Cooperative Triangulation in MSBNs. without Revealing Subnet Structures. Y. Xiang. Department of Computer Science, University of Regina

Size: px
Start display at page:

Download "Cooperative Triangulation in MSBNs. without Revealing Subnet Structures. Y. Xiang. Department of Computer Science, University of Regina"

Transcription

1 Cooprtiv Tringultion in MSBNs without Rvling Sunt Struturs Y. Xing Dprtmnt o Computr Sin, Univrsity o Rgin Rgin, Ssthwn, Cn S4S 0A, yxing@s.urgin. To ppr in Ntwors Astrt Multiply stion Bysin ntwors (MSBNs) provis ohrnt rmwor or proilisti inrn in ooprtiv multignt istriut intrprttion systm. Inrn in MSBNs n prorm tivly using ompil rprsnttion. Th ompiltion involvs th tringultion o th olltiv pnny strutur ( grph) n in trms o th union o st o lol pnny struturs ( st o grphs). Privy o gnts limints th option to ssml ths grphs t ntrl lotion n to tringult thir union. Erlir wor solv istriut tringultion in rstrit s. Th mtho is onptully omplx n th orrtnss o its xtnsion to th gnrl s is iult to justiy. In this ppr, w prsnt nw mtho tht is onptully simplr n is int. W prov its orrtnss in th gnrl s n monstrt its prormn xprimntlly. 1 Introution Multiply stion Bysin ntwors (MSBNs) provis ohrnt rmwor or proilisti inrn in lrg omin [9]. It n ppli unr singl gnt prigm [8] or ooprtiv multi-gnt prigm [6]. It supports ojt-orint inrn [3]. Inrn in MSBN n prorm tivly using ompil rprsnttion ll lin juntion orst (LJF) [9]. Th ompiltion o MSBN into LJF ts svrl stps tht r similr in prinipl to th ompiltion o Bysin ntwor (BN) into its juntion tr o li univrss []. This wor ouss on th tringultion stp. In prtiulr, th input o th pross is st o unirt grphs with ovrlpping nos whih olltivly ns grph union (to n ormlly), n th output is orrsponing st o horl suprgrphs whih olltivly ns horl suprgrph o. Unr th multignt prigm, h gnt my onstrut y n inpnnt vnor who ms th now-hows out suomin into th gnt. For xmpl, th vnor o omponnt in omplx systm n uil n gnt with th now-hows o th omponnt m. Th vnor my not willing to rvl th now-hows whn th gnt is 1

2 intgrt into multignt MSBN. To prott th now-hows o suh vnors, it is sirl not to or h gnt to rvl its intrnl strutur (th grph lol to th gnt). This privy rquirmnt limints th option to ssml ths grphs t ntrl lotion n to tringult thir union s in th singl-gnt prigm. An lgorithm to solv th prolm unr rstritiv onition ws prsnt in [9]. Th mtho is onptully omplx n th orrtnss o its xtnsion to th gnrl s is iult to justiy ormlly. In this wor, w prsnt onptully simpl mtho to solv th prolm n w prov its orrtnss in th gnrl s. In Stion, w motivt this rsrh with n ovrviw o MSBNs n its pplitions. W riy introu th grph-thortil trminologis to us in th rst o th ppr in Stion 3. W n th prolm o multignt tringultion in Stion 4. In Stion 5 w prsnt our mtho in th simplst s n prov its orrtnss. Th mtho is xtn to mor gnrl s in Stion 6. Builing on th rsults o Stions 5 n 6, w prsnt th most gnrl s in Stions 7 n 8. Th xprimntl stuy is prsnt in Stion 9. W nlyz th omplxity o th propos lgorithms in Stion 10. Ovrviw o MSBNs In this stion, w riy introu th rmwor o MSBNs. A BN [4] S is triplt (N;D;P) whr N is st o omin vrils, D is DA whos nos r ll y lmnts o N, n P is joint proility istriution (jp) ovr N spi in trms o proility istriutions o h no in D onition on its prnts. 1 g g () 4 3 () Figur 1: () A igitl iruit. () Th strutur o BN rprsnting th iruit. Figur 1 () shows simpl igitl iruit. A BN () n us to mol th iruit or troul-shooting purpos. Th BN rprsnts h vi n h input/output s no/vril, n rprsnts irt pnn twn h pir o vrils y n r. Th pnn is proilisti in gnrl, spilly or th ulty hvior o vis. Eh no is thus ssoit with proility istriution onition on its prnts. For xmpl, th no g (output o n OR gt) is ssoit with th istriution p(gj; ; ). Th istriution ns how th vlu o g pns on th vlus o its prnt vrils. For instn, p(g =0j =0; =0; = norml) =1:0 rprsnts how input = 0 n =0 to trmin g whn th gt is norml. On th othr hn, p(g =0j =0;=0; = norml) =0:3 rprsnts tht g ts th orrt vlu or th sm input 30% o tim

3 whn th gt is norml (n ts th wrong vlu 70% o th tim). Th BN n thn us to nswr quris suh s \p( = normljg =1;=0;= 1) =?". A MSBN [9] M is olltion o Bysin sunts tht togthr ns BN. Ths sunts shoul stisy rtin onitions to prmit ohrnt istriut inrn. On onition rquirs tht nos shr y two sunts orm -spst, s n low. Lt i =(N i ;E i )(i =0; 1) two grphs. Th grph =(N0 [ N1;E0 [ E1) is rrr to s th union o 0 n 1, not y = 0 t 1. Dnition 1 Lt D i =(N i ;E i )(i =0; 1) two DAs suh tht D = D0 t D1 is DA. Th intrstion I = N0 \ N1 is -spst twn D0 n D1 i or vry x I with its prnts in D, ithr N0 or N1. Eh x I is ll -spno. Just s th strutur o BN is DA, th strutur o MSBN is multiply stion DA (MSDA) with hyprtr orgniztion: Dnition A hyprtr MSDA D = F i D i, whr h D i is onnt DA, is onnt DA onstrutil y th ollowing prour: Strt with n mpty grph (no no). Rursivly DA D, ll hyprno, to th xisting MSDA F 1 i=0 D i sujt to th onstrints: [-spst] For h D j (j<), I j = N j \ N is -spst whn th two DAs r isolt. [lol ovring] Thr xists D i (i<) suh tht, or h D j (j < ; j 6= i), w hv I j N i : For n ritrrily hosn suh D i, I i is th hyprlin twn D i n D whih r si to jnt. W us P T (N) to not proility istriution ovr st N o vrils tht is ssoit with n ojt T. A MSBN is thn n s ollows: Dnition 3 A MSBN M is triplt M =(N ; D; P). N = S i N i is th totl univrs whr h N i is st o vrils. D = F i D i ( hyprtr MSDA) is th strutur whr nos o h DA D i r ll y lmnts o N i. P = Q i P Di (N i )= Q P I (I ) is th jp. Eh P Di (N i ) is istriution ovr N i suh tht whnvr D i n D j r jnt in D, th mrginliztions o P Di (N i ) n P Dj (N j ) onto thir -spst r intil. Eh P I (I ) is suh mrginl istriution ovr hyprlin I o D. Eh triplt S i =(N i ;D i ;P i ) is ll sunt o M. S i n S j r jnt i D i n D j r jnt l q m n o j h i g Figur : An xmpl MSDA o thr DAs. Figur illustrts MSBN with trivil MSDA. Th hyprtr is pit in th lt n th thr DAs r shown in th right. Th -spnos r highlight with oul ovls. 3

