Diode-like characteristics ofnanometer-scale semiconductor channels with a broken symmetry

Size: px
Start display at page:

Download "Diode-like characteristics ofnanometer-scale semiconductor channels with a broken symmetry"

Transcription

1 Available online at Physica E (4) 6 Diode-like characteristics ofnanometer-scale semiconductor channels with a broken symmetry A.M. Song a;, I. Maximov b, M. Missous a, W. Seifert b a Department of Electrical Engineering and Electronics, UMIST, Manchester M6 QD, UK b Solid State Physics and Nanometer Consortium, Lund University, Lund, Sweden Abstract We present a new type ofnanometer-scale semiconductor nonlinear device, called self-switching device (SSD). The device was realized by simply etching insulating grooves into a semiconductor, between which a narrow channel with a broken symmetry was formed. Because of the asymmetry in the channel boundary, an applied voltage V not only changes the potential prole along the channel direction, but also either widens or narrows the eective channel width depending on the sign of V. This results in a diode-like current voltage characteristic but without the use ofany doping junction or barrier structure. The turn-on voltage can also be widely tuned from virtually to more than V by simply adjusting the channel width. Furthermore, only one lithography step was needed to fabricate SSDs. We used two dierent material systems, InGaAs InP and InGaAs InAlAs, to realize SSDs and the results at room temperature were compared. We also show that by adding a third terminal to an SSD as a gate, the turn-on voltage ofthe device could be tuned by the gate bias and the device functions either as a tunable diode or as a transistor.? 3 Elsevier B.V. All rights reserved. PACS: 73.5.Fq; 73.4.Ei; Be; 73.4.Kp Keywords: Nanodevice; Nonlinear; Symmetry; InGaAs-InP; InGaAs-InAlAs Great eorts have been made to realize novel nanoelectronic devices for the future generations ofintegrated circuits. At the nanometer scale, new transistor concepts, such as single-electron transistor (SET) [ 3], and lateral-gate transistor [4 7] have been invented. An SET possesses remarkable properties such as low-power consumption and ultra-high sensitivity, while the lateral-gate transistor has very simple design and requires only one-step lithography. Recently, dierent approaches have been carried out to fabricate SETs for room-temperature Corresponding author. Tel.: ; fax: address: a.song@umist.ac.uk (A.M. Song). and high-frequency operations [8 ], but the reproducibility ofthe fabrication remains a serious challenge due to the required ultra-small dimension (typically a few nanometer). Apart from such novel transistors, possible nanometer-scale counterparts of conventional diodes were also investigated. Among them are the recently realized ballistic rectier [,] and three-terminal ballistic junction [3 5]. Both types ofdevices have been demonstrated to work at room temperature and at GHz frequencies [6 ]. Nevertheless, the working principle relies on ballistic electron transport, meaning that the device characteristic dimension must be smaller than the electron mean free path. Therefore, although room-temperature ballistic devices have been reproducibly fabricated /$ - see front matter? 3 Elsevier B.V. All rights reserved. doi:.6/j.physe.3..9

