Aorangi (Mt. Cook) we typically view the state of the troposphere on "isobaric surfaces" (surfaces of constant pressure) rather

Size: px
Start display at page:

Download "Aorangi (Mt. Cook) we typically view the state of the troposphere on "isobaric surfaces" (surfaces of constant pressure) rather"

Transcription

1 Ch3 (ctd.) EAS270_Ch3_BehaviourAtmos_B.odp JDW, EAS UAlberta, last mod. 19 Sept Atmospheric "behaviour" Aorani (Mt. Cook) "ride" we typically view the state of the troposphere on "isobaric surfaces" (surfaces of constant pressure) rather Fi 3.12 than surfaces of constant heiht features in the "heiht field" include "closed lows and hihs", as well as "trouhs" and "rides" (e.. Fi 11.12)

2 Preamble to Sec 3.5 rides and trouhs on an isobaric surface 2/9 wind "follows" heiht contours upper lows tend to be better defined than the hihs weak radients at low latitudes meanderin airstreams (waves in the upper flow) TROUGH closed upper lows RIDGE Fi 3.22b

3 Preamble to Sec 3.5 rides and trouhs on an isobaric surface as you move perpendicularly away from the trouh axis, heihts rise as you move perpendicularly away from the ride axis, heihts fall contour interval: 6 dam 3/9 The heiht contour interval is 6 dam for the 850, 700 and 500 hpa surfaces; but it is 12 dam for the 250 hpa surface. secondary field (dashed line): "thickness" (which we will presently define) Fi 3.22b (blowup)

4 Sec 3.5 The hypsometric equation 4/9 ΔP = ρ Δz P = ρ Rd T v z z2 eliminate density dp P = dz Rd T v (Eqn 3.10) "the (rate of) chane in pressure with heiht is reater in cold air than it is in warm air" z1 P Note: rather than use the "finite difference notation" here, I have chosen to use the derivative symbol d. This is because I want to express the hydrostatic law in a form that applies at each and every point, whereas if the heiht increment were finite (denoted z rather than dz) I'd need Tv to be an averae over the interval. This distinction is made here only to avoid any discomfort for those needin the calculus to be riorous. We now interate upwards from heiht z1 to heiht z2, usin the first mean value theorem of calculus (steps not shown): [ R d T v Δ z z 2 z1 = ] P1 P2 (Eq 3.11) "the thickness of an atmospheric layer is the difference in heiht between two pressure surfaces" (that bound it). It is controlled by the layer's averae (virtual) temperature

5 Sec 3.5 Applyin the hypsometric equation 5/9 Suppose that at 00 UTC in Edmonton** on a certain day the pressure at round level was P=935 hpa and that the averae value of the temperature below the 850 hpa isobaric surface was -15oC: compute the heiht above round of the 850 hpa surface (nelect the distinction between T and Tv, for at these temperatures the mixin ratio r is very small). Δ z z2 z1 = [ Rd T v ] P1 P2 **Edmonton is about 700 m ASL (700 m above sea level), so surface pressures are much lower than the nominal 1000 hpa (=100 kpa = 105 Pa) fiure for pressure at sea level

6 Sec 3.5 Applyin the hypsometric equation 6/9 Let P1 = 850 hpa, P2 = 700 hpa. Suppose that layer mean Tv= -15oC at A and layer mean Tv= 5oC at B. What is the hpa thickness at A and at B? [ R d T v Δz = ] 850 = T v x = 5.68 T v 700 Δ z A =5.68 ( ) = 1466 m Δ z B=5.68 ( ) = 1580 m A B o T v = 15 C o T v =5 C (averae values from 850 hpa to 700 hpa) Fi 3.13

7 Sec 3.5 Usin the hypsometric equation to compute sea level pressure 7/9 Aain supposin that at 00 UTC in Edmonton on a certain day the pressure at round level was P=935 hpa, compute sea level corrected surface pressure (MSLP) P0, adoptin a value of -15oC for the temperature of the (fictitious) air column down to sea level: Δ z z Edmonton [ Rd T v 0 = 700 m= P = = x P0 = exp [ x 10 2 ] = Fi 3.15 ] P0 P0 P0 287 x( ) = =7552 P P 0 = x 935 = hpa

8 Sec 3.5 Thickness as surroate for mean layer temperature [ R d T v Δ z z 2 z1 = fix P1=1000, P2=500 hpa so Δ z [ m] = 20 T v ] 8/9 P1 P2, then or Rd P1 =20.3 P2 Δ z [dam] = 2 T v a 2 dam increase in layer mean thickness corresponds to a 1 K increase in mean temperature Fi 3.22a