4 Snsors Bysin Sunt Dision Mr Atutor Snsitivity Anlyzr Rsonr Communitor Distriut lol Strutur Vriir Figur 3: Min omponnts o n gnt in MSBN-s multi-gnt systm. MSBNs provi rmwor or proilisti rsoning in ooprtiv multi-gnt istriut intrprttion systms. Eh gnt hols its prtil prsptiv o lrg prolm omin (Sunt in Figur 3), sss lol vin sour (Snsors in Figur 3), ommunits with othr gnts inrquntly (Communitor), rsons with th lol vin n limit glol vin (Rsonr), n nswrs quris (Rsonr) or ts tions (Dision Mr/Atutor). I gnts r ooprtiv, n h pir o jnt gnts r onitionlly inpnnt givn thir shr vrils n hv ommon initil li on th shr vrils, thn joint systm li is wll n whih is intil to h gnt's li within its suomin n supplmntl to th gnt's li outsi th suomin [6]. Evn though multipl gnts my quir vin synhronously in prlll, th ommunition oprtions o MSBNs nsur tht th nswrs to quris rom h gnt r onsistnt with vin quir in th ntir systm tr h ommunition. Sin ommunition is inrqunt, th oprtions lso nsur tht twn two sussiv ommunitions, th nswrs to quris or h gnt r onsistnt with ll lol vin gthr so r n r onsistnt with ll vin gthr in th ntir systm up to th lst ommunition. Potntil pplitions o th rmwor inlu ision support to ooprtiv humn usrs in unrtin omins n troulshooting omplx systm y multipl nowlg s susystms [6]. 3 rph-thortil trminologis In this stion, w riy introu th grph-thorti trminologis tht th rmining o th ppr pns on. Aitionl trminologis tht r us ut r not ssntil to unrstning r inlu in th Appnix. W shll ll grph =(N;E) sovr N. Th jny o no x is th st o nos jnt to x, n is not y j(x). A st X o nos in is omplt i h pir o nos in X is jnt. A hor is lin onnting two nonjnt nos. is tringult or horl i vry yl o lngth > 3 hs hor. A no x in grph =(N;E) islimint i j(x) is m omplt y ing lins (i nssry) or x n lins inint to x r rmov. Eh lin thus is ll ll-in. Lt F th st o ll-ins in liminting ll nos in som orr. Thn th grph 0 =(N;E [ F ) is horl. A grph is horl i ll nos n limint on y on in som orr without ll-ins []. Our mtho is s on no limintion in rtin orr. W stt this onpt 4

5 prisly: Dnition 4 Lt grph ovr N1 [ N suh tht N1 \ N =. is liminl in th orr (N1;N) i it is possil to limint ll nos in N1 on y on rst n thn limint ll nos in N on y on without ny ll-ins. Th onpt n xtn suh tht th orr is spi s n-tupl. For simpliity, w shll writ (g; g; g) s(; ; ). W n th onpt o grph-onsistny to rr to pir o grphs whos sugrphs ovr shr nos r intil. Dnition 5 Lt 1 ovr N1 n ovr N two grphs suh tht N1\N 6=. Thn 1 n r si to grph-onsistnt i th sugrphs o 1 n spnn y N1 \ N r intil. 4 Th prolm o ooprtiv tringultion Prorming inrn irtly in MSBN is iult sin its MSDA is otn multiply onnt. As on o th most int wys o inrn in multiply onnt BN uss juntion tr (JT) (Appnix) rprsnttion, w ompil MSBN into st o intr-rlt JTs ll lin juntion orst (LJF) [9] or inrn. In th LJF, th JTs r orgniz into th intil hyprtr strutur s th MSDA. Th ompiltion o MSBN into LJF ts svrl stps, som o whih prlll th ompiltion o BN. W isuss only th rst our stps tht r rlvnt to th purpos o this ppr: Th rst stp, ll morliztion, is to onvrt th MSDA into its morl grph y omplting prnts or h no n ropping th irtions o lins. Sin th MSDA is th union o st o DAs, its morl grph is n in trms o th union o morl grphs o ths DAs. Th son stp is to tringult th morl grph o th MSDA into horl grph. This is n or th sm rson in ompiling BN: JT o grph xists i th grph is horl. Agin, this horl grph is n s th union o st o horl grphs h o whih is otin rom th morl grph o DA. Eh omponnt grph shoul horl sin w wnt to orgniz h sunt into JT or lol inrn. Th thir stp is to onvrt h horl grph in th union into juntion tr (JT) o li univrss [] to us in th inrn omputtion. Th ourth stp is to ompil h hyprlin (-spst) o MSDA into ling tr [6]. This stp llows n gnt's li on -spst ( proility istriution) to toriz omptly so tht ommunition twn gnts n prorm mor intly whn th -spst is lrg. Mor tils on this n oun in [5]. W giv hr nition o ling trs quivlnt to tht in [6] (ut omputtionlly lss int) to ilitt th isussion. Th proo o quivln is trivil. Dnition 6 Lt I th -spst twn JTs T n T in LJF. Rpt th ollowing until no vril n rmov: (1) Rmov vril x 6 I i x is ontin in singl liqu C. () I C oms sust o n jnt liqu D tr (1), union C into D. 5

