Thermal Resistance (measurements & simulations) In Electronic Devices

Size: px
Start display at page:

Download "Thermal Resistance (measurements & simulations) In Electronic Devices"

Transcription

1 Thermal Resistance (measurements & simulations) In Electronic Devices A short online course PART 3 Eric Pop Electrical Engineering, Stanford University 1

2 Topics 1) Basics of Joule Heating 2) Heating in Devices & Circuits 3) Thermal Resistance & Estimates 4) Device Thermometry 2

3 Thermal-Electrical Cheat Sheet 3

4 Device Thermal Resistance Data Single-wall nanotube SWNT High thermal resistances: SWNT due to small thermal conductance (very small d ~ 2 nm) Others due to low thermal RTH (K/mW) GST Phase-change Memory (PCM) conductivity, decreasing dimensions, increased role of interfaces Silicon-on- Insulator FET SiO Cu Cu Via Si Bulk FET L (m) Power input also matters: SWNT ~ mw Others ~ mw Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006). 4

5 Approaches for Thermal Resistance Time scale: Steady-State (DC) Transient Geometric complexity: Lumped element (shape factors) Analytic Finite element (Fourier law) Via + Interconnect D L W t Si t BOX Bulk Si FET SOI FET 5

6 Modeling Device Thermal Resistance Steady-state (DC) models Lumped: Mautry (1990), Goodson-Su (1994-5), Pop (2004), Darwish (2005) Finite-Element D RTH (K/mW) Bulk FET SOI FET L (m) L W t Si t BOX Bulk Si FET SOI FET R TH 1 1 2k D 2k LW Si Si S R TH 1 t BOX 2W kbox ksitsi 1/2 6

7 Examples (1) D L W Bulk Si FET SOI FET R TH 1 1 2k D 2k LW Si Si S R TH 1 t BOX 2W kbox ksitsi 1/2 k Si ~ 100 Wm -1 K -1 (highly doped Si) and D = 1 µm then R TH ~ 5 K/mW so T = PR TH ~ 5 K with 1 mw power t Si = 10 nm, t BOX = 50 nm, W = 1 µm k Si ~ 10 Wm -1 K -1 (reduced in thin film) and k BOX ~ 1.4 Wm -1 K -1 then R TH ~ 130 K/mW so T = PR TH ~ 67 K with 0.5 mw power 7

8 Examples (2) R B T L W t BOX = 90 nm, L = W = 1 µm and k BOX ~ 1.4 W/m/K TBR = thermal boundary resistance ~ 10-8 m 2 K/W R SiO2 t BOX R Si T 0 2D FET R B = TBR / (WL) ~ 10 K/mW R SiO2 = t BOX / (k BOX * WL) ~ 60 K/mW R Si = 1 / [2 * k Si * (W + t BOX )] ~ 4.5 K/mW total R TH ~ 75 K/mW so T = PR TH ~ 30 K with 0.4 mw power note the SiO 2 layer dominates, but TBR also plays an important role 8

9 Shape Factors Sunderland, ASHRAE (1964), many others Heat flux: q = Sk(T 1 -T 0 ) Equivalent thermal resistance R TH = 1/Sk 9

10 Many Shape Factors (Compact Models) 10

11 Obtaining the Temperature Distribution So far we ve only looked at lumped thermal models Now we want temperature distribution T(x) Simplest case: Si layer on SiO 2 /Si substrate (SOI) Or interconnect on thermally insulating SiO 2 11

12 1-D Interconnect with Heat Generation W L x x+dx d Heat: dt QAk dx dv I AJ A F A dx Electrical: SiO 2 Si T 0 t ox Write energy balance equation for element dx pick units of J or W (= J/s) Energy In (here, Joule heat) = Energy Out (left, right, bottom) + Change in Internal Energy ka ka hwdxt T QAdx T x x T x x dx 0 C( Adx) T t divide by (Adx): W Q kth T T0 C A e.g. J E if non-uniform or I 2 R/(WLd) if uniform convection-like term, here h = k ox /t ox and W/A = 1/d W can be perimeter if heat loss in all directions T t 12

13 Ex: 1D Rectangular Nanowire 1/m is natural length scale thermal healing length L H k k sub td sub 13

14 Interconnect Heat Loss and Crosstalk 14

15 Ex: Carbon Nanotube (Cylinder) L T d A( kt ) p' g( T T0 ) 0 Pt g SiO 2 t OX T p' cosh( x / L H ) x) T 1 g cosh( L / 2L ) H ( 0 (a) Si t SI (b) dr p' I I dx 2 2 h 1 q 2 4 eff L H ka g Role of cylindrical heat spreading (shape factor!) g ox kox 8tox ln d T max Role of thermal contact resistance et al. J. Appl. Phys. 101, (2007) T (K) ΔT C X (m) dt ka dx C T R C CTh, 15