9 Thickness contours secondary field on the 500 hpa isobaric surface 9/9 "thickness" from 1000 to 500 hpa, a surroate for mean temperature of the lower troposphere dam thickness band hihlihted by fill Manitoba storm wrapped cold air southward throuh Saskatchewan Fi 3.22b (blowup)

10 Close-packed isobars over Edmonton -- CMC surface analysis, 18Z Sunday 18 Sept explain it's bein a windy day

11 Lecture of 19 Sept. how to visualize an isobaric surface trouhs, rides, closed lows & hihs "toporaphy" of the isobaric surface the hypsometric eqn usin hypsometric eqn to define MSLP (sea-level corrected pressure) it is common on weather charts to display contours of hpa thickness as a surroate for the mean temperature of the lower troposphere

The Behaviour of the Atmosphere

The Behaviour of the Atmosphere 3 The Behaviour of the Atmosphere Learning Goals After studying this chapter, students should be able to: apply the ideal gas law and the concept of hydrostatic balance to the atmosphere (pp. 49 54); apply

More information

Dynamical Meteorology 1

Dynamical Meteorology 1 Dynamical Meteorology 1 Lecture 5 Sahraei Physics Department, Razi University http://www.razi.ac.ir/sahraei Structure of the Static Atmosphere جو ایستا: در صورتی که در جو هیچگونه ناپایداری وجود نداشته

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

Sec Water vapour variables each has its own usefulness 2/11 The ideal gas law inter-relates vapour pressure (e) & absolute humidity ( ρv) 1 e

Sec Water vapour variables each has its own usefulness 2/11 The ideal gas law inter-relates vapour pressure (e) & absolute humidity ( ρv) 1 e Ch7. Water vapour: the most variable gas & most important GHG Absolute humidity Specific humidity ρv ρv = q q= mass of water vapour volume of sample EAS270_Ch7_WaterVapour_A.odp JDW, EAS Ualberta, last

More information

Weather Station Model

Weather Station Model Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Station Model Temperature Maps Pressure Maps Fronts Lecture

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3 1. Use the hydrostatic equation to show that the mass of a vertical column of air of unit cross-section, extendin from the round to reat heiht,

More information

Development Theory. Chapter 10

Development Theory. Chapter 10 Chapter 1 Development Theory Development Theory In this section I will discuss: - further aspects of the structure and dynamics of synoptic-scale disturbances, and - derive Sutcliffe's development theory,

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle Course.8, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Enery Cycle Enery Forms: As we saw in our discussion of the heat budet, the enery content of the atmosphere per

More information

Chapter 1 Anatomy of a Cyclone

Chapter 1 Anatomy of a Cyclone Chapter 1 Anatomy of a Cyclone The Beast in the East 15-17 February 2003 Extra-tropical cyclone an area of low pressure outside of the tropics Other names for extra-tropical cyclones: Cyclone Mid-latitude

More information

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness. (300 points)

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness. (300 points) Name Date ERTH 465 Fall 2015 Lab 3 Vertical Consistency and Analysis of Thickness (300 points) 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

Geopotential tendency and vertical motion

Geopotential tendency and vertical motion Geopotential tendency and vertical motion Recall PV inversion Knowin the PV, we can estimate everythin else! (Temperature, wind, eopotential ) In QG, since the flow is eostrophic, we can obtain the wind

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics Atmospheric Composition What is the composition of the Earth s atmosphere? Gaseous Constituents of the Earth s atmosphere (dry air) Constituent Molecular Weight Fractional Concentration

More information

actual vapour pressure e = 100 equilib. vapour pressure

actual vapour pressure e = 100 equilib. vapour pressure Chapter 7 (ctd). Water vapour. over water (ice) EAS270_Ch7_WaterVapour_B.odp JDW, EAS U.Alberta, last mod. 18 Oct. 2016 If T=10, what is the equilib.v.p.? If Td=10, what is the v.p.? If T=10, what is the

More information

2 Atmospheric Pressure

2 Atmospheric Pressure 2 Atmospheric Pressure METEOROLOGY 2.1 Definition and Pressure Measurement 2.1.1 Definition Pressure acts in all directions, up and sideways as well as down, but it is convenient in meteorology to regard

More information

Conservation of absolute vorticity. MET 171A: Barotropic Midlatitude Waves. Draw a picture of planetary vorticity

