / ) (, ) (, ) F( x, ) d ( ) F( x, ) F( x, ) G (, w) w x, / id w x, / id W av r addd a id i lcro par ad a id i ol par 5 Aor, mor compac way o wri G () i ( ) G (, w) ; d, dgx,, w x, / id, wr d, i a mall ifiiimal par wic cag ig a cmical poial I i i om iuaio prfrabl o u form i box If w wa o udy iglparicl xciaio of groud a, > i rplacd by a a wi a lcro ouid ad a ol iid Frmi a T xprio iid box i ow valid if occupaio umbr ar proprly modifid Poo: T Gr' fucio for poo i dfid a D(, l; ') i TA, l( ) A, l( ') ; A, l a, l a, l T ubcrip l rfr o polarizaio of poo Uually w ar ird i ju o 5 S fooo 4 Hr id' guara a a lcro or a ol placd i a crai a will o ay i am a for vr MPP Cap Bo E Srliu 44 id of poo wi Hamiloia wic do o mix polarizaio, o w all omi ubcrip irly I iracio rpraio o obai rul D(, ') i TAˆ ()ˆ A (') S(, ) S(, ) A zro mpraur r ar o poo Tu groud a > ad > ar agai paricl vacuum > No a i a lcropoo ym oaio > ma combiaio of groud a for lcro, poo, c Aloug poo ym a vacuum a i groud a, ir of wo lcro groud a ca b ud T uprurbd poo Gr' fucio i dfid a ( ) iw i i ' i ' i T a w a w a w a ( )( ) D (, ') i TAˆ ()ˆ A (') Now, { i ( ') i ( ' ) [ a a ] iw( ') iw( ') [ ]} w i ( ') w a a (' ) a a a a aa a a N bw Tu, aa a a N [( ) ] ( ) i ' i ' D (, ') i N w w N T Fourir raform 6 giv ( D ) È (, w) ( N ) Í w w id w w id N 6 To ow i i lf a omwor problm umbr 7 È Í w w id w w id

8 MPP Cap Bo E Srliu 45 W av r p poo occupaio umbr o b abl o ra iuaio wr a poo i pr i ym or w av a fii mpraur For zro mpraur ad i groud a w av N, wic ma a 4 WICK'S THEOREM ( D ) (, w) w w id w w id w w w id T Gr' fucio i valuad by xpadig S marix S(, ) i () i a ri uc a (): ig ( p, ') (i ) d d! L Tcˆ ()ˆ( V ) V ˆ(, ) Vˆ( ) c ˆ p L p, (') S(, ) Â (4) L u for mom igor facor < S(, ) > W all a car of i i Sc 6 Our immdia aim i o lar ow o valua im ordrd brac li Tc, V V V c, ˆ ()ˆ( ) ˆ( ) ˆ( p ) ˆ p (') (4) Suppo a V i lcrolcro iracio: ˆ( ) ˆ ( )ˆ V Âvc, c', ' ( )ˆ c', ' ( )ˆ c, ( ) v, ',, ' i ( c, c ', ' c ', ' c, x Âv x x x v, ',, ' ' ' )/ I i ca im ordrd brac (4) coai v craio ad v drucio opraor Ti ma a v lcro ar a away from groud a ad v ar pu bac bfor rulig a i projcd bac o groud a Exacly am MPP Cap Bo E Srliu 46 a av o b occupid afr opraio by all opraor a bfor opraio All ucciv a afr ac opraio ar iga o H o, ju a groud a i Tu a ar orogoal Ti ma a fial a a o b groud a Orwi brac will giv o coribuio W ca immdialy ruir a brac coai am umbr of craio a drucio opraor Ti i alway fulfilld for lcrolcro iracio ic ac V coai wo of ac yp of opraor I lcropoo iracio ca i i o o Oly brac wi a v umbr of V' urviv W alo a opraor av o b paird; y opra wo ad wo o am a, o craio ad o drucio opraor I i vry complicad o drmi valu of a brac ic r ar may poibl im ordrig ad may poibl pairig bw craio ad drucio opraor Howvr, oly a limid umbr of combiaio ar pyically irig Our aim i o or i a impl way, wic i acivd wi lp of om orm wic implify procdur T fir of i Wic' orm Ti orm i rally ju a obrvaio a im ordrig ca b a car of i a impl way I a a i maig all poibl pairig bw craio ad drucio opraor ac pairig ould b imordrd T im ordrig of ac pair giv propr im ordrig o ir rul For xampl, w g Tcˆ c a ()ˆ b ( )ˆ cg ( )ˆ cd (') Tcˆ a ()ˆ c ( ) Tcˆ b ( g )ˆ cd (') Tcˆ a ()ˆ c (') Tcˆ d g ( )ˆ cb ( ) dab dgd Tcˆ a ( c )ˆ a( ) Tcˆ g( )ˆ cg(') dad dgb Tcˆ a ()ˆ ca (') Tcˆ g ( )ˆ cg ( ) No a r i a imordrig opraor T i ac pairig brac I ca of craio ad drucio opraor r ar! poibl pairig Pairig rul: ) A ig cag occur ac im poiio of wo igborig Frmi opraor ar ircagd ) T cod rul cocr im ordrig of combiaio of opraor rprig diffr xciaio For xampl, coidr followig mixur of