2 A.M. Song et al. / Physica E (4) 6 7 using high-mobility III V semiconductors and standard electron-beam lithography, it is still not possible to fabricate room-temperature ballistic devices using silicon materials because ofthe very short mean free path (around nm or less). In this work, by tailoring the boundary ofa narrow semiconductor channel to break its symmetry, we have realized a new type ofnanometer-scale, nonlinear device, called self-switching device (SSD). Because ofthe geometrical asymmetry, the two-terminal device functions like a conventional diode, but the turn-on voltage can be tuned by simply adjusting the width ofthe narrow channel. Furthermore, no barrier structure or doping junction was needed in an SSD, meaning that the device operates with a completely dierent working principle than a conventional diode. Because the required minimum feature size is around 5 nm which is within the limit ofstandard electron beam lithography, we have reproducibly fabricated room-temperature SSDs using both InGaAs InP and InGaAs InAlAs modulation-doped quantum well structures. From the new working principle, which does not require a high electron mobility or long electron mean free path, we also expect SSDs to be reproducibly fabricated using silicon materials by the current advanced CMOS technology. Fig. shows the schematics ofthe InGaAs InP and InGaAs InAlAs modulation-doped quantum well structures, which we used to fabricate SSDs. The strained In :75 Ga :5 As=InP wafers were grown by metal organic vapor phase epitaxy [], while the lattice-matched InGaAs InAlAs wafers were grown by molecular beam epitaxy. At room temperature, the density and mobility ofthe two-dimensional electron gas (DEG) are about 4:7 5 m and : m =Vs, respectively, in the InGaAs InP wafers, and about. :5 6 m and : m =Vs, respectively, in the InGaAs InAlAs quantum well structures. In order to fabricate SSDs using wet etching after the electron-beam lithography, the DEGs in both types ofwafers were designed to be within a short distance from the surface: about 4 6 nm. A scanning electron microscope image ofa typical SSD is shown in Fig. (a), in which the dark lines are the etched insulating grooves into a piece ofthe semiconductor wafers. The continuation of the trenches to the device boundary broke the device symmetry and ensured that the current could ow only via the narrow channel between the grooves. Because ofthe depletion region close to the etched boundaries [gray areas in Fig. (b)], the eective channel is narrower than the physical dimension. As is demonstrated in Figs. (c) and (d), the eective channel width can be either widened or narrowed depending on the sign ofthe applied voltage V. This results in a preferred direction of current ow, hence the diode-like current voltage characteristics. A large number of SSDs were fabricated from both types ofwafers and the results were very similar. The I V characteristic of an SSD, fabricated from an InGaAs InP wafer and measured at temperature T = 4: K is shown in Fig. 3(a). The channel width W = 8 nm was optimized to have a zero turn-on voltage. In this case, at V = the channel was just about to pinch o, namely W =8nm is about twice the depletion length, so that ifa positive voltage is applied, the channel will be opened electrically whereas the channel will be further InGaAs-InP wafer Undoped InP nm ***************************** Undoped InP nm Undoped InGaAs 9nm Undoped InP buffer Undoped InP substrate δ doping DEG InGaAs-InAlAs water UndopedInGaAs nm Undoped InAlAs 3 nm ***************************** Undoped InAlAs nm Undoped InGaAs 8nm Undoped InAlAs buffer Undoped InP substrate Fig.. Schematics ofthe InGaAs InP and InGaAs InAlAs modulation-doped quantum well structures, which were used to fabricate SSDs.

3 8 A.M. Song et al. / Physica E (4) 6 µm.4.3 T=4. K (a) Depletion.. InGaAs-InP W=8 nm, L=. µm (b) V= (a) (c) (d) V>, channel open V>, channel open Fig.. (a) A scanning electron micrograph ofa self-switching device. (b c) schematically show the changes in the depletion regions in the device under dierent bias conditions, indicating how the device functions like a diode even though no barrier structure or any doping junction was used. depleted ifa negative voltage is applied. Similarly, for devices with a smaller channel width W, we found that the turn-on voltage was larger than zero, and if W 8 nm current can always ow as long as V []. This shows that not only the working principle ofthe nonlinear characteristics is completely dierent from a conventional diode for being not based on any doping junction or barrier structure, but also the turn-on voltage can be conveniently tuned by simply adjusting the channel width. The length of the channel, L, was also found to inuence the (b).5.5 InGaAs-InP T=4 K T=3 K W=6 nm, L=. µm Fig. 3. (a) The nearly ideal I V characteristic ofan InGaAs InP based device with the channel width W = 8 nm and length L =: m measured at T =4: K. (b) The I V characteristics ofan SSD with a narrower channel, measured at 4 K and room temperature. device property. The experiments revealed that a certain length is chosen to have a well-dened diode-like characteristic. For most ofour devices, L=: m was needed, which was limited by the wide etched trenches, largely due to the (quasi-)isotropic etch rate ofthe wet chemical etching. From the working principle, we expect that ifthe width ofthe etched trenches is reduced, the length ofthe channel can be decreased, too, since the narrower gap ofthe trenches would lead to a more pronounced self-switching