16 Further Reading L. Su et al., Measurement and modeling of self-heating in SOI nmosfets, IEEE Trans. Elec. Dev. 41, 69 (1994), A. Liao et al., "Thermally-Limited Current Carrying Ability of Graphene Nanoribbons," Phys. Rev. Lett. 106, (2011), C. Durkan et al., Analysis of failure mechanisms in electrically stressed Au nanowires, J. Appl. Phys. 86, 1280 (1999), D. Chen et al., Interconnect Thermal Modeling for Accurate Simulation of Circuit Timing and Reliability, IEEE Trans. CAD 19, 197 (2000), T.-Y. Chiang et al., Analytical Thermal Model for Multilevel VLSI Interconnects Incorporating Via Effect, IEEE EDL 23, 31 (2002), et al., Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates, J. Appl. Phys. 101, (2007), Energy Dissipation and Transport in Nanoscale Devices, Nano Research 3, 147 (2010), 16

Power and Heat: The Big Picture

Power and Heat: The Big Picture Power Power Density (W/cm 2 ) Power Dissipation in Nanoscale CMOS and Carbon Nanotubes Eric Pop Dept. of Electrical & Computer Engineering http://poplab.ece.uiuc.edu E. Pop 1 Power and Heat: The Big Picture

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Thermally-Limited Current Carrying Ability of Graphene Nanoribbons

Thermally-Limited Current Carrying Ability of Graphene Nanoribbons 1 Thermally-Limited Current Carrying Ability of Graphene Nanoribbons Albert D. Liao 1,2,, Justin Z. Wu 3,4,, Xinran Wang 4, Kristof Tahy 5, Debdeep Jena 5, Hongjie Dai 4,*, Eric Pop 1,2,6,* 1 Dept. of

More information

Thermal Management at Nanoscale: Problems and Opportunities

Thermal Management at Nanoscale: Problems and Opportunities Thermal Management at Nanoscale: Problems and Opportunities Alexander A. Balandin Nano-Device Laboratory Department of Electrical Engineering and Materials Science and Engineering Program University of

More information

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures 32nd International Thermal Conductivity Conference 20th International Thermal Expansion Symposium April 27 May 1, 2014 Purdue University, West Lafayette, Indiana, USA Simulation and Optimization of an

More information

Thermally Limited Current Carrying Ability of Graphene Nanoribbons

Thermally Limited Current Carrying Ability of Graphene Nanoribbons PRL 16, 5681 (11) P H Y S I C A L R E V I E W L E T T E R S week ending 4 JUNE 11 Thermally Limited Current Carrying Ability of Graphene Nanoribbons Albert D. Liao, 1, Justin Z. Wu, 3,4 Xinran Wang, 4

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Thermal characterization of Au-Si multilayer using 3- omega method

Thermal characterization of Au-Si multilayer using 3- omega method Thermal characterization of Au-Si multilayer using 3- omega method Sunmi Shin Materials Science and Engineering Program Abstract As thermal management becomes a serious issue in applications of thermoelectrics,

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates

Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates Eric Pop, 1,2,* David A. Mann, 1 Kenneth E. Goodson 2 and Hongjie Dai 1 1 Laboratory for Advanced Materials

More information

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires Supplementary Information Characterization of nanoscale temperature fields during electromigration of nanowires Wonho Jeong,, Kyeongtae Kim,, *, Youngsang Kim,, Woochul Lee,, *, Pramod Reddy Department

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

Chapter 2: Heat Conduction Equation

Chapter 2: Heat Conduction Equation -1 General Relation for Fourier s Law of Heat Conduction - Heat Conduction Equation -3 Boundary Conditions and Initial Conditions -1 General Relation for Fourier s Law of Heat Conduction (1) The rate of

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. References IEICE Electronics Express, Vol.* No.*,*-* Effects of Gamma-ray radiation on

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

Heat Sink Design and Temperature Distribution Analysis for Millimeter Wave IMPATT Oscillators using Finite Difference Method

Heat Sink Design and Temperature Distribution Analysis for Millimeter Wave IMPATT Oscillators using Finite Difference Method Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2011, 3 (2):107-120 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Heat Sink

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.11938/dc1 Supporting Online Material for Low Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes Feng Xiong, lbert Liao, David Estrada,