9 MPP Cap Bo E Srliu 47 poo ad lcro opraor: Tcˆ ()ˆ c ( ) A ˆ ( )ˆ c ( )ˆ c ( ) A ˆ p p p p ( ) Bcau lcro opraor commu wi poo opraor, w do o car ow y ar ordrd wi rpc o ac or Tu w ca immdialy facor brac io para lcro ad poo par: Tcˆ ()ˆ c ( )ˆ c ( )ˆ c ( ) TAˆ ( ) A ˆ p p p p ( ) Ti paraio i alway poibl wi diffr id of opraor, i,wvr opraor commu Wic' orm alo appli o brac of poo opraor; for xampl, TAˆ ( ) A ˆ ( ) A ˆ ( ) A ˆ ( 4 4) TAˆ ( ) A ˆ ( ) TAˆ ( ) A ˆ ( 4 4) TAˆ ( ) A ˆ ( ) TAˆ ( ) A ˆ ( 4 4) TAˆ A TA A ( ) ˆ ( 4 4) ˆ ( ) ˆ ( ) d TAˆ A TA A 4 ( ) ˆ ( ) ˆ ( ) ˆ d ( 4) d TAˆ d 4 ( A TA A ) ˆ ( ) ˆ ( ) ˆ ( 4) d d TAˆ ( ) A ˆ ( ) TAˆ ( ) A ˆ ( ) 4 4 ) T ird rul w d i a mod of raig im ordrig of wo opraor wic occur a am im, uc a Tc c ˆ ( )ˆ ( ) I ca drucio opraor alway go o rig, d Tcˆ ( )ˆ c ( ) d F ( x ) ad rm i ju umbr opraor wic i idpd of im Ti covio i dpd o way w wro dow Hamiloia I corucig H w wr carful o pu drucio opraor o rig of craio opraor i all rm i Hamiloia W wo lcro opraor av diffr im argum i a pairig w covioally pu craio opraor o rig: Tc c d Tc c ˆ ( )ˆ ( ) ˆ ( )ˆ ( ) Ti rm ca b immdialy idifid a uprurbd Gr' fucio ig () (, ) Our prviou xampl ca alo b wri i rm of Gr' fucio: MPP Cap Bo E Srliu 48 Tcˆ a ()ˆ cb ( )ˆ cg ( )ˆ cd (') ( ) ( ) a, b g, d ( ) ( ) a, d g, b d d ig ( a, ) ig ( g, ') d d ig ( a, ') ig ( g, ) ; TAˆ ( ) A ˆ ( ) A ˆ ( ) A ˆ ( 4) 4 ( ) ( ) d d id (, ) id (, ) 4 ( ) ( ) 4 d d id (, ) id (, ) 4 d d 4 ( ) ( ) 4 4 id (, ) id (, ) I ummary, Wic' orm ll u a a imordrd brac may by valuad by xpadig i io all poibl pairig ad a ac of pairig will b a Gr' fucio or a umbr opraor F or B W all ow do a compriv xampl W all coidr rm of S marix xpaio of lcro Gr' fucio i (4) T iracio will b a a lcropoo iracio: V M a a M A c c v  r(, l, l )  v,, W av for impliciy ju icludd o poo polarizaio ad glcd ummaio ovr rciprocal laic vcor I xpaio rm i alway G () ad vai li r of rm wi a odd valu W obai ( ) ( ) i ig( p, ') ig ( p, ') d d! M M TAˆ  ( ) A ˆ ( ) v, Â,,,, p Tcˆ p ()ˆ c ( )ˆ c, ( )ˆ c, ( )ˆ c, ( )ˆ c, (') L T poo brac giv a iglpoo Gr' fucio: TAˆ ( ) A ˆ ( ) id (, ) d ( ) T lcro brac, uforualy, a! 6 poibl combiaio of pairig, ic i

10 MPP Cap Bo E Srliu 49 coai r opraor of ac yp W all giv ix rm ad u fac a Wic' orm giv rul p,,,,, p, Tcˆ ()ˆ c ( )ˆ c ( )ˆ c ( )ˆ c ( )ˆ c (') Tcˆ p, ()ˆ c, ( ) Tcˆ, ( )ˆ c, ( ) Tcˆ, ( )ˆ cp, ( ' ) ( ) ( ) ( ) idp G d ( p, ) id ( d G, ) idp d G (, ') p Tcˆ p, ()ˆ c, ( ) ˆ, ( Tc )ˆ c, ( ) Tcˆ, ( )ˆ c, (') p ( ) ( ) ( id d G ( p, ) id d G (, ) id d G ) ( p, ') p p Tcˆ p, ()ˆ c, ( ) Tcˆ, ( )ˆ cp, (') Tc , c, ( ) ( idp G d ( p, ) idp d G ) ( p, ') d F ( x ) ˆ ( )ˆ ( ) Tcˆ p, ()ˆ cp, (') Tcˆ , ( )ˆ c, ( ) Tcˆ, ( )ˆ c, ( ) ( ) d x d x ig ( p, ') F( ) F( ) Tcˆ p, ()ˆ c, ( ) Tcˆ, ( )ˆ c, ( ) Tcˆ , ( )ˆ c p, (') ( ) id G ( p, ) F ( ) p d d x ( ) idp d G ( p, ') Tcˆ p, ()ˆ cp, (') Tcˆ , ( )ˆ c, ( ) Tcˆ, ( )ˆ c, ( ) ( ) ( ) ( ) ig ( p, ') d d (, ) d d i G i G (, ) MPP Cap Bo E Srliu 5 ( ) ( ) i ig( p, ') ig ( p, ')! W av mad u of fac a N Â F ( x, ), d d Ï ÔÈ ( ) ÌÍ Â M id (, ) v ÓÔ ( ) ( ) ig ( p, ) ig ( p, ( ) ) ig ( p, ' ) ( ( ) ( ) ( ) ig ( p, ) ig ( p, ) ig ( p, ') ( ) ( ) ( ) ig ( p, ') ÂiG (, ) ig (, ) ), ( ) È (, v M id ( ) ( ) ) ( N( ig ( p, ) ig ( p, ') ( ) ( ) ( ) ig ( p, ) ig ( p, ') N ig ( p, ') ) )] } Tu fial rul i