4 A.M. Song et al. / Physica E (4) 6 9 eect on the modulation ofthe eective channel width by the applied bias. The self-switching devices made from the InGaAs InP wafer were found to be temperature sensitive. For example, the device shown in Fig. 3(a) had a less pronounced I V characteristic at room temperature because signicant leakage current arised under the reverse-bias condition. This suggests that the depletion length became shorter at room temperature. To achieve the zero turn-on voltage for higher temperatures, a narrower channel width is needed. Fig. 3(b) is the result ofa device with W = 6 nm, measured at T = 4 K and room temperature. At 4 K, the I V is virtually ideal with a zero turn-on voltage. However, at room temperature, current appeared under the reverse-bias condition. Further experiments showed that even for SSDs with narrower channel widths, the reverse current did not reduce signicantly. By fabricating devices with dierent etching depths, we concluded that there was some leakage between the buer layer and the substrate in the InGaAs InP wafers. Such a problem seems not to exist in the InGaAs InAlAs wafers. As can be seen in Fig. 4, the I V characteristic ofthe SSD, which was fabricated using the InGaAs InAlAs wafer and measured at room temperature, does not display any clear leakage current under the reverse-bias condition. Comparing with Room temperature InGaAs-InAlAs Fig. 4. The I V characteristic ofan SSD fabricated using the InGaAs InAlAs wafer and measured at room temperature. No clear leakage current was observed under the reverse-bias condition T= K InGaAs-InAlAs -5 5 Fig. 5. The I V characteristic ofan InGaAs InAlAs based SSD showing a high turn-on voltage. the InGaAs InP materials, the InGaAs InAlAs wafers also seemed to allow the realization ofa higher turn-on voltage. Fig. 5 plots the I V characteristic ofan SSD with a much narrower channel width. The turn-on voltage under the forward-bias condition is about 7 V, and is more than V under the reverse-bias condition. One ofthe most signicant properties ofthe SSD is the remarkably simple lithography, i.e., only requiring to create insulating lines on a piece ofconducting semiconductor, which is similar to the fabrication ofa lateral gate transistor [4 7]. By combining a few SSDs, simple circuits such as logic gates can be fabricated also in one lithography step []. Actually, by extending one ofthe trenches ofan SSD, an additional gate can be formed, as sketched by the inset in Fig. 6. By tuning the gate voltage V G from :4 to :4 V at a step of: V, the turn-on voltage, shown in the source drain current I SD versus source drain voltage V SD curves, changed from : V to about :7 V. Gain can also be achieved ifthe device is used for amplication. A dierence from a normal transistor is, however, that the transistor characteristics depend on the sign ofthe source drain voltage as shown in Fig. 6. This is a result ofthe existence ofthe self-switching eect in the upper part ofthe device, and such an eect might be useful in compensation of unwanted eects such as characteristic changes due to temperature variations. Therefore, this three-terminal device