More information

Pin Fin Lab Report Example. Names. ME331 Lab

Pin Fin Lab Report Example. Names. ME331 Lab Pin Fin Lab Report Example Names ME331 Lab 04/12/2017 1. Abstract The purposes of this experiment are to determine pin fin effectiveness and convective heat transfer coefficients for free and forced convection

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis K. Park 1, S. Hamian 1, A. M. Gauffreau 2, T. Walsh 2 1 University of Utah, Salt Lake

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION

A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION Progress In Electromagnetics Research Letters, Vol. 6, 1 9, 2009 A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION A. M. Al-Hetar, A. S. M. Supa at, and A. B. Mohammad Photonics Technology Center (PTC) Faculty

More information

Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates

Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates JOURNAL OF APPLIED PHYSICS 101, 093710 2007 Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates Eric Pop a Laboratory for Advanced Materials and Department

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Managing. heat for electronics by Patrick K. Schelling 1, *, Li Shi 2, and Kenneth E. Goodson 3

Managing. heat for electronics by Patrick K. Schelling 1, *, Li Shi 2, and Kenneth E. Goodson 3 Managing heat for electronics by Patrick K. Schelling 1, *, Li Shi 2, and Kenneth E. Goodson 3 Increasing power densities and decreasing transistor dimensions are hallmarks of modern computer chips. Both

More information

AN ANALYTICAL THERMAL MODEL FOR THREE-DIMENSIONAL INTEGRATED CIRCUITS WITH INTEGRATED MICRO-CHANNEL COOLING

AN ANALYTICAL THERMAL MODEL FOR THREE-DIMENSIONAL INTEGRATED CIRCUITS WITH INTEGRATED MICRO-CHANNEL COOLING THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1601-1606 1601 AN ANALYTICAL THERMAL MODEL FOR THREE-DIMENSIONAL INTEGRATED CIRCUITS WITH INTEGRATED MICRO-CHANNEL COOLING by Kang-Jia WANG a,b, Hong-Chang

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Thermal Phenomena in Nanoscale Transistors

Thermal Phenomena in Nanoscale Transistors Eric Pop Department of Electrical Engineering, Stanford University, Stanford, CA 94305 Kenneth E. Goodson Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail: goodson@stanford.edu

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering December 11-14, 2011, Shima, Japan co-chairs: Shigeo Maruyama, Kazuyoshi Fushinobu, Jennifer Lukes, Li Shi

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

Chapter 3: Steady Heat Conduction

Chapter 3: Steady Heat Conduction 3-1 Steady Heat Conduction in Plane Walls 3-2 Thermal Resistance 3-3 Steady Heat Conduction in Cylinders 3-4 Steady Heat Conduction in Spherical Shell 3-5 Steady Heat Conduction with Energy Generation

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Shih-Ching Lo 1, Yiming Li 2,3, and Jyun-Hwei Tsai 1 1 National Center for High-Performance

More information

Energy Dissipation and Transport in Nanoscale Devices

Energy Dissipation and Transport in Nanoscale Devices Nano Res (2010) 3: 147 169 1 DOI 10.1007/s12274-010-1019-z Review Article Energy Dissipation and Transport in Nanoscale Devices Eric Pop ( ) Department of Electrical and Computer Engineering, Micro and

More information

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 3: Steady Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand the concept

More information

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration Global Journal of researches in engineering Electrical and electronics engineering Volume 12 Issue 2 Version 1.0 February 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher:

More information

Chapter 2: Steady Heat Conduction

Chapter 2: Steady Heat Conduction 2-1 General Relation for Fourier s Law of Heat Conduction 2-2 Heat Conduction Equation 2-3 Boundary Conditions and Initial Conditions 2-4 Variable Thermal Conductivity 2-5 Steady Heat Conduction in Plane

More information

Thermal Management for LED Applications

Thermal Management for LED Applications Thermal Management for LED Applications What is the role of the PCB? http://saturnelectronics.com/thermal_pcb_design_led_signup.htm Presented by Clemens Lasance Clemens is a former Principal Scientist

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

A Verilog-A Compact Model for Negative Capacitance FET

A Verilog-A Compact Model for Negative Capacitance FET A Verilog-A Compact Model for Negative Capacitance FET Version.. Muhammad Abdul Wahab and Muhammad Ashraful Alam Purdue University West Lafayette, IN 4797 Last Updated: Oct 2, 25 Table of Contents. Introduction...

More information

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function. using structure function. (1) Page 1/5 Test mode and failure There are two modes in a power cycle test: Tj Power cycle that changes the junction temperature (Tj Temperature) inside of the power semiconductor

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation One-Dimensional, Steady-State State Conduction without Thermal Energy Generation Methodology of a Conduction Analysis Specify appropriate form of the heat equation. Solve for the temperature distribution.