6 Lt L th grph rsultnt rom th prour. Thn L is ling tr o T with rspt to I i [ ll l = I, whr h liqu l in L is ling. Dn liqu in T tht ontins l s its ling host n r tis ritrrily. It n shown [7] tht th ling tr L is JT, n tht i T is n I-mp (Appnix), thn L is n I-mp ovr I. Thror, to propgt li on I rom T to T uring inrn, it is suint to propgt li on h ling [5] sin B(I) =[ Y l B(l)]=[ Y q B(q)]; whr h l is ling in L with its li tl B(l) n h q is sprtor in L with its li tl B(q). On th othr hn, i [ ll l I whn th prour in Dnition 6 hlts, in whih s L is not ling tr, thn B(I) nnot omptly rprsnt y th ov qution n n only otin y mor xpnsiv omputtion [9]. Th ollowing thorm intis th onition unr whih th ling tr xists 1. Th onition is tht th grph rom whih T is onstrut must tringult in rtin wy. Thorm 7 Lt grph ovr N rom whih JT T is onstrut. Lt I sust o nos in. Thn ling tr o T xists with rspt to I i is liminl in th orr (N ni;i). Proo: [Suiny] Suppos is liminl in (N n I;I). Consir no x N n I tht n limint rst without ll-ins. Thn x must ppr in singl liqu C in T sin othrwis j(x) is inomplt. Hn x n rmov rom C. Rpting this rgumnt or h no in N n I, w will l to limint N n I rom T n th rsultnt grph is th ling tr. [Nssity] Suppos is not liminl in (N n I;I). Tht is, N n I nnot limint without ll-ins in ny prtiulr orr tht is onsistnt with (N n I;I). This mns tht no mttr wht orr w us, thr xists non-mpty sust o N n I (th sust my ir or irnt orrs) suh tht h no in th sust pprs in t lst two liqus o T. Hn th ling tr os not xist. For h JT T in th hyprtr, li propgtion ns to prorm rltiv to h jnt JT. To nsur th xistn o ling tr or h jnt JT, w hv th ollowing rquirmnt or tringultion: Rquirmnt 1 For h hyprno in th hyprtr o MSBN, th tringult morl grph ovr N or th hyprno must suh tht or vry hyprlin I inint to th hyprno, is liminl in th orr (N n I;I). For h hyprlin in th hyprtr, th two npoints (hyprnos) my potntilly onnt th -spst irntly uring tringultion. Th ollowing xmpl shows tht suh tringultion shoul prvnt. 1 This onition n shown to quivlnt to th host omposition onition in [9]. Howvr, th host omposition onition is sriptiv whil th onition prsnt hr is prourl n hn provis irt guilin to tringultion. 6

7 Q,,,,,,, Figur 4: Illustrtion o Rquirmnt. Th -spst is shown y oul ovls. Consir th two morl grphs n Q (ignor th sh lin) in Figur 4 (lt). Using th orr in Thorm 7, is limint without ny ll-ins n Q is limint with th ll-in ; g (sh). Th two orrsponing JTs r shown in th right. Not howvr, tht th JT rom xprsss ls onitionl inpnn rltion, i.., tht ; g is inpnnt o ; g givn. To voi this prolm, th -spst I = ; ; g shoul intilly onnt in n Q (y ing th ll-in ; g to ). Hn, w hv th ollowing rquirmnt or tringultion: Rquirmnt For h pir o jnt hyprnos in th hyprtr o MSBN, th orrsponing -spst must onnt intilly in th two tringult morl grphs. Tht is, th two tringult grphs must grph-onsistnt. Th smntis o Rquirmnt is tht ssumptions on th onitionl inpnn within -spst xprss in irnt JTs must onsistnt. Unr th multignt prigm, MSBN my intgrt rom st o gnts, sy, or troul-shooting omplx systm. Th MSBN signr my now only th intr (spst) twn suomins (sunts intrnl to gnts) ut not th tils o h sunt. Eh gnt my onstrut y n inpnnt vnor who ms th now-hows out suomin into th gnt. For xmpl, th vnor o omponnt in omplx systm n uil n gnt with th now-hows o th omponnt m. Th vnor my not willing to rvl th now-hows whn th gnt is intgrt into multignt MSBN. To prott th now-hows o suh vnors, it is sirl not to or h gnt to rvl its intrnl strutur uring ompiltion. An gnt will givn, y th MSBN signr, th inormtion whih othr gnts it intrs to n wht r th -spsts, ut not muh mor thn tht rgring th intrnl o othr gnts. This privy rquirmnt limints th option to ssml DAs in th MSDA t ntrl lotion or ompiltion. In othr wors, it is sirl to istriut ll stps o ompiltion. Th rst stp (morliztion) n istriut sily. First, h gnt prorms morliztion lolly. Thn jnt gnts in th hyprtr xhng lins mong -spnos so tht h pir o -spnos r onnt intilly t irnt lol grphs. Hn privy o gnts is not ompromis in this stp. On th tringultion (son stp) is omplt, th thir n ourth stps (onstrution o JT rom th horl grph n onstrution o th ling tr rom JT) r lol n thy o not thrtn privy o gnts. W stt th privy rquirmnt or th son stp s ollows: Rquirmnt 3 For h hyprno H in th hyprtr o MSBN n h o its jnt hyprno H 0, th intrnl pnny strutur o H yon th sugrph spnn y thir -spst shoul not rvl to H 0. 7

8 Th ous o this wor is th istriution o th son stp: tringultion. Th prolm n strt s ollows: A st o gnts is orgniz into hyprtr whr h hyprno is ll y n gnt. Eh gnt hs n unirt grph m in it. Eh pir o grphs m in jnt gnts on th hyprtr shr st o ommon nos n r grph-onsistnt. W shll rr to gnts n grphs intrhngly. Th grphs r so lot on th hyprtr tht whnvr two grphs hv st S o shr nos with thir grph on th hyprpth twn thm, S is lso shr y th thir grph 3. Th prolm is to n n tiv wy in whih h gnt tringults its lol grph sujt to Rquirmnts 1 through 3 suh tht th union o ll lol horl grphs is tringult. W shll rr to this prolm s th prolm o ooprtiv tringultion. An lgorithm to solv th prolm in hyprstr ( gnrt hyprtr) ws prsnt in [9]. Th mtho is onptully omplx (.g., six typs o lins n onpt -pth r n, n th srh o suh -pths is nssry) n its orrtnss in th gnrl hyprtr s is iult to justiy ormlly. In this ppr, w prsnt onptully simpl mtho s on no limintion [1] n w prov its orrtnss in th gnrl s. W prsnt th mtho stpwis n rss only Rquirmnts n 3 in Stions 5 through 7. Rquirmnt 1 is rss in Stion 8. 5 Cooprtiv tringultion o two gnts In this stion, w onsir th simplst s o th prolm o ooprtiv tringultion, whr only two gnts/grphs r involv. Algorithm 1 os th ooprtiv tringultion. ivn st F o lins ovr st N o nos, w shll ll sust E F rstrition o F to S N i E = (x; y)jx S; y S; (x; y) F g: Algorithm 1 Dsription: Lt N, V n S isjoint nonmpty sts o nos. Lt grph ovr N [ S n Q grph ovr V [ S suh tht n Q r grph-onsistnt. Lt A n B two gnts suh tht is m in A n Q is m in B. gin 1 A limints nos in in th orr (N;S); not th ll-ins y F ; A s F to ; not th rsultnt grph y 0 ; 3 A sns B th rstrition o F to S; 4 B s to Q th rstrition o F to S riv; not th rsultnt grph y Q 0 ; 5 B limints nos in Q 0 in th orr (V;S); not th ll-ins y F 0 ; 6 B s F 0 to Q 0 ; not th rsultnt grph y Q 00 ; 7 A sns A th rstrition o F 0 to S; 8 B s to 0 th rstrition o F 0 to S riv; not th rsultnt grph y 00 ; n This onition n nsur y istriut morliztion. 3 This is quivlnt to th lol ovring onition. 8