11 MPP Cap Bo E Srliu 5 5 FEYNMAN DIAGRAMS A picuri mor a a ouad word W foud i prviou cio a v fir orivial rm i S marix xpaio of Gr' fucio i rar complicad ad o wri i dow a a lo of pac Ta coribuio producd ix rm Nx ovaiig coribuio produc 6 rm; o afr a 756 rm! I i obviou a a raigforward drivaio i impoibl if o i o aifid i pig ju fw fir coribuio Howvr, w will fid a may of rm cacl ou, may av idical valu ad om ould o av b icludd i fir plac T la am i idd for rm wic could av b limiad from Hamiloia from bgiig; am way a i wa do for our Hamiloia i cio 7 Fyma iroducd ida of rprig igral xprio by drawig T drawig, calld diagram, ar xrmly uful for providig a iig io pyical proc wic coribuio rpr T diagram a muc l pac Giv problm o ca immdialy wri dow diagram, ma maipulaio li ummaio of ubcla of diagram, xclud om cla of diagram, ad w fial diagram av b dcidd o o ca wri dow corrpodig igral xprio ad olv problm T diagram ca b draw bo for Gr' fucio dpdig o im a wll a for Fourir raformd vrio a dpd o w T diagram i im pac ar draw by rprig lcro Gr' fucio G () (p,') by a olid li wic go from ' o, a ow i Fig A arrow i of icludd o rpr dircio T arrow i moly for covic, ad i do o imply or ruir a > ' I a, owvr, omig mor o i If > ' ad arrow poi i dircio from ' o Gr' fucio rpr a lcro a If < ' Gr' fucio rpr a ol a T ol ca b viwd a a lcro goig bacward i im Of, a diagram coai om arrow poiig o rig ad om poiig o lf i figur Ti i ca i Fig (f) W > uppr Gr' fucio rpr a ol ad lowr a lcro W < uppr Gr' fucio rpr a lcro ad lowr a ol T poo Gr' fucio i rprd by a dad li I a o dircioal arrow ic if > ' i rpr bo a poo goig forward i im ad a poo goig bacward i im or uivally a poo ad a "poo ol" For < ' i i oppoi Howvr, Fyma diagram i wpac av poo wi a dircioal arrow, bu arrow ow dircio i wic momum ad rgy flow i diagram Nx w av o dcid ow o ra facor <c p ()c p ()> F (x p ) I i draw a a olid li wic loop ad rpr a MPP Cap Bo E Srliu 5 lcro li wic ar ad d a am poi i im Now w av all igrdi dd o coruc Fyma diagram for Gr' fucio rad a d of prviou cio To b abl o ra all problm ivolvig lcro ad poo w alo add Coulomb iracio li To diigui i from a poo Gr' fucio w draw Coulomb iracio a a wavy li T Coulomb iracio i iaaou wic ma a iracio li ar vrical i diagram () G (p,') () D (,') ' ' p <c p ()c p()> v p Fig I may ca w will av crd Coulomb iracio T iracio ar o logr iaaou ic crig d im o dvlop T cod ordr diagram i S marix xpaio of lcro Gr' fucio i prc of lcropoo iracio i giv i Fig of x boo T rm (c), (d) ad () ould o b icludd ic y all com from rm of Hamiloia for lcropoo iracio Ti rm ould av b xcludd i fir plac T rm (a) ad (b) giv coribuio Ty loo ali Ty diffr oly i lablig of variabl,, ± T ar dummy variabl i igral ad wo coribuio ar ual T la rm (f) i diffr from r of o w p i a i diagram coi of wo para par (i i alo ru for (d) ) I igral form i ca b wri a produc of wo facor; o of facor i a fucio of p ad(') ad or i a coa I blog o a pcial cla of diagram calld dicocd diagram Ti cla of diagram coai all diagram i wic o all par of ac diagram ar

12 MPP Cap Bo E Srliu 5 cocd W will com bac o diagram i x cio 6 VACUUM POLARIZATION GRAPHS W ow ur our aio o facor wic o i poi w av b igorig: ( ) i S( d, )  d TVˆ( ) Vˆ( )! L L Ti ould av b i domiaor of Gr' fucio Eac rm i i xpaio gra a ri of rm Eac of rm ar coa T grad Fyma diagram ar calld vacuum polarizaio grap If w wr o drmi i uaiy o cod ordr wi lcropoo iracio a V w would g a from zro ordr, o coribuio from fir ordr ad wo diagram from cod ordr coribuio T wo diagram ar xacly wo dicocd par of diagram i Fig (d) ad () If w wr o wri dow all diagram from xpaio of umraor of Gr' fucio, pic ou o paricular cocd diagram, ca roug all dicocd diagram ad pic ou all of a av am cocd par a o w av co w would fid followig: T dicocd par of all diagram w av picd ou gra xacly vacuum polarizaio grap Ti i ru for vry coic of cocd diagram Tu umraor of Gr' fucio ca b wri a a produc of wo facor; o coaiig all cocd diagram; o coaiig all vacuum polarizaio grap T la facor cacl xacly domiaor of Gr' fucio Tu i xpaio of Gr' fucio w ould procd a bfor ad xpad umraor ad from i xpaio dicard all dicocd diagramtu, (i ) ig ( p, ')  d d! L Tcˆ ()ˆ( V ) V ˆ(, ) Vˆ( ) c ˆ p L p, (') (cocd) MPP Cap Bo E Srliu 54 L u ow a Fourir raform of i xprio wi rpc o (') for ca w av udid Fir w rwri our obaid xprio afr all ocoribuig rm av b dicardd T rul i ig ( p, ') ig ( p, ') i d d ( ) ( ) È ( ) ( ) ( ) ( ) Í Â M id (, )( ig ( p, ) ig ( p, ) ig ( p, ') v Now w a ivr Fourir raform of poo Gr' fucio D (, ) dw' p ( ) iw'( ) ( ) D (, w'), ir i ad a Fourir raform of wol xprio T fial rul i S ( ) ( ) () G ( p, w) G ( p, w) G ( p, w) S ( p, w) ; [ ] dw' È ( p, w) ( ) i Í Â M D (, w') G ( p, w w'), p v () ( ) ( ) wr S () i lfrgy du o opoo proc W oic a Gr' fucio iid lfrgy a am pi idx a Gr' fucio w ar udyig Ti i ru i mo ca If o or ad iracio ca flip pi lf rgy will av o av wo pi idic Ti i alo ru for iracig Gr' fucio I a ca Gr' fucio ad lfrgi ar maric ad all produc of wo fucio ar rally marix produc Howvr, w will o coidr i ca r Nx w g rid of /! facor I ur ou o b ju! rm xacly ali i ac brac of rm i xpaio Tu if w coidr oly diffr rm, w obai rul  ig ( p, ') (i ) d L d (6) Tcˆ ()ˆ( V ) V ˆ( ) LVˆ( ) c ˆ (') ( diffr cocd ) p, p,