Conservation of absolute vorticity. MET 171A: Barotropic Midlatitude Waves. Draw a picture of planetary vorticity Conservation of absolute vorticity : Barotropic Midlatitude Waves Recall the important terms in the vorticity equation in the middle troposphere, near the level of non-diverence Lecture Outline 1. Conservation

More information

(! g. + f ) Dt. $% (" g. + f ) + f

(! g. + f ) Dt. $% ( g. + f ) + f The QG Vorticity equation The complete derivation of the QG vorticity equation can be found in Chapter 6.2.. Please read this section and keep in mind that extra approximations have been made besides those

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Hydrostatic Equation and Thermal Wind. Meteorology 411 Iowa State University Week 5 Bill Gallus

Hydrostatic Equation and Thermal Wind. Meteorology 411 Iowa State University Week 5 Bill Gallus Hydrostatic Equation and Thermal Wind Meteorology 411 Iowa State University Week 5 Bill Gallus Hydrostatic Equation In the atmosphere, vertical accelerations (dw/dt) are normally fairly small, and we can

More information

Cyclones and Anticyclones, Ridges and Troughs

Cyclones and Anticyclones, Ridges and Troughs Cyclones and Anticyclones, Ridges and Troughs Isobars on surface maps often have a closed appearance (as illustrated) Areas of low pressure are called cyclones, while areas with high pressure are called

More information

Downscaling** a reanalysis for July 1996 "Big Freeze" in Southern NZ

Downscaling** a reanalysis for July 1996 Big Freeze in Southern NZ Downscaling** a reanalysis for July 1996 "Big Freeze" in Southern NZ 2200 km* * Sydney to Auckland **with NOAA/NWS Sci. & Training Resource Center (STRC) "Environmental Modeling System" (EMS): WRF-ARW

More information

Observation Homework Due 11/24. Previous Lecture. Midlatitude Cyclones

Observation Homework Due 11/24. Previous Lecture. Midlatitude Cyclones Lecture 21 Midlatitude Cyclones Observation Homework Due 11/24 1 2 Midlatitude Cyclones Midlatitude Cyclone or Winter Storm Cyclogenesis Energy Source Life Cycle Air Streams Vertical Structure Storm Hazards

More information

The Atmosphere in the Vertical ACTIVITY. Introduction. Materials. Investigations

The Atmosphere in the Vertical ACTIVITY. Introduction. Materials. Investigations ACTIVITY Activity The Atmosphere in the Vertical After completing this activity, you should be able to: Describe the vertical structure of the atmosphere in the troposphere (the "weather" layer) and in

More information

Atmospheric Pressure and Wind Frode Stordal, University of Oslo

Atmospheric Pressure and Wind Frode Stordal, University of Oslo Chapter 4 Lecture Understanding Weather and Climate Seventh Edition Atmospheric Pressure and Wind Frode Stordal, University of Oslo Redina L. Herman Western Illinois University The Concept of Pressure

More information

Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty

Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Observations Station Model Temperature Maps Pressure Maps

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Fronts in November 1998 Storm

Fronts in November 1998 Storm Fronts in November 1998 Storm Much of the significant weather observed in association with extratropical storms tends to be concentrated within narrow bands called frontal zones. Fronts in November 1998

More information

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere ATMOS 5130 Lecture 6 Atmospheric Pressure Pressure Profiles for Idealized Atmosphere Goal Understand how temperature, pressure and altitude are related in the atmosphere. Recall from last lecture Hypsometric

More information

Maps and Remote Sensing AOSC 200 Tim Canty

Maps and Remote Sensing AOSC 200 Tim Canty Maps and Remote Sensing AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Weather Maps Radar Satellite Observations Lecture 04 Feb 7 2019 1 Today s Weather Map

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion

Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion JULY 2007 N O T E S A N D C O R R E S P O N D E N C E 2803 Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion JONATHAN E. MARTIN

More information

Synoptic Meteorology II: Petterssen-Sutcliffe Development Theory Application March 2015

Synoptic Meteorology II: Petterssen-Sutcliffe Development Theory Application March 2015 Synoptic Meteorology II: Petterssen-Sutcliffe Development Theory Application 10-12 March 2015 In our lecture on Petterssen-Sutcliffe Development Theory, we outlined the principle of selfdevelopment in

More information

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness Name Date ERTH 465 Fall 2015 Lab 3 Vertical Consistency and Analysis of Thickness 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work

More information

u g z = g T y (1) f T Margules Equation for Frontal Slope

u g z = g T y (1) f T Margules Equation for Frontal Slope Margules Equation for Frontal Slope u g z = g f T T y (1) Equation (1) is the thermal wind relation for the west wind geostrophic component of the