9 Algorithm 1 lrly stiss th privy rquirmnt sin h xhng twn th two gnts rvls only th onntion ovr S. Figur 5 illustrts th lgorithm, whr grphs n Q r shown in th lt. Th shr nos S = ; g r shown s oul ovls. Elimintion in is prorm in th orr (;;;g; ; g). No n limint without ll-in. No nos in ;;g n now limint without ll-ins. I is limint nxt, thn ll-in ; g is rquir. No n thn limint without ll-in. To limint nxt, nothr ll-in ; g is n. Hn limintion in in th orr (;;;;;) prous 0 in Figur 5 (right), whr th ll-ins r shown s sh lins. Q l q Q" j m n o l n m q o j Figur 5: Illustrtion o Algorithm 1. Th ll-in ; g is thn to Q to otin Q 0 (not shown). Elimintion in Q 0 in th orr (;o;j;l;q;m;n;;) prous ll-in ; qg n th rsultnt grph Q 00 is shown in Figur 5 (right). For this xmpl, no ll-ins rom Q 00 n to to 0, n hn 00 = 0. Howvr, this is not lwys th s. Q Q Figur 6: Illustrtion o lst two stps o Algorithm 1. To s th n o stps 7 n 8 in Algorithm 1, onsir th xmpl in Figur 6. Th grphs n Q r shown in th lt, whr S = ; ; ; g. Atr limintion in in th orr (;;;;;), th rsultnt 0 is shown in Figur 6 (right). Atr th rstrition o ll-ins to S is to Q, w otin Q 0 in Figur 6 (right). Elimintion in Q 0 shoul strt with, whih rquirs ll-in ; g. This is th only ll-in to otin Q 00 (not shown). Sin ; g is twn nos in S, it will to 0 to otin 00 (not shown) in stps 7 n 8 o Algorithm 1. 9

10 Th ollowing proposition shows tht th rsultnt grphs rom Algorithm 1 r grphonsistnt n thir union is horl: Proposition 8 Whn Algorithm 1 hlts, th ollowing hol: (1) 00 n Q 00 r grph-onsistnt. () Th grph union 00 t Q 00 is horl. Proo: (1) It is tru rom stps 4 n 8. () It sus to show tht nos in 00 t Q 00 is liminl in th orr (V;N;S). V n limint rst without ll-ins sin th sugrph o 00 t Q 00 spnn y V [ S is Q 00 y stps 7 n 8, n Q 00 is liminl in th orr (V;S) rom stps 5 n 6. Th rmining grph is 00 y stp 8. N n limint rst rom 00 without ll-ins sin sugrphs o 00 n 0 spnn y N r intil y stp 8, n 0 is liminl in th orr (N;S) y stps 1 n. Th rmining grph is spnn y S. It is liminl sin Q 00 is liminl in th orr (V;S). Proposition 8 not only srvs to illustrt th si i o our mtho, it is lso n in proving th mor gnrl s low. 6 Cooprtion with hyprstr orgniztion Nxt, w onsir ooprtiv tringultion whr n> gnts r orgniz into hyprstr. W not th gnt t th ntr o th hyprstr y A0, n th gnt t h l y A i (i =1; :::; n 1). W not th grph m in gnt A i (i =0; :::; n 1) y i ovr nos N i. W ssum tht ths grphs stisy th lol ovring onition: N i \ N j N0 or vry i n j (i 6= j). W not N0 \ N i y S i. Algorithm st LINK = ; or h l gnt A i,o limint N0 in th orr (N0 n S i ;S i ) n not th rsultnt ll-ins y F ; F to 0 n LINK; sn A i th rstrition o F to S i ; riv st F 0 o ll-ins ovr S i rom A i ; F 0 to 0 n LINK; not th rsultnt grph y 0 0; or h l gnt A i,o sn A i th rstrition o LINK to S i ; Algorithm is xut y A0. It is orgniz into two stgs init y lin lin in-twn. Algorithm 3 is xut y h A i (i =1; :::; n 1). It is lso orgniz into two stgs. W ssum tht i n xisting lin is to to grph, it hs no t. 10

11 Algorithm 3 riv st F o ll-ins ovr S i rom A0; F to i ; limint N i in th orr (N i n S i ;S i ) n not th rsultnt ll-ins y F 0 ; F 0 to i ; sn A0 th rstrition o F 0 to S i ; riv st LINK 0 o ll-ins ovr S i rom A0; LINK 0 to i n not th rsultnt grph y 0 i; Th pross strts y A0. In h itrtion o th rst or loop (Algorithm ), it prorms lol limintion rltiv to S i, s ll-ins lolly n sns thm to A i. Whn A i rivs th ll-ins (Algorithm 3), it upts its grph, prorms lol limintion rltiv to S i, s ll-ins lolly n sns thm to A0. Atr th ov hs n on with h A i, A0 nlizs 0 0 n strts th son or loop (Algorithm ). It sns ll rlvnt ll-ins otin in th rst loop to h A i. In rspons, h A i rivs th ll-ins n nlizs 0 i (Algorithm 3). A A 0 A 1 () 1 0 l q m n o j h i g () l q 1 0 m g n o j h i () 1 0 l n m q o j h g i () Figur 7: Illustrtion o Algorithm n 3. Figur 7 illustrts Algorithms n 3. Th hyprstr with thr gnts is shown in (), n th thr grphs r shown in (). Atr A0 itrt on in th rst or loop (rltiv to A1) n A1 omplt its rst stg, th rsultnt grphs r shown in (). Th orrsponing limintion orrs r (o;;j;l;q;m;n;;) n (;;;;;), rsptivly. Atr A0 itrt th son tim in th rst or loop (rltiv to A) n A omplt its rst stg, th rsultnt grphs r shown in (). Th orrsponing limintion orrs r (o;l;;;q;m;n;j;) n (i;h;g;j;), rsptivly. For this xmpl, no ll-ins r to istriut in th son stg o Algorithms or A0. This is not th s in th nxt xmpl. Suppos th thr gnts on th hyprstr o Figur 7() r ssoit with th grphs in Figur 8(). Atr th rst itrtion o A0 in th rst or loop n th rst stg o A1, th rsultnt grphs r shown in (). Th limintion orrs r (; ; ; ; ) n (i; ; ; ), 11