13 MPP Cap Bo E Srliu 55 MPP Cap Bo E Srliu 56 7 DYSON'S EQUATION If w um ri of rm o ifii ordr w fid a all igr ordr rm av a uprurbd Gr' fucio a bo d of diagram Ti ma a w ca wri ( ) ( ) ( ) G ( p, w) G ( p, w) G ( p, w) S ( p, w) G ( p, w), ( ) ( ) ( ) G ( p, w) G ( p, w) G ( p, w) S ( p, w) G ( p, w) ( ) G G ( p, w) ( ) G ( p, w) G ( p, w) * ( ) S ( p, w) G ( p, w) ( ) * ( ) ( p, w) S ( p, w) G ( p, w) * ( ) S ( p, w) G ( p, w) ; wr S i lfrgy Now, w d o iroduc om w cocp: A lfrgy irio i dfid a ay par of a diagram a i cocd o r of diagram by wo paricl li(o i ad o ou) A propr lfrgy irio i a lfrgy irio, wic cao b parad io wo pic by cuig a igl paricl li T propr lfrgy i um of all propr lfrgy irio I i dod by S * I follow from dfiiio a lfrgy coi of a um of all poibl rpiio of propr lfrgy, i * * ( ) * S ( p, w) S ( p, w) S ( p, w) G ( p, w) S ( p, w) Ti ca b wri a * ( ) * ( ) * S ( p, w) G ( p, w) S ( p, w) G ( p, w) S ( p, w) L * * ( ) S ( p, w) S ( p, w) S ( p, w) G ( p, w) S ( p, w), ad b olvd o giv S( p, w) S( p, w) * ( ) S ( p, w) G ( p, w) * Ti i Dyo' uaio for lfrgy Puig i io xprio for Gr' fucio giv T rlaio i box i Dyo' uaio for lcro Gr' fucio T lcro lfrgy i omim calld a ma opraor T Gr' fucio i xampl wi dgra lcro ga bcom F( x, ) F( x, ) G (, w) * * w x, / id S(, w) w x, / id S(, w) T lfrgy a ral ad imagiary par W all ow lar a imagiary par cag ig a w I i poiiv for gaiv w ad gaiv for poiiv w For poo w av ( ) D (, w) D(, w) * ( ) p (, w) D (, w) Ti i Dyo' uaio for poo Gr' fucio T poo lfrgy i omim calld a polarizaio opraor T poo Gr' fucio a zro mpraur ca b wri a w D(, w) w w id w p * (, w) T ral ad imagiary par of lfrgi ac av irpraio T imagiary par of lfrgi i irprd a cauig dampig of paricl moio Ty ar rlad o fii ma fr pa of xciaio or i rgy ad momum ucraiy T ral par ar acual rgy if of xciaio, wic may alo cag i dyamical moio T xciaio may alr i ffciv ma or group vlociy bcau of lfrgy coribuio I i acually S * ad P * a av dimio rgy ad ar acual lfrgi

14 MPP Cap Bo E Srliu 57 8 RULES FOR CONSTRUCTING DIAGRAMS Draw Fyma diagram for lfrgy rm, wi all poo, Coulomb, ad lcro li For ac lcro li, iroduc followig Gr' fucio: È ( ) F( xp, a ) F( xp, a ) Gab ( p, w) dab Í w xp, a / id w xp, a / id T d ab idica a lcro li mu av am pi a bo d of propagaor li Ti faur i impora i pi problm T Gr' fucio i valid for a dgra Frmi ym, bu ca alo b ud for mpy bad ca if cmical poial i aumd o b a boom of bad For ac poo li, iroduc followig poo propagaor: ( D ) w (, w) w w id Alo add a facor M / for ac poo Gr' fucio, wr M i marix lm for lcropoo iracio 4 Add a Coulomb poial v 4p / for ac Coulomb iracio No a w alway draw Coulomb li a a wiggly vrical li T Coulomb iracio i rgardd a appig iaaouly i im, ad im flow orizoally, from lf o rig, i our diagram O could, of cour, av im flow upward ad draw Coulomb iracio a orizoal wiggly li 5 Corv rgy ad momum a ac vrx Tu ac lcro li, poo li, ad Coulomb li av ir variabl labld o coform wi i rul 6 Sum ovr iral dgr of frdom: momum, frucy, ad pi T ummaio ovr momum ad frucy ad pi ould b prformd accordig o dw  v p, d dw ( p ) p  Ïfor box ormalizaio, Ì Ó ad dicr momum ummaio, for igraio ovr momum If o i calculaig a lfrgy rm S(p,w), all momum ad fruci xcp p ad w ar iral ad mu b ummd ovr MPP Cap Bo E Srliu 58 7 Fially, w muliply rul by facor (i/) m () F wr F i umbr of clod frmio loop T idx m i co a follow: a For lcro lfrgi, m i umbr of iral poo ad Coulomb li b For poo lfrgi, m i oalf umbr of vric 8 For ac poo li wic irac wi paricl roug ja iracio, ir a facor Ê ˆ Ë m  ( / ) D (, )( ' / m m w ) m wr D m (,w) i poo Gr' fucio ad ad ' ar wav vcor of paricl card a wo vric T or poibl iracio of a cargd paricl wi poo occur roug rm mc A ( r i)  r( ) Am ( ) Am ( ) m m,, W will lar a i iracio coribu a lfrgy rm of /m o lfrgy of poo, wr i diy of cargd paricl To obai mor gral rul for corucig ad irprig Fyma diagram w av o diribu (i/) m facor i diagram To do i w aac facor (i/) / a ac vrx(i ca b do ligly mor gral If w av a iuaio wr ym coi of paricl of diffr carg vrx facor ould b muliplid by valc Z for paricl card a vrx) T ac diagram coi of oly Gr' fucio (for paricl, poo or poo) ad vric T Coulomb iracio li ca b viwd a a poo Gr' fucio T Coulomb iracio bw wo paricl ca b rgardd a ircag of wo diffr yp of poo T Coulomb iracio a a Dyo' uaio v v( w) * vp (, w) v (, w), wr P* i propr lfrgy for Coulomb iracio or polarizaio opraor