5 A.M. Song et al. / Physica E (4) 6 I DS (µa) T=4 K S Gate V G =-.4V, -.6V,..., -.4V V DS (V) Fig. 6. The source drain current as a function of the source drain voltage at dierent gate biases ofa device sketched by the inset. This shows that the device can be regarded as a diode with a tunable turn-on voltage as well as a transistor. combined the functionalities of a self-switching diode with a tunable turn-on voltage and a lateral gate transistor. Such a exibility as well as the simple, one-step lithography may open up more possibilities ofcircuit applications. In conclusion, we have demonstrated a new type ofnanometer-scale diode, realized in only one step oflithography but not based on any doping junction or barrier structure. The turn-on voltage ofthe self-switching device can be widely tuned from virtually to more than V, by simply adjusting the channel width. With an extended design, a three-terminal device was demonstrated to have the functionalities ofboth a diode and a transistor. Although the devices were so far fabricated using only III V heterostructures, we expect that the devices can readily be made using silicon (such as SOI) wafers since the working principle does not require a high electron mobility. Ifthis is true, it will represent a major step closer to possible practical applications ofthe self-switching device. D This work was supported by the Engineering and Physical Science Research Council (EPSRC), Swedish Research Council, and European LTR research project NEAR. We thank P. Omling and L. Samuelson for useful discussions. References [] D.V. Averin, K.K. Likharev, J. Low Temp. Phys. 6 (986) 345. [] T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59 (987) 9. [3] U. Meiave, M.A. Kastner, S.J. Wind, Phys. Rev. Lett. 65 (99) 77. [4] A.D. Wieck, K. Ploog, Appl. Phys. Lett. 56 (99) 98. [5] J. Nieder, A.D. Wieck, P. Grambow, H. Lage, D. Heitmann, K. von Klitzing, K. Ploog, Appl. Phys. Lett. 57 (99) 695. [6] J.S. Mclean, A.D. Wieck, M. Bleder, K. Ploog, Appl. Phys. Lett. 6 (99) 34. [7] A.D. Wieck, K. Ploog, Appl. Phys. Lett. 6 (99) 48. [8] H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto, T. Ikoma, Appl. Phys. Lett. 68 (996) [9] L. Zhuang, L.J. Guo, S.Y. Chou, Appl. Phys. Lett. 7 (998) 5. [] Yu.A. Pashkin, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 76 () 56. [] A.M. Song, A. Lorke, A. Kriele, J.P. Kotthaus, W. Wegscheider, M. Bichler, Phys. Rev. Lett. 8 (998) 383. [] A.M. Song, Phys. Rev. B 59 (999) 986. [3] K. Hieke, M. Ulfward, Phys. Rev. B 6 () 677. [4] H.Q. Xu, Appl. Phys. Lett. 78 () 64; H.Q. Xu, Appl. Phys. Lett. 8 () 853. [5] L. Worschech, B. Weidner, S. Reitzenstein, A. Forchel, Appl. Phys. Lett. 78 () 335. [6] A.M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, H. Zirath, Jpn. J. Appl. Phys. 4 () L99. [7] A.M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, H. Zirath, Appl. Phys. Lett. 79 () 357. [8] I. Shorubalko, H.Q. Xu, I. Maximov, P. Omling, L. Samuelson, W. Seifert, Appl. Phys. Lett. 79 () 384. [9] I. Shorubalko, H.Q. Xu, I. Maximov, D. Nilson, P. Omling, L. Samuelson, W. Seifert, IEEE Electron Device Lett. 3 () 377. [] L. Worschech, H.Q. Xu, A. Forchel, L. Samuelson, Appl. Phys. Lett. 79 () 387. [] P. Ramvall, N. Carlsson, P. Omling, L. Samuelson, W. Seifert, M. Stolze, Q. Wang, Appl. Phys. Lett. 68 (996). [] A.M. Song, M. Missous, P. Omling, A.R. Peaker, L. Samuelson, W. Seifert, Appl. Phys. Lett. 83 (3) 88.

Room-Temperature Ballistic Nanodevices

Room-Temperature Ballistic Nanodevices Encyclopedia of Nanoscience and Nanotechnology www.aspbs.com/enn Room-Temperature Ballistic Nanodevices Aimin M. Song Department of Electrical Engineering and Electronics, University of Manchester Institute

More information

Formation of unintentional dots in small Si nanostructures

Formation of unintentional dots in small Si nanostructures Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0942 Available online at http://www.idealibrary.com on Formation of unintentional dots in small Si nanostructures L. P. ROKHINSON,

More information

Ballistic nano-devices for high frequency applications

Ballistic nano-devices for high frequency applications Thin Solid Films 515 (2007) 4321 4326 www.elsevier.com/locate/tsf Ballistic nano-devices for high frequency applications S. Bollaert a,, A. Cappy a, Y. Roelens a, J.S. Galloo a, C. Gardes a, Z. Teukam

More information

THz operation of self-switching nano-diodes and nano-transistors

THz operation of self-switching nano-diodes and nano-transistors THz operation of self-switching nano-diodes and nano-transistors J. Mateos 1, A.M. Song 2, B.G. Vasallo 1, D. Pardo 1, and T. González 1 1 Departamento de Física Aplicada, Universidad de Salamanca, Salamanca,