12 0 0 i 1 0 () i 1 0 () i 1 () i 1 () Figur 8: Illustrtion o Algorithm n 3. rsptivly. Atr th son itrtion o A0 in th rst or loop n th rst stg o A, th rsultnt grphs r shown in (). Th limintion orrs r (;;;;)n(;;;;;), rsptivly. Atr th son stg o A0, th rsultnt grphs r shown in (). Not tht without this stg, th ll-in ; g nnot to 1. Also not tht in th son stg o A0, it is unnssry to itrt through th l gnt involv in th lst itrtion o th rst or loop (i.., A in this xmpl). W i not xlu this itrtion in Algorithm in orr to p it simpl. Clrly, Algorithms n 3 stisy th privy rquirmnt. W show tht th rsultnt grphs is grph-onsistnt n thir union is horl: Proposition 9 Whn Algorithms n 3 hlt t ll orrsponing gnts, th ollowing hol: (1) For i =1; :::; n 1, 0 0 n 0 i r grph-onsistnt. () Th grph union t n 1 i=0 0 i is horl. Proo: (1) For h i, 0 n i r grph-onsistnt y ssumption (Stion 4). All ll-ins ovr S i uring th ntir pross r to 0 0, umult in LINK, n snt to A i y A0. Thy r to 0 i y A i. Hn, 0 0 n 0 i r grph-onsistnt. () W prov th rsult through moi vrsion o Algorithms n 3: Without losing gnrlity, w shll ssum tht th rst or loop in Algorithm pros in th orr i =1; ; :::; n 1. For Algorithm, w to th moi vrsion th ollowing s th lst stp o th rst or loop: sn A j (j =1; :::; i 1) th rstrition o LINK to S j ; For Algorithm 3, w m its son stg (th lst two lins) into loop tht itrts i tims, whr th rst i 1 itrtions orrspons to th itionl sning y A0. 1

13 Th t o th moition is tht s soon s A0 n A i hv h omplt lol limintion rltiv to h othr, th nw ll-ins r immitly ommunit to A1 through A i 1 n r inlu in thir lol grphs. Thror, th moi vrsion will prou xtly th sm n rsult s th originl lgorithms. Lt 1 0 not th moi 0 tr A0 hs omplt th rst itrtion o th rst or loop (i = 1). W shll us th vlu o i s th suprsript to inx th urrnt grphs in irnt gnts. Lt 1 not th moi 1 tr A1 hs omplt its rst stg. Aoring to Proposition 8, th grph union Q 1 = 1 0 t 1 is horl. Atr A0 hs omplt th son itrtion o th rst or loop (i = ), it upts 1 0 into 0. Aoring to th moi lgorithm, A0 will ommunit th nw ll-ins ovr S1 to A1 so tht A1 n upt 1 into 1. This upting y A 0 n A1 n olltivly onsir s quivlnt to upting Q 1 into Q 1 = 0 t 1. Not tht 0 n 1 r grph-onsistnt. Th upting n lso onsir s n limintion y A1 ollow y n limintion y A0 s sri in Algorithm 1. Hn Q 1 is horl oring to Proposition 8. On th A si, tr A hs omplt its rst stg, it upts into. Th upting y A0, A1 n A n olltivly onsir s quivlnt to n limintion on Q 1 ollow y n limintion on s sri in Algorithm 1 us th lol ovring onition hols. Applying Proposition 8, w onlu tht th grph union Q = Q 1t = 0t 1t is horl. Using th ov rgumnt rursivly on i (i =3; :::; n 1), th n rsult Q n 1 n 1 = n 1 0 t ::: t n 1 n 1 = t n 1 i=0 0 i is horl. Not th us o th lol ovring onition in th ov proo. Th horlity rsult woul not hol without th lol ovring onition. Not lso tht just s th itionl ommunition in th moi vrsion o Algorithms n 3 us in th proo os not t th n rsult, th sttmnt \ F 0 to i " in Algorithm 3 os not t th n rsult n n rmov. 7 Cooprtion with hyprtr orgniztion W now onsir th most gnrl s o th ooprtiv tringultion prolm, whr n>3 gnts r orgniz into hyprtr. W prsnt rursiv lgorithms or h gnt. Th xution o h lgorithm y n gnt is tivt y ll rom n ntity nown s llr. W not th gnt ll to xut th lgorithm y A0. Th llr is ithr n jnt gnt o A0 in th hyprtr or th systm. I llr is n gnt, w not it y A (with grph ovr N m). I A0 hs jnt gnts othr thn A, w not thm y A1; :::; A n. W not N \ N0 y S n N0 \ N i y S i (i =1; :::; n). In lgorithm DpthFirstElimint, n gnt A0 prorms limintion n upting with rspt to ll jnt gnts. In lgorithm DistriutDlin, n gnt A0 rivs ll-ins rom llr n thn istriuts ll ll-ins mong -spnos to 0 sin th strt o th ooprtiv tringultion to h othr jnt gnt. 13