15 MPP Cap Bo E Srliu 59 If oly low ordr coribuio of P* i p rul i c o, ucpibiliy iroducd a d of capr Wi i coic dilcric fucio i RPA dilcric fucio T Coulomb iracio i ow crd ad o logr iaaou L u udy followig par of a Fyma diagram: MPP Cap Bo E Srliu 6 wr p () (,w) i low ordr poo lfrgy irio Now, l u udy aor diagram (,w'w) v (p',w'') (i/) / v (,w) (p',w''w) (i/) / (,w') (i/) / (p,w') (i/) / (p,w'w) v T "bubbl" icludig wo vric i ju c o, ad diagram i irprd a v () i dw' ( ) ( ) c(, w) v  G (, w') G (, w' w), v p, wr miu ig com from fac a c o coai o clod frmio loop If w ow av a diagram wi poo li iad of Coulomb iracio li w g T diagram i irprd a D (M()/) (i) / (,w' w) (,w') () D (,w) () D (,w) (M()/)(i) / M ( ) (, w) p (, w) D (, w) c(, w), ( ) ( ) ( ) Ti dcrib carig of wo paricl, lcro ay, agai ac or via Coulomb iracio T lcropoo iracio giv ri o a vry imilar diagram, viz (p',w'') (p,w') () D (,w) (M()/) (i) / (M()/) (i) / (p',w''w) (p,w'w) Ti lad o a ffciv lcrolcro iracio coribuio Togr coribuio giv M ( ) v (, w) v D ( ) (, w)

16 MPP Cap Bo E Srliu 6 MPP Cap Bo E Srliu 6 L u wa w g for polar micoducor a w rad i of capr W fid v g ( ) ( ) v (, w) D (, w) v Ê p ˆ w LO LO Á w Ë ( w wlo id) v 4p w LO ( w wlo id) v ( w), d ordr ad p wr (w) i frucy dpd bacgroud dilcric fucio wic rul from combid crig by valc lcro (virual raiio acro bad gap) ad poo Ti dilcric fucio i ( ) w wlo ( w) w w LO i d 4 4 wto ( ) w wlo È Í ; wto Îw wto id w wto id ( ) ( ) 4 ordr p Ti dilcric fucio vai a logiudial poo frucy ad a a dla fucio imagiary par a ravr poo frucy T buildig bloc w av a our dipoal w drawig lcro Gr' fucio diagram, w iracio i lcropoo iracio, ar T corrpodig buildig bloc i ca of lcrolcro iracio ar

17 MPP Cap Bo E Srliu 6 ordr MPP Cap Bo E Srliu 64 9 TIMELOOP S MATRIX A Six Gr' Fucio W will dicu ix diffr Gr' fucio T yp w av iroducd o far i calld imordrd vrio T or fiv ar aiimordrd (dod by a bar ovr ), "G l" G <, "G largr" G >, rardd G r, ad advacd G adv For frmio ix Gr' fucio ar dfid a ad d ordr > G (, ) i c ( ) c ( ) < G (, ) i c ( ) c ( ) G (, ) ( ) G (, ) ( ) G (, ) < > G (, ) ( ) G (, ) [ ( ) ] G (, ) > < G (, ) ( ) G (, ) G (, ) i( ) c ( ), c ( ) r > < [ ] [ ] { } < > [ ] [ ] G (, ) ( ) G (, ) G (, ) adv W a imordrd Gr' fucio i ual o G > for poiiv ad G < for gaiv T rardd Gr' fucio i zro for gaiv For poiiv i i ual o G > G < T advacd fucio i zro for poiiv For gaiv i i ual o G < G > T uprurbd frmio Gr' fucio ar T rulig (d) ordr diagram i lcrolcro iracio ca loo xacly am a d (4) ordr diagram i lcropoo iracio ca xcp for a iracio li i ow wiggly iad of dad ( ) ix / G (, ) i ( ) ( ) ( ) ix / G (, ) i ( ) ( ) G (, ) i G < ix / > { [ ] [ ] } {[ ][ ] } (, ) i x G i (, ) ( ) ( ) i( ) ( ) i / ix / r ( ) adv ix / [ ] { [ ] } { [ ][ ] [ ] } G (, ) i ( ) ( ) [ ] ix / ix / i () Afr Fourir raformaio wi rpc o, wr a ifiiimal d a b addd o frucy xpo o guara covrgc i ± limi of im igral w obai