More information

Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland

Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland 1 / 23 Abstract EMC protection elements experienced significant heating after

More information

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs)

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Manuscript for Review Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Journal: Electronics Letters Manuscript ID: draft Manuscript Type: Letter

More information

Experimental Study on Interfacial Thermal Transport of Multi-Walled Carbon Nanotube

Experimental Study on Interfacial Thermal Transport of Multi-Walled Carbon Nanotube Experimental Study on Interfacial Thermal Transport of Multi-Walled Carbon Nanotube KOJI TAKAHASHI 1, 2, 3), JUN HIROTANI 1), YUTAKA YAMADA 1) 1) Department of Aeronautics and Astronautics 2) JST, CREST

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Thermal Conductivity Measurements of High and Low Thermal

More information

BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES

BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES D. Celo, R. Joshi 1, and T. Smy Dept. of Electronics, Carleton University, Ottawa, ON, Canada K1S 5B6, ph: 613-520-3967, fax: 613-520-5708:

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Non-Continuum Energy Transfer: Overview

Non-Continuum Energy Transfer: Overview Non-Continuum Energy Transfer: Overview D. B. Go Slide 1 Topics Covered To Date Conduction - transport of thermal energy through a medium (solid/ liquid/gas) due to the random motion of the energy carriers

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

Nanocarbon Technology for Development of Innovative Devices

Nanocarbon Technology for Development of Innovative Devices Nanocarbon Technology for Development of Innovative Devices Shintaro Sato Daiyu Kondo Shinichi Hirose Junichi Yamaguchi Graphene, a one-atom-thick honeycomb lattice made of carbon, and a carbon nanotube,

More information

Ming-C. Cheng: Research overview

Ming-C. Cheng: Research overview Ming-C. Cheng: Research overview Dept. of Electrical & Computer Engineering Clarkson University. Potsdam, NY, mcheng@clarkson.edu Research Experiences Block-Based Reduced Order Thermal Modeling for semiconductor

More information

Manufacture of Nanostructures for Power Electronics Applications

Manufacture of Nanostructures for Power Electronics Applications Manufacture of Nanostructures for Power Electronics Applications Brian Hunt and Jon Lai Etamota Corporation 2672 E. Walnut St. Pasadena, CA 91107 APEC, Palm Springs Feb. 23rd, 2010 1 Background Outline

More information

Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET

Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET Abstract A K M Kamrul Hasan, MD. Nizamul Islam, Dewan Siam Shafiullah Islamic University of Technology (IUT) Gazipur, Bangladesh.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

Use of Multi-Walled Carbon Nanotubes for UV radiation detection

Use of Multi-Walled Carbon Nanotubes for UV radiation detection Use of Multi-Walled Carbon Nanotubes for UV radiation detection Viviana Carillo 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08) 1-4 October 2008 Siena, Italy A new nanostructured

More information

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University 微纳光电子材料与器件工艺原理 Doping 掺杂 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Semiconductor PN Junctions Xing Sheng, EE@Tsinghua LEDs lasers detectors solar

More information

ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS

ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS H I G H S P E E D D E S I G N W H I T E P A P E R w w w. m e n t o r. c o m / p c b INTRODUCTION Three Dimensional Integrated

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

SILICON-ON-INSULATOR (SOI) technology has been regarded

SILICON-ON-INSULATOR (SOI) technology has been regarded IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 10, OCTOBER 2006 2559 Analysis of the Gate Source/Drain Capacitance Behavior of a Narrow-Channel FD SOI NMOS Device Considering the 3-D Fringing Capacitances

More information

Thermal Systems. Basic Modeling Elements. Interconnection Relationships. Derive Input/Output Models. Resistance. Capacitance

Thermal Systems. Basic Modeling Elements. Interconnection Relationships. Derive Input/Output Models. Resistance. Capacitance hermal Systems Basic Modeling Elements Resistance Conduction Convection Radiation Capacitance Interconnection Relationships Energy Balance - 1st Law of hermodynamics Derive Input/Output Models ME375 hermal

More information

CALCULATION of the mean or centroidal value of discrete

CALCULATION of the mean or centroidal value of discrete 636 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL 29, NO 3, SEPTEMBER 2006 Influence Coefficient Method for Calculating Discrete Heat Source Temperature on Finite Convectively Cooled

More information

PROBLEM 3.10 KNOWN: Dimensions and surface conditions of a plate thermally joined at its ends to heat sinks at different temperatures. FIND: (a) Differential equation which determines temperature distribution