14 Algorithm CoTringult is xut y th systm to tivt th ooprtiv tringultion y multipl gnts. Algorithm 4 (DpthFirstElimint) i llr is n gnt A,o riv st F o ll-ins ovr S rom A ; F to 0; st LINK = ; or h gnt A i (i =1; :::; n), o limint N0 in th orr (N0 n S i ;S i ) n not th rsultnt ll-ins y F ; F to 0 n LINK; sn A i th rstrition o F to S i ; ll A i to run DpthFirstElimint n riv ll-ins F 0 ovr S i rom A i whn nish; F 0 to 0 n LINK; i llr is n gnt A,o limint N0 in th orr (N0 n S ;S ) n not th rsultnt ll-ins y F 0 ; F 0 to 0 n LINK; sn A th rstrition o LINK to S ; Algorithm 5 (DistriutDlin) i llr is n gnt A,o riv st F o ll-ins ovr S rom A ; F to 0; st LINK to th st o ll ll-ins to 0 so r; or h gnt A i (i =1; :::; n), o sn A i th rstrition o LINK to S i ; Algorithm 6 (CoTringult) hoos n gnt A ritrrily; ll A to run DpthFirstElimint; tr A hs nish, ll A to run DistriutDlin; Figur 9 illustrts CoTringult with systm o 11 gnts. Th hyprtr is pit in th gur with h no ll y n gnt. Suppos th gnt A hosn in th lgorithm is A5. For h rrow, n limintion (s DpthFirstElimint) y th gnt t th til on its lol grph is prorm n th rlvnt ll-ins gnrt r thn snt to th gnt t th h. For xmpl, th rrow rom A5 to A3 rprsnts th limintion o A5 on 5 in th orr (N5 n N3;N5 \ N3), ollow y sning A5 th rstrition o ll-ins to N5 \ N3. Th ll o h rrow shows th orr o th oprtion. It's sy to s tht th orr is similr to pth-rst trvrsl n hn th nm o th oprtion. 14

15 Atr A5 hs nish DpthFirstElimint, th ow o ll-ins uring xution o DistriutDlin is shown y only thos rrows pointing wy rom A5. A 0 A 1 A A A A 5 A A A A6 A8 Figur 9: Illustrtion o CoTringult. In Thorm 11, w show th proprtis o CoTringult. W n th ltitu o no in hyprtr to us in th proo. ivn no A0 on th hyprtr, n th longst pth rom A through A0 to l, n not th l y A. Th ltitu o A0 is thn th lngth o th pth twn A0 n A. In Figur 9, or xmpl, i A is A5, thn th ltitus o A, A4 n A5 r 0, 1 n, rsptivly. Lmm 10 stlishs th pth-rst proprty o DpthFirstElimint to us in proving Thorm 11. W shll rgr A s th root o th hyprtr. Lmm 10 All limintions on grphs lot t th su(hypr)tr root t A0 r prorm tr A0 is ll to run DpthFirstElimint n or A0 rturns rom th ll. Proo: W prov y inution on th ltitu o A0. Whn =0,A0 is l n xtly on limintion is prorm on 0 (s Figur 9, whr th totl numr o limintions on grph lot t (hypr)no is shown y th numr o outgoing rrows o th no). Only th two i sttmnts in DpthFirstElimint r xut in this s, whr th son on ontins th limintion. Hn th lmm is tru. Assum tht th lmm is tru whn = m 0. Now onsir th s = m + 1. Th limintions prorm on grphs lot t th sutr root t A0 r thos prorm on 0 n thos prorm on grphs lot t th sutr root t h A i (i =1; :::; n). Extly n + 1 limintions r to prorm on 0 (on rltiv to h A i (i =1; :::; n) n on rltiv to A ). Th n limintions rltiv to A i (i =1; :::; n) r ontin in th or loop. All limintions on grphs lot t th sutr root t h A i (i =1; :::; n) r lso prorm in th or loop uring th ll to A i y th inutiv ssumption. Th lst limintion on 0 is prorm in th i sttmnt ollowing th or loop. W now prov th proprtis o CoTringult. Thorm 11 Whn CoTringult hlts, th ollowing hol: (1) Eh pir o jnt grphs on th hyprtr r grph-onsistnt. () Th grph union o ll grphs on th hyprtr is horl. 15

16 Proo: (1) This is tru u to th xution o DistriutDlin y gnt A, whih rursivly propgts ll-ins outwrs rom A to th ntir hyprtr. () W prov using moi DpthFirstElimint whr th ollowing sttmnt is t th n: or h gnt A j (j =1; :::; n), o sn A j th rstrition o LINK to S j n ll A j to run DistriutDlin; Its t is tht s soon s ll limintions on grphs lot in th sutr root t A0 hs omplt (Lmm 10), jnt grphs on th sutr r m grph-onsistnt. Hn, th n rsult o CoTringult using th moi DpthFirstElimint is invrint. Using th moi lgorithm, w prov y inution on th ltitu o gnt A0. Whn =1,A1 through A n r lvs o th hyprtr. By Lmm 10, ll limintions on grphs lot on th sutr root t A0 r prorm whn A0 is ll to run DpthFirstElimint. Th prossing is intil to tht o Algorithms n 3, xpt th itionl limintion in 0 rltiv to A. Hn y Proposition 9, th grph union Q o 0 through n is horl or th itionl limintion. Sin th itionl limintion n th upting tht ollows hng nithr th horlity o 0 nor tht o th rmining sugrph o Q, th grph union o 0 through n is horl tr th itionl limintion. Now ssum tht whn th ltitu o A0 is = m 1, th grph union o 0 through n is horl tr A0 is ll to run th moi DpthFirstElimint. Consir th s = m +1. Whn DpthFirstElimint is ll y A0 in h A i (i =1; :::; n), it is quivlnt to rgr A i s (hypr)l with Q i m in it, whr Q i is th union o ll grphs on th sutr root t A i. It is quivlnt sin ll limintions on grphs in th sutr root t A i r prorm uring th ll o DpthFirstElimint on A i y Lmm 10, n sin th lol ovring onition hols. By th inutiv ssumption, whn th ll is omplt, Q i is horl. Du to th quivln with th prossing o Algorithms n 3, w onlu tht th grph union o 0, Q1; :::; Q n is horl y Proposition 9. Thorm 11 shows tht whn CoTringult hlts, th union o ll grphs on th hyprtr is horl. Rll tht h lol grph ns to horl s wll (Stion 4). Thorm 1 shows tht this is utomtilly stis u to th wy in whih MSDA is n. Thorm 1 Lt horl grph n g grph otin y lting som nos (n lins inint to ths nos) rom. Thn g is horl. Proo: It sus to show tht tr th ltion o singl no x, th rmining grph g is horl. W prov y ontrition: Suppos tht g is nonhorl. Thn thr must horlss yl o lngth > 3in g. Sin is horl, shoul prou y th ltion o x n lins inint to x. Howvr, no mttr wht th jny o x is in, w nnot m th horlss yl to go wy. Hn, is in or x is lt. This implis tht is nonhorl: ontrition. 16