18 MPP Cap Bo E Srliu 65 G ( ) (, w) w x / id w x / id ( ) È G (, w) Í Îw x / id w x / id < G (, w) ip d( w x/ ) > G (, w) i[ ] pd( w x / ) ( ) Gr (, w) w x / id w x/ id w x/ id ( ) Gadv(, w) w x / id w x/ id w x/ id For boo fild uc a poo ad poo dfiiio ar imilar, viz > D (, ) i A ( ) A ( ) < D (, ) i A ( ) A ( ) D (, ) ( ) D (, ) ( ) D (, ) < > D (, ) ( ) D (, ) [ ( ) ] D (, ) > < D (, ) ( ) D (, ) D (, ) i( ) A ( ), A ( ) r > < [ ] D (, ) ( ) D (, ) D (, ) adv [ ] [ ] < > [ ] [ ] T mai diffrc i a D > ad D < av am ig, ic o ig cag i mad w ircagig poiio of boo opraor Alo diplacm opraor i Hrmiia, wic iroduc om rdudacy uc a D < (,) D > (,) T uprurbd boo fild Gr' fucio ar {[ ] } {[ ] } ( ) i ' i ' w D (, ) i N w N ( ) i ' iw ' > iw i D (, ) i N w N {[ ] } < iw D (, ) {[ iw ] i N N } ( ) r (, ) ( )i( w ) ( ) r (, ) [ ( )] i( w ) w D (, ) i N N D D MPP Cap Bo E Srliu 66 T Fourir raformd vrio rad È ( ) È D (, w) ( N ) Í N Í w w id w w id w w id w w id È ( ) È D (, w) ( N ) Í N Í w w id w w id w w id w w id < D (, w) ip N d( w w ) N d( w w ) > [( ) ] ( ) [ ] D (, w) ip N d( w w ) N d( w w ) È ( ) È Dr (, w) ( N ) Í N Í w w id w w id w w id w w id w w id w w id È ( Dadv ) (, w) ( N ) Í N w w id w w id w w id w w id È Í w w id w w id T frmio ad boo fild Gr' fucio ar o idpd I ca b fruiful o rmmbr followig rlaio: Gr G G Gadv G G < Dr D D > D D D adv < < Som word abou aalyical propri of all Gr' fucio ould b aid A zro mpraur rardd vrio av all pol i lowr alf of complx frucy pla Ti ma a y ar aalyic i uppr alfpla For advacd vrio i i oppoi T pol ar i uppr alfpla ad fucio ar aalyic i lowr alfpla T imordrd fucio av pol blow ral frucy ax for poiiv fruci ad abov for gaiv fruci I frmio ca i i ru oly if w av cmical poial a rfrc rgy for paricl rgy If o, pol ar blow ax for fruci largr a m/ ad abov for mallr fruci T oppoi i ru for aiimordrd fucio

19 MPP Cap Bo E Srliu 67 Rlaio o obrvabl W av r prd Gr' fucio wiou xplicily aig ow o u i All Fyma diagram coi of Gr' fucio ad vric; Coulomb iracio li ca alo b rgardd a poo Gr' fucio Apar from owig up a impora par of Fyma diagram iglparicl Gr' fucio ca b dircly ud o calcula impora propri of ym I giv: T xpcaio valu of ay iglparicl opraor i groud a of ym W av o far dicud Gr' fucio i momum rpraio I coordia pac i i dfid a G(,', rr ') i Tj(,) r j (',') r T xpcaio valu of a iglparicl opraor i O d r j (,) r O() r j(,) r dro() r j (,) r j(,) r lim lim r' Ær' Æ lim lim ± r' Ær' Æ dro() r j (',') r j(,) r dro() r Tj(,) r j (',') r lim lim ± i d ro() r G(,'; r r '), ' Æ Æ r r' wr plu ig i for boo ad miu ig for frmio T xpcaio valu of diy opraor bcom r() r lim lim ± i d r''( d r r'') G('','; r r ') r' Ær'' ' Æ lim lim ± ig(,'; rr ') r' Ær ' Æ ± i lim Â Æ v, dw iw G (, w), p MPP Cap Bo E Srliu 68 wr la p i valid for a omogou ym No a xpcaio valu i i ca i poiio idpd T xpcaio valu of iic rgy bcom T r lim lim ± i d r m G Æ (,'; rr ') r' r' Æ * dw i iw ± lim  m G Æ, * (, w ), p wr la p i valid for a omogou ym T grouda rgy of ym 7 Aloug Hamiloia of ym coai woparicl opraor i i poibl o xpr rgy of ym i rm of iglparicl Gr' fucio T rlaio i H ± i d r È i r lim lim Í G Æ (,'; rr ') r' r' Æ Î m* d i i È w w ± lim Â Í m G w (, w), Æ p, Î * wr la rlaio i valid for a omogou ym T xpcaio valu of iic rgy opraor i o wa w uually call iic rgy T iracio i ym cag i xpcaio valu Wi iic rgy w uually ma rgy i abc of iracio E T iracio rgy i diffrc bw rgy ad iic rgy Furrmor, a w will, i would b br o av a miu ig i fro of iic rgy opraor i abov xprio for E Wi a ric w will b abl o calcula iracio rgy ad xprio w g a i wad miu ig T Hamiloia i wri wi a variabl couplig coa H( l) H lv H() H H( ) H 7 I i cio paricl rgy i rlaiv bad boom iad of cmical poial Orwi w would av ad wm iad of w iid brac S Vr ad Walca p677