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A Conduction Heat Transfer Reading Problems 10-1 10-6 10-20, 10-48, 10-59, 10-70, 10-75, 10-92 10-117, 10-123, 10-151, 10-156, 10-162 11-1 11-2 11-14, 11-20, 11-36, 11-41, 11-46, 11-53, 11-104 Fourier Law

More information

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C) PROBLEM 1.2 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from -15 to 38

More information

Chapter 2 The Well 9/5/2017. E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University

Chapter 2 The Well 9/5/2017. E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University hapter 2 The Well E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University p+ sub ~ 150 m thick, p-epi ~ 30 m thick All transistors go in p- epi layer Typical p- doping

More information

Elementary Process of Electromigration at Metallic Nanojunctions in the Ballistic Regime

Elementary Process of Electromigration at Metallic Nanojunctions in the Ballistic Regime Elementary Process of Electromigration at Metallic Nanojunctions in the Ballistic Regime Kaz Hirakawa Institute of Industrial Science, University of Tokyo CREST, JST collaborators: Akinori Umeno, Kenji

More information

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films Dalius Seliuta Center for Physical Sciences and Technology, Vilnius, Lithuania Liudas Subačius, Irmantas Kašalynas,

More information

Modelling of Diamond Devices with TCAD Tools

Modelling of Diamond Devices with TCAD Tools RADFAC Day - 26 March 2015 Modelling of Diamond Devices with TCAD Tools A. Morozzi (1,2), D. Passeri (1,2), L. Servoli (2), K. Kanxheri (2), S. Lagomarsino (3), S. Sciortino (3) (1) Engineering Department

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS

COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 8, August 15 COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS Priya Srivastav, Asst. Prof.

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Chapter : Heat Conduction Equation Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand multidimensionality

More information

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs NANO: Brief Reports and Reviews Vol. 2, No. 4 (27) 233 237 c World Scientific Publishing Company ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs MICHAEL L. P. TAN, ISMAIL

More information

RADIATION EFFECTS IN SEMICONDUCTOR MATERIALS AND DEVICES FOR SPACE APPLICATIONS. Cor Claeys and Eddy Simoen

RADIATION EFFECTS IN SEMICONDUCTOR MATERIALS AND DEVICES FOR SPACE APPLICATIONS. Cor Claeys and Eddy Simoen RADIATION EFFECTS IN SEMICONDUCTOR MATERIALS AND DEVICES FOR SPACE APPLICATIONS Cor Claeys and Eddy Simoen IMEC 2010 OUTLINE Introduction Total Dose Effects in thin gate oxides RILC, RSB, SEGR, Latent

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree in Mechanical Engineering Numerical Heat and Mass Transfer 02-Transient Conduction Fausto Arpino f.arpino@unicas.it Outline Introduction Conduction ü Heat conduction equation ü Boundary conditions

More information

Local Joule Heating and Overall Resistance Increase

Local Joule Heating and Overall Resistance Increase Journal in oid-containing of ELECTRONIC MATERIALS, Aluminum ol. 30, Interconnects No. 4, 2001 367 Special Issue Paper Local Joule Heating and Overall Resistance Increase in oid-containing Aluminum Interconnects

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997 UNIVERSITY OF WATERLOO DEPARTMENT OF ELECTRICAL ENGINEERING ECE 309 Thermodynamics and Heat Transfer Final Examination Spring 1997 M.M. Yovanovich August 5, 1997 9:00 A.M.-12:00 Noon NOTE: 1. Open book

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang Introduction of Nano Science and Tech Thermal and Electric Conduction in Nanostructures Nick Fang Course Website: nanohub.org Compass.illinois.edu ME 498 2006-09 Nick Fang, University of Illinois. All

More information

Thermal Oxidation of Si

Thermal Oxidation of Si Thermal Oxidation of General Properties of O 2 Applications of thermal O 2 Deal-Grove Model of Oxidation Thermal O 2 is amorphous. Weight Density = 2.20 gm/cm 3 Molecular Density = 2.3E22 molecules/cm

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

Australian Journal of Basic and Applied Sciences. Numerical Investigation of Flow Boiling in Double-Layer Microchannel Heat Sink

Australian Journal of Basic and Applied Sciences. Numerical Investigation of Flow Boiling in Double-Layer Microchannel Heat Sink AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Numerical Investigation of Flow Boiling in Double-Layer Microchannel Heat Sink Shugata

More information

Boundary Condition Dependency

Boundary Condition Dependency Boundary Condition Dependency of Junction to Case Thermal Resistance Introduction The junction to case ( ) thermal resistance of a semiconductor package is a useful and frequently utilized metric in thermal

More information