17 8 Ensur limintion orrs or multipl -spsts In Stion 7, w hv prsnt CoTringult tht solvs th ooprtiv tringultion prolm sujt to Rquirmnts n 3. Woul Rquirmnt 1 stis s wll? Th ollowing xmpl shows tht this is not th s in gnrl. 1 0 g h Figur 10: Illustrtion o violtion o Rquirmnt 1. Consir th thr lol grphs (ignor th sh lins) in Figur 10 with th hyprstr 1 0. Following CoTringult, gnt A0 rst limints 0 in th orr (;;;;;) rltiv to A1. Th limintion prous no ll-ins. Thn gnt A1 limints 1 in th orr (g;;;;) rltiv to A0 lso without ll-ins. Nxt, gnt A0 limints 0 rltiv to A in th orr (;;;;;), whih prous ll-in ; g (th sh lin in 0). It will snt to A n to (th sh lin in ). A thn limints in th orr (h; ; ; ) rltiv to A0 without itionl ll-ins. CoTringult now hlts. Howvr, i w limint th nw 0 gin rltiv to A1 in th orr (;;;;;), nothr ll-in ; g is now n. Hn, CoTringult os not gurnt stistion o Rquirmnt 1 in gnrl. On th othr hn, situtions li th ov xmpl o not sm to ris otn. In our xprimntl stuy (s Stion 9) with thr MSBNs, ll o thm stis Rquirmnt 1 whn CoTringult hlt. Hn w suggst th ollowing lgorithm to rss Rquirmnt 1: Algorithm 7 (SCoTringult) prorm CoTringult; h gnt prorms n limintion rltiv to th -spst with h jnt gnt; i no gnt ny ll-ins, hlt; ls rstrt this lgorithm; Not tht th limintion prorm in SCoTringult is stritly lol to h gnt. S Stion 10 or th omplxity nlysis n possil msurs or improving th iny. W hv th ollowing thorm on th proprty o SCoTringult: Thorm 13 SCoTringult will hlt, n whn it hlts, Rquirmnt 1 is stis. Proo: Eh roun o SCoTringult will som ll-ins to som lol grphs, sin othrwis it will hlt. Sin only nit numr o ll-ins n to h lol grph 17

18 or it oms omplt, n omplt grph is liminl in ny orr, w onlu tht SCoTringult will hlt. Whn SCoTringult hlts, Rquirmnt 1 hs n xpliitly vri. By Thorms 11, 1 n 13, w onlu tht th prolm o ooprtiv tringultion with Rquirmnts 1 through 3 is solv y SCoTringult. 9 Exprimntl Stuy So r, w hv shown tht SCoTringult orrtly solvs th prolm o ooprtiv tringultion. Howvr, our nlysis sys nothing out how sprs th rsultnt tringultion is. In t, DpthFirstElimint spiys only th (prtil) orr o limintion in trms o susts o nos in grph. Th orr o limintion within h sust is lt unspi. Dpning on th (totl) orr us, irnt ll-ins n prou. In gnrl, w prr limintion orrs tht prou th minimum numr o ll-ins. As it is NP hr [10] to n suh orrs, huristis shoul us. A simpl n tiv huristis or ntrliz tringultion is liminting th no with th smllst ll-ins []. W hv opt th sm huristis to supplmnt th prtil orr spi in Dpth- FirstElimint. To vlut how wll SCoTringult (supplmnt y th huristis) prorms, w onut th ollowing xprimntl stuy: W hv implmnt our lgorithms in WEBWEAVR-III (th sussor o WEBWEAVR- II writtn in JAVA). To vlut th sprsnss o rsults rom ooprtiv tringultion, w ompr with th rsults rom th ntrliz tringultion using th sm huristis. A 0 A A A 1 4 A 3 gt1 gt4 gt gt3 0 h gt10 g gt9 g gt5 gt6 n m o gt8 q gt7 g gt1 i j 1 l gt11 p gt14 gt17 w q gt18 gt13 s l x r gt15 t gt16 p z y gt19 u v 4 3 Figur 11: CIRCS: n xprimntl prolm or ooprtiv tringultion. Tsts wr run using thr gnrt MSBNs: 5PARTS (not shown), CIRCS (Figur 11) n BIB (Figur 1). Th hyprtr o CIRCS with v gnts is shown in Figur 11 (lt). Lol grphs tr morliztion r shown in th right (without th sh lins). Fill-ins uring ooprtiv tringultion r rwn s sh lins. Th rsult or BIB is shown in Figur 1. For ll thr MSBNs, SCoTringult trmint with just on xution o CoTringult. 18

19 A 3 A 0 A 1 A A 4 T1 S1 R1 O1 N1 y M1 U1 Q1 w P1 t L1 v u A V1 s g 3 y x 0 v w t u A B z F1 m n i p l h s 1 o E1 j H1 D1 q x V I1 B J1 R W H z K1 I S D E J U T F X1 Z1 g W1 m n l r H C I D E J F Y1 B1 h o C K N 1 1 C1 i p j q P Q L M O 1 A1 Z X r 4 Y Figur 1: BIB: n xprimntl prolm or ooprtiv tringultion. Th xprimntl rsults r summriz in Tl 1. Th son olumn lists th totl vrils (shr vrils r ount on) in h MSBN. Th numr o ll-ins prou y h ntrliz tringultion is list in th thir olumn, n th orrsponing rsult or ooprtiv tringultion is list in th lst olumn. For 5PARTS, smll MSBN, th sm ll-in ws prou y oth mthos. For CIRCS, h mtho prou ight ll-ins ut two ll-ins wr irnt. For BIB, rsults rom th two mthos shr only two ll-ins, n th ooprtiv tringultion prou two mor. Totl numr Fill-ins Fill-ins MSBN o vrils (ntrliz) (ooprtiv) 5PARTS CIRCS BIB Tl 1: Summry o xprimntl rsults Th rsults monstrt tht SCoTringult prous rsonly sprs tringultions ompr with th ntrliz tringultion. 19