20 MPP Cap Bo E Srliu 69 L, H( l) Y ( l) E( l) Y ( l) Y ( l) Y ( l) fl E( l) Y ( l) H( l) Y ( l) T drivaiv wi rpc o couplig coa rduc o d d E dy ( l) dy ( l) ( l) H( l) Y( l) Y( l) H( l) l d l d l d E( l) Y( l) Y( l) Y( l) V Y( l) d l Y ( l) V Y ( l) Igra i uaio wi rpc o couplig coa from o d l E E Y V ( l) l Y( l) l dh( l) Y( l) Y( l) d l T if i grouda rgy i xprd olly i rm of marix lm of iracio lv d l E E Y H T ( l) ( l) Y( l) l d d i i È l w w ± Â Í m G l lim w (, w) Æ l p Î *, MPP Cap Bo E Srliu 7 Uig Dyo' uaio for Gr' fucio lad o [ ] dl dw E E i iw * l ± G l lim  S (, w) (, w) Æ l p, dl dw i iw * l ± G l lim  S (, w) (, w) Æ l p, T igraio ovr "" rm o fir li vai i propr limi W av r giv o way o driv iracio rgy of ym Ti formulaio i uful ic rul i giv i rm of propr lfrgy ad Gr' fucio uaii a w ow ow o calcula W will u a alraiv mod i cod par of i cour T xciaio pcrum of ym T fucio G(,w) a impl pol a xac xciaio rgi of iracig ym corrpodig o a momum Tu iglparicl Gr' fucio giv u mo of iformaio w d o udrad our iracig ym Howvr r i o impora ig miig W do' g ym' rpo o xral prurbaio A rcip for calculaig ig i giv by Kubo formula: Aum a a xral fild F(r,) giv ri o a prurbig rm i Hamiloia: Hx d ra(,) r F(,) r T ym rpod wi a iducd diy of om id; i may, g, b a carg diy, a curr diy or a pi diy For a omogou ym i liar rpo rgim iducd uaiy ca b rlad o xral fild by a ucpibiliy fucio a(r,) accordig o B (,) r d r' d' a( r r', ') F(',') r B id id (, w) a(, w) F(, w), wr i a( r r', ') ( ') [ B( r, ), A( r', ') ]

21 MPP Cap Bo E Srliu 7 Ti ucpibiliy or rpo fucio ca b o diffr form; rardd, advacd, imordrd,hr p fucio ma a rpo fucio i o rardd form, wic guara a rpo com afr prurbaio I a acual calculaio i i br o u imordrd vrio, ic w ca apply Wic' orm ad u rduc complxiy of problm dramaically A d i i ay o raform imordrd fucio io rardd o T rpo fucio or corrlaio fucio ar complx valud T ral ad imagiary par of rardd fucio ar rlad Somim i i difficul o calcula or maur o of par If or par i ow for all fruci fir par ca b obaid roug Kramr Kroig diprio rlaio T rlaio ar: L B(w) b aalyic i uppr alf of complx frucy pla ad B(w) Æ a w Æ T B( w) d ' B( ') P p w w w' w B( w) dw' B( w') P p w' w Rardd corrlaio fucio fulfill ruirm ad i i ca B( w) B( w) B ( w) B ( w), wic giv w' B ( w) d ' B P ( ') p w w w' w w B ( w) dw' B P ( w') p w' w Exampl of corrlaio fucio ar: (,w); /(,w); complx ivr rlaxaio im i GDA, /(w); rfraciv idx, (w); dyamical coduciviy, (w); pi ucpibiliy, c(,w)

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

Available online at ScienceDirect. Physics Procedia 73 (2015 )

Available online at  ScienceDirect. Physics Procedia 73 (2015 ) Avilbl oli www.cicdi.co ScicDi Pic Procdi 73 (015 ) 69 73 4 riol Cofrc Pooic d forio Oic POO 015 8-30 Jur 015 Forl drivio of digil ig or odl K.A. Grbuk* iol Rrc Srov S Uivri 83 Arkk. Srov 41001 RuiR Fdrio

More information

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region. INEL495 SIGNALS AND SYSEMS FINAL EXAM: Ma 9, 8 Pro. Doigo Rodrígz SOLUIONS Probl O: Copl Epoial Forir Sri A priodi ri ar wav l ad a daal priod al o o od. i providd wi a a 5% d a.- 5 poi: Plo r ll priod

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

The Exile Began. Family Journal Page. God Called Jeremiah Jeremiah 1. Preschool. below. Tell. them too. Kids. Ke Passage: Ezekiel 37:27

The Exile Began. Family Journal Page. God Called Jeremiah Jeremiah 1. Preschool. below. Tell. them too. Kids. Ke Passage: Ezekiel 37:27 Faily Jo Pag Th Exil Bg io hy u c prof b jo ou Shar ab ou job ab ar h o ay u Yo ra u ar u r a i A h ) ar par ( grp hav h y y b jo i crib blo Tll ri ir r a r gro up Allo big u r a i Rvi h b of ha u ha a

More information

Wireless & Hybrid Fire Solutions

Wireless & Hybrid Fire Solutions ic b 8 c b u i N5 b 4o 25 ii p f i b p r p ri u o iv p i o c v p c i b A i r v Hri F N R L L T L RK N R L L rr F F r P o F i c b T F c c A vri r of op oc F r P, u icoc b ric, i fxib r i i ribi c c A K

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

NAME: SOLUTIONS EEE 203 HW 1

NAME: SOLUTIONS EEE 203 HW 1 NAME: SOLUIONS EEE W Problm. Cosir sigal os grap is so blo. Sc folloig sigals: -, -, R, r R os rflcio opraio a os sif la opraio b. - - R - Problm. Dscrib folloig sigals i rms of lmar fcios,,r, a comp a.

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

1.7 Vector Calculus 2 - Integration

1.7 Vector Calculus 2 - Integration cio.7.7 cor alculus - Igraio.7. Ordiary Igrals o a cor A vcor ca b igrad i h ordiary way o roduc aohr vcor or aml 5 5 d 6.7. Li Igrals Discussd hr is h oio o a dii igral ivolvig a vcor ucio ha gras a scalar.