More information

Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning probe microscope

Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning probe microscope Available online at www.sciencedirect.com Physica E 21 (2004) 414 418 www.elsevier.com/locate/physe Electronic states of self-organized InGaAs quantum dots on GaAs (3 1 1)B studied by conductive scanning

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI Title GaAs and InGaAs Single Electron Hex Circuits Based on Binary Decision D Author(s) Kasai, Seiya; Hasegawa, Hideki Citation Physica E: Low-dimensional Systems 3(2-4): 925-929 Issue Date 2002-03 DOI

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Enhancement-mode quantum transistors for single electron spin

Enhancement-mode quantum transistors for single electron spin Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-1-2006 Enhancement-mode quantum transistors for single electron spin G. M. Jones B. H. Hu C. H. Yang M. J.

More information

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures Superlattices and Microstructures, Vol 21, No 1, 1997 Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures M Inoue, T Sugihara, T Maemoto, S Sasa, H Dobashi, S Izumiya Department

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

Enhanced peak-to-valley current ratio in InGaAs/ InAlAs trench-type quantum-wire negative differential resistance field-effect transistors

Enhanced peak-to-valley current ratio in InGaAs/ InAlAs trench-type quantum-wire negative differential resistance field-effect transistors JOURNAL OF APPLIED PHYSICS 97, 034507 2005 Enhanced peak-to-valley current ratio in InGaAs/ InAlAs trench-type quantum-wire negative differential resistance field-effect transistors Takeyoshi Sugaya, a

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Periodic Magnetoresistance Oscillations in Side-Gated Quantum Dots

Periodic Magnetoresistance Oscillations in Side-Gated Quantum Dots Institute of Physics Publishing Journal of Physics: Conference Series 3 () 11 119 doi:1.1/17-59/3/1/9 NPMS-7/SIMD-5 (Maui 5) Periodic Magnetoresistance Oscillations in Side-Gated Quantum Dots T. Suzuki,

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

This is a repository copy of Coulomb blockade directional coupler.

This is a repository copy of Coulomb blockade directional coupler. This is a repository copy of Coulomb blockade directional coupler. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88071/ Version: Accepted Version Article: Pingue, P., Piazza,

More information

Nanocarbon Technology for Development of Innovative Devices

Nanocarbon Technology for Development of Innovative Devices Nanocarbon Technology for Development of Innovative Devices Shintaro Sato Daiyu Kondo Shinichi Hirose Junichi Yamaguchi Graphene, a one-atom-thick honeycomb lattice made of carbon, and a carbon nanotube,

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Nano-electronic Stochastic Logic Gates - Memory Devices - Sensors and Energy Harvester

Nano-electronic Stochastic Logic Gates - Memory Devices - Sensors and Energy Harvester Nano-electronic Stochastic Logic Gates - Memory Devices - Sensors and Energy Harvester F. Hartmann 1, A. Pfenning 1, P. Maier 1, P. Pfeffer 1, I.Neri 2, A. Forchel 1, L. Gammaitoni 2 and L. Worschech 1

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry Journal of Low Temperature Physics - QFS2009 manuscript No. (will be inserted by the editor) Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ Lecture

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Research Article Room-Temperature Hysteresis in a Hole-Based Quantum Dot Memory Structure

Research Article Room-Temperature Hysteresis in a Hole-Based Quantum Dot Memory Structure Nanotechnology Volume 13, Article ID 797964, 4 pages http://dx.doi.org/1.1155/13/797964 Research Article Room-Temperature Hysteresis in a Hole-Based Quantum Dot Memory Structure Tobias Nowozin, 1 Michael

More information

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Rajeev Singh, Zhixi Bian, Gehong Zeng, Joshua Zide, James Christofferson, Hsu-Feng Chou,

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Akabori, Masashi; Hidaka, Shiro; Yam Author(s) Kozakai, Tomokazu; Matsuda, Osamu; Y. Japanese Journal of Applied Physics,

Akabori, Masashi; Hidaka, Shiro; Yam Author(s) Kozakai, Tomokazu; Matsuda, Osamu; Y. Japanese Journal of Applied Physics, JAIST Reposi https://dspace.j Title High-In-content InGaAs quantum point fabricated using focused ion beam sy with N_2 gas field ion source Akabori, Masashi; Hidaka, Shiro; Yam Author(s) Kozakai, Tomokazu;

More information

Mapping the potential within a nanoscale undoped GaAs region using. a scanning electron microscope

Mapping the potential within a nanoscale undoped GaAs region using. a scanning electron microscope Mapping the potential within a nanoscale undoped GaAs region using a scanning electron microscope B. Kaestner Microelectronics Research Centre, Cavendish Laboratory, University of Cambridge, Madingley

More information

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices

Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices Physica E 2 (1998) 325 329 Spontaneous lateral composition modulation in InAlAs and InGaAs short-period superlattices D.M. Follstaedt *, R.D. Twesten, J. Mirecki Millunchick, S.R. Lee, E.D. Jones, S.P.

More information

Fabrication of single-electron tunneling transistors with an electrically formed Coulomb island in a silicon-on-insulator nanowire

Fabrication of single-electron tunneling transistors with an electrically formed Coulomb island in a silicon-on-insulator nanowire Fabrication of single-electron tunneling transistors with an electrically formed Coulomb island in a silicon-on-insulator nanowire Dae Hwan Kim, Suk-Kang Sung, Kyung Rok Kim, Jong Duk Lee, and Byung-Gook

More information

Nanoscale Diodes Without p-n Junctions

Nanoscale Diodes Without p-n Junctions Nanoscale Diodes Without p-n Junctions Mircea DRAGOMAN National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest, Romania E-mail: mircea.dragoman@imt.ro

More information

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems Superlattices and Microstructures www.elsevier.com/locate/jnlabr/yspmi Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems S. Katsumoto, K. Kobayashi, H. Aikawa, A. Sano, Y. Iye Institute

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

VTCMOS characteristics and its optimum conditions predicted by a compact analytical model

VTCMOS characteristics and its optimum conditions predicted by a compact analytical model VTCMOS characteristics and its optimum conditions predicted by a compact analytical model Hyunsik Im 1,3, T. Inukai 1, H. Gomyo 1, T. Hiramoto 1,2, and T. Sakurai 1,3 1 Institute of Industrial Science,

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures A.V. Muravjov* a, D.B. Veksler a, X. Hu b, R. Gaska b, N. Pala c, H. Saxena d, R.E. Peale d, M.S. Shur a a ECSE Department,

More information

Depolarization shift in coupled quantum wells with tunable level spectrum

Depolarization shift in coupled quantum wells with tunable level spectrum Physica E 8 (2000) 269 274 www.elsevier.nl/locate/physe Depolarization shift in coupled quantum wells with tunable level spectrum Petra Denk a;, Martin Hartung a, Achim Wixforth a, K.L. Campmann b, A.C.

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor

Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor JOURNAL OF APPLIED PHYSICS 99, 054503 2006 Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor M. J. Gilbert a and D. K. Ferry Department of Electrical Engineering and

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

Solid State Electronics. Final Examination

Solid State Electronics. Final Examination The University of Toledo EECS:4400/5400/7400 Solid State Electronic Section elssf08fs.fm - 1 Solid State Electronics Final Examination Problems Points 1. 1. 14 3. 14 Total 40 Was the exam fair? yes no

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part - Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits The

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

A 20 nm gate-length ultra-thin body p-mosfet with silicide source/drain

A 20 nm gate-length ultra-thin body p-mosfet with silicide source/drain Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0947 Available online at http://www.idealibrary.com on A 20 nm gate-length ultra-thin body p-mosfet with silicide source/drain

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

An electron wave directional coupler and its analysis

An electron wave directional coupler and its analysis An electron wave directional coupler and its analysis Nadir Dagli, Gregory Snider, Jonathan Waldman, and Evelyn Hu Electrical and Computer Engineering Department, University of California, Santa Barbara,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study JNS 2 (2013) 477-483 Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study Z. Ahangari *a, M. Fathipour b a Department of Electrical

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Characteristics Optimization of Sub-10 nm Double Gate Transistors Characteristics Optimization of Sub-10 nm Double Gate Transistors YIMING LI 1,,*, JAM-WEM Lee 1, and HONG-MU CHOU 3 1 Departmenet of Nano Device Technology, National Nano Device Laboratories Microelectronics

More information

Exceptional ballistic transport in epigraphene. Walt de Heer Georgia Institute of Technology

Exceptional ballistic transport in epigraphene. Walt de Heer Georgia Institute of Technology Exceptional ballistic transport in epigraphene Walt de Heer Georgia Institute of Technology Program Objective First formulated in 2001 and patented in 2003, our objective is to develop nanoelectronics

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors Semi-Conductors In the metal materials considered earlier, the coupling of the atoms together to form the material decouples an electron from each atom setting it free to roam around inside the material.

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Solid-State Electronics

Solid-State Electronics Solid-State Electronics 52 (2008) 1884 1888 Contents lists available at ScienceDirect Solid-State Electronics journal homepage: www.elsevier.com/locate/sse Analysis of STI-induced mechanical stress-related

More information

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique

Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 6, JUNE 2000 1241 Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique Brian Winstead and Umberto Ravaioli,

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Semiconductor Integrated Process Design (MS 635)

Semiconductor Integrated Process Design (MS 635) Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee - Office: 응용공학동 #4306, Tel: #3343 - Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:00-2:15 #2425 Office hour: Tues & Thur

More information

Compound Semiconductors. Electronic Transport Characterization of HEMT Structures

Compound Semiconductors. Electronic Transport Characterization of HEMT Structures Compound Semiconductors Electronic Transport Characterization of HEMT Structures Compound Semiconductors Electronic Transport Characterization of HEMT Structures B. J. Kelley, B. C. Dodrill, J. R. Lindemuth,

More information

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

Chapter 3 The InAs-Based nbn Photodetector and Dark Current 68 Chapter 3 The InAs-Based nbn Photodetector and Dark Current The InAs-based nbn photodetector, which possesses a design that suppresses surface leakage current, is compared with both a commercially available

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract A spin Esaki diode Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/320/5874/356/dc1 Supporting Online Material for Chaotic Dirac Billiard in Graphene Quantum Dots L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill,

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview for Failure Localisation on CMOS Circuits an Overview 8th European FIB User Group Meeting Zürich 2004 Dr. rer. nat. Rüdiger Rosenkranz Infineon Technologies Dresden Physical Failure Analysis Page 1 Never

More information

An Overview of the analysis of two dimensional back illuminated GaAs MESFET

An Overview of the analysis of two dimensional back illuminated GaAs MESFET An Overview of the analysis of two dimensional back illuminated GaAs MESFET Prof. Lochan Jolly*, Ms. Sonia Thalavoor** *(A.P- Department of Electronics & Telecommunication, TCET, Mumbai Email: lochan.jolly@thakureducation.org)

More information

JFETs - MESFETs - MODFETs

JFETs - MESFETs - MODFETs Technische Universität raz Institute of Solid State Physics JFETs - MESFETs - MOFETs JFET n n-channel JFET S n-channel JFET x n 2 ( Vbi V) en S p-channel JFET 2 Pinch-off at h = x en n h Vp 2 V p = pinch-off

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS B. R. Perkins, Jun Liu, and A. Zaslavsky, Div. of Engineering Brown University Providence, RI 02912, U.S.A.,

More information

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Author Haasmann, Daniel, Dimitrijev, Sima Published 2013 Journal Title Applied Physics

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

Vibrational spectroscopy of InAs and AlAs quantum dot structures

Vibrational spectroscopy of InAs and AlAs quantum dot structures Available online at www.sciencedirect.com Physica E 21 (2004) 241 246 www.elsevier.com/locate/physe Vibrational spectroscopy of InAs and AlAs quantum dot structures A.G. Milekhin a;, A.I. Toropov a, A.K.

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Band Gap Measurement *

Band Gap Measurement * OpenStax-CNX module: m43554 1 Band Gap Measurement * Yongji Gong Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction In

More information