20 10 Complxity nlysis First, w nlyz th tim omplxity o CoTringult. W onntrt on DpthFirstElimint n ous on its limintion prossing only, s th mount o omputtion in ommunition o ll-ins to jnt gnts uring DpthFirstElimint n DistriutDlin is minor. ivn hyprtr o n gnts, rom Figur 9, it's sy to s tht n limintions r prorm uring DpthFirstElimint. Lt th mximum numr o nos in lol grph, n i th mximum gr o no. To limint no, th ompltnss o its jny is h. Th omplxity o th hing is O(i ). Using th huristis, O() nos r h or on is limint. Hn th tim omplxity o liminting ll nos in grph is O( i ). Th omplxity o CoTringult is thn O(n i ). Nxt, w onsir th omplxity o SCoTringult. Clrly, th worst s omplxity o SCoTringult is muh highr thn CoTringult. Howvr, our xprimntl stuy provis vin tht th vrg s omplxity o SCoTringult will los to tht o CoTringult. Furthrmor, iny o SCoTringult n improv in svrl wys: For instn, i -spst oms omplt uring tringultion, thn th hyprlin it rprsnts is \lo" n n ntir su(hypr)tr in on si o th hyprlin ns not pross in ltr itrtions o CoTringult i no ll-ins r prou in th sutr. Anothr onition or rly prtil trmintion is th hng o lol topology. I n gnt nithr prous ny ll-ins lolly nor rivs ny rom jnt gnts uring on roun o CoTringult, it os not hv to prtiipt in th nxt roun (lthough it my hv to prtiipt in ltr rouns). Bs on ths possil improvmnts n our mpiril rsults, w liv tht lthough th worst s omplxity o SCoTringult is quit xpnsiv, only vry smll numr o (otn on) itrtions o CoTringult n to prorm in mny MSBNs. Most gnts n not prtiipt in most o th itrtions o CoTringult xpt th rst on. Thror, th vrg s omplxity o SCoTringult (with ths improvmnts) will similr with tht o CoTringult. 11 Conlusion Inrn with multi-gnt MSBN n prorm tivly in ompil rprsnttion. Th ompiltion without ompromising gnts' privy rquirs ooprtiv tringultion o grph union without rvling h gnt's lol grph yon th sugrph ovr shr nos. W hv propos onptully simpl n int lgorithm (SCoTringult) or ooprtiv tringultion o grph n s th union o st o grphs orgniz into hyprtr. Th lgorithm hs n implmnt n smll sl tst monstrt sprs tringultions ompr with th ntrliz prossing. 0

21 Anowlgmnts This wor is support y th Rsrh rnt OP rom th Nturl Sins n Enginring Rsrh Counil (NSERC) o Cn. Hlpul wr riv on n rly vrsion rom F. Jnsn, U. Kjrul n K.. Olsn. Appnix: Othr rph-thortil trminologis A juntion tr (JT) T ovr st N is tr whr h no is ll y sust (ll lustr) on n h lin is ll y th intrstion (ll spst) o its inint lustrs, suh tht th intrstion o ny two lustrs is ontin in vry spst on th pth twn thm. Two simpl JTs r shown in Figur 4 (right). A mximl omplt st o nos in grph is ll liqu. ivn horl grph ovr st N o nos, JT T o is rt y lling h no o T with liqu o. Suh JT xists i is horl. Th two JTs in Figur 4 (right) r JTs o n Q in Figur 4 (lt), rsptivly. For isjoint susts X, Y n Z o nos in grph, wus<xjzjy > to not tht nos in Z grphilly sprt nos in X n nos in Y. rphil sprtion my n irntly in irnt typs o grphs. I is n unirt grph, thn th norml grphil sprtion pplis. In Figur 4 (lt), ; g n ; g r sprt y g in. In JT T ovr N, grphil sprtion is n s ollows: Lt X, Y n Z isjoint susts o N. Suppos tht or h x X n h lustr C x suh tht x C x, n or h y Y n h lustr C y suh tht y C y, thr xists spst S on th pth twn C x n C y suh tht S Z. Thn X n Y r si to grphilly sprt y Z in T. In Figur 4 (right), ; g n ; g r sprt y g in th lt JT. Lt N th st o vrils in omin n P (N) th proility istriution ovr N. For thr isjoint susts X, Y n Z o vrils, X n Y r onitionlly inpnnt givn Z i P (XjY;Z) =P (XjZ) whnvr P (Y;Z) > 0: Dnot th rltion y I(X; Z; Y ). A grph is n I-mp [4] o PDM ovr N i thr is n on-to-on orrsponn twn nos o n vrils in N suh tht or ll isjoint susts X, Y n Z o N, <XjZjY > =) I(X; Z; Y ). Rrns [1] M.C. olumi. Algorithmi rph Thory n Prt rphs. Ami Prss, [] F.V. Jnsn. An introution to Bysin ntwors. UCL Prss, [3] D. Kollr n A. Pr. Ojt-orint Bysin ntwors. In D. igr n P.P. Shnoy, itors, Pro. 13th Con. on Unrtinty in Artiil Intllign, pgs 30{ 313, Provin, Rho Isln, [4] J. Prl. Proilisti Rsoning in Intllignt Systms: Ntwors o Plusil Inrn. Morgn Kumnn,

22 [5] Y. Xing. Optimiztion o intr-sunt li upting in multiply stion Bysin ntwors. In Pro. 11th Con. on Unrtinty in Artiil Intllign, pgs 565{573, Montrl, [6] Y. Xing. A proilisti rmwor or ooprtiv multi-gnt istriut intrprttion n optimiztion o ommunition. Artiil Intllign, 87(1-):95{34, [7] Y. Xing. Bli upting in MSBNs without rpt lol propgtions. Thnil Rport CS-98-01, Univrsity o Rgin, [8] Y. Xing, B. Pnt, A. Eisn, M. P. Bos, n D. Pool. Multiply stion Bysin ntwors or nuromusulr ignosis. Artiil Intllign in Miin, 5:93{314, [9] Y. Xing, D. Pool, n M. P. Bos. Multiply stion Bysin ntwors n juntion orsts or lrg nowlg s systms. Computtionl Intllign, 9():171{ 0, [10] M. Ynnis. Computing th minimum ll-in is NP-omplt. SIAM J. o Algri n Disrt Mthos, (1), 1981.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

overconstrained well constrained underconstrained a b c d e f g h i j k

overconstrained well constrained underconstrained a b c d e f g h i j k Using Grph Domposition or Solving Continuous CSPs Christin Blik 1, Brtrn Nvu 2, n Gills Tromttoni 1 1 Artiil Intllign Lortory, EPFL CH-1015 Lusnn, Switzrln {lik,trom}@li.i.pl.h 2 CERMICS, quip Contrints

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

Self-Adjusting Top Trees

Self-Adjusting Top Trees Th Polm Sl-jsting Top Ts ynmi ts: ol: mintin n n-tx ost tht hngs o tim. link(,w): ts n g twn tis n w. t(,w): lts g (,w). pplition-spii t ssoit with gs n/o tis. ont xmpls: in minimm-wight g in th pth twn

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information