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Signal & Linear System Analysis

Signal & Linear System Analysis Pricipl of Commuicaio I Fall, Sigal & Liar Sym Aalyi Sigal & Liar Sym Aalyi Sigal Modl ad Claificaio Drmiiic v. Radom Drmiiic igal: complly pcifid fucio of im. Prdicabl, o ucraiy.g., < < ; whr A ad ω ar

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

EE 232 Lightwave Devices. Photodiodes

EE 232 Lightwave Devices. Photodiodes EE 3 Lgwav Dvcs Lcur 8: oocoucors a p-- ooos Rag: Cuag, Cap. 4 Isrucor: Mg C. Wu Uvrsy of Calfora, Brkly Elcrcal Egrg a Compur Sccs Dp. EE3 Lcur 8-8. Uvrsy of Calfora oocoucors ω + - x Ara w L Euval Crcu

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO

A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO JAN PUDEŁKO A FAMILY OF GOODNESS-OF-FIT TESTS FO THE CAUCHY DISTIBUTION ODZINA TESTÓW ZGODNOŚCI Z OZKŁADEM CAUCHY EGO Abrac A w family of good-of-fi for h Cauchy diribuio i propod i h papr. Evry mmbr of

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Naive Parameter Estimation Technique of Equity Return Models Based on Short and Long Memory Processes

Naive Parameter Estimation Technique of Equity Return Models Based on Short and Long Memory Processes 6 pp.-6 004 Naiv Paramr Eimaio Tchiqu of Equiy Rur Mol Ba o Shor a Log Mmory Proc Koichi Miyazai Abrac Th aalyi o variac of Japa quiy rur from h poi of obrvaio irval i qui fw hough i i impora i maagig

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

Part 3 System Identification

Part 3 System Identification 2.6 Sy Idnificaion, Eiaion, and Larning Lcur o o. 5 Apri 2, 26 Par 3 Sy Idnificaion Prpci of Sy Idnificaion Tory u Tru Proc S y Exprin Dign Daa S Z { u, y } Conincy Mod S arg inv θ θ ˆ M θ ~ θ? Ky Quion:

More information

DETERMINATION OF THERMAL STRESSES OF A THREE DIMENSIONAL TRANSIENT THERMOELASTIC PROBLEM OF A SQUARE PLATE

DETERMINATION OF THERMAL STRESSES OF A THREE DIMENSIONAL TRANSIENT THERMOELASTIC PROBLEM OF A SQUARE PLATE DRMINAION OF HRMAL SRSSS OF A HR DIMNSIONAL RANSIN HRMOLASIC PROBLM OF A SQUAR PLA Wrs K. D Dpr o Mics Sr Sivji Co Rjr Mrsr Idi *Aor or Corrspodc ABSRAC prs ppr ds wi driio o prr disribio ow prr poi o

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

MARTIN COUNTY, FLORIDA

MARTIN COUNTY, FLORIDA RA 5 OA. RFFY A A RA RVOAL R F 8+8 O 5+ 5+ 5+ ORI 55 OA. RFFY A A RA RVOAL R 8 F 5+ O 8+8 ROFIL ORIZ: = VR: = 5 ROFIL 5 5 5 5 5+ 5+ 5+ 5+ + 5+ 8+ + + + 8+ 8+ 8+ 8+ + 5+ 8+ 5+ - --A 8-K @.5 -K @.5 -K @.5

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications

New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications Turkih Joural of Aalyi ad Nur Thory 3 Vol No 6-35 Availal oli a hp://pucipuco/a///7 Scic ad Educaio Pulihig DOI:69/a---7 Nw Rul Ivolvig a Cla of Gralid Hurwi- Lrch Za Fucio ad Thir Applicaio H M Srivaava

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A Ήχος α H ris to os s n ș t slă ă ă vi i i i i ți'l Hris to o os di in c ru u uri, în tâm pi i n ți i'l Hris

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Some Applications of the Poisson Process

Some Applications of the Poisson Process Applid Maaics, 24, 5, 3-37 Publishd Oli Novbr 24 i SciRs. hp://www.scirp.org/oural/a hp://dx.doi.org/.4236/a.24.59288 So Applicaios of Poisso Procss Kug-Ku s Dpar of Maaics, Ka Uivrsiy, Uio, USA Eail:

More information

By Joonghoe Dho. The irradiance at P is given by

By Joonghoe Dho. The irradiance at P is given by CH. 9 c CH. 9 c By Joogo Do 9 Gal Coao 9. Gal Coao L co wo po ouc, S & S, mg moocomac wav o am qucy. L paao a b muc ga a. Loca am qucy. L paao a b muc ga a. Loca po obvao P a oug away om ouc o a a P wavo

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Derivation of the contour integral equation of the zeta function by the quaternionic analysis

Derivation of the contour integral equation of the zeta function by the quaternionic analysis Drivaio of coour iral uaio of a fucio by uarioic aalyi K. Suiyama 4/5/6 Fir draf 4/5/8 Abrac Ti ar driv coour iral uaio of a fucio by uarioic aalyi. May rarcr av amd roof of Rima yoi bu av o b uccful.

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Grain Reserves, Volatility and the WTO

Grain Reserves, Volatility and the WTO Grain Reserves, Volatility and the WTO Sophia Murphy Institute for Agriculture and Trade Policy www.iatp.org Is v o la tility a b a d th in g? De pe n d s o n w h e re yo u s it (pro d uc e r, tra d e

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Chapter 6 - Work and Energy

Chapter 6 - Work and Energy Caper 6 - Work ad Eergy Rosedo Pysics 1-B Eploraory Aciviy Usig your book or e iere aswer e ollowig quesios: How is work doe? Deie work, joule, eergy, poeial ad kieic eergy. How does e work doe o a objec

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

Lecture 14. Time Harmonic Fields

Lecture 14. Time Harmonic Fields Lcu 4 Tim amic Filds I his lcu u will la: Cmpl mahmaics f im-hamic filds Mawll s quais f im-hamic filds Cmpl Pig vc C 303 Fall 007 Faha aa Cll Uivsi Tim-amic Filds ad -filds f a pla wav a (fm las lcu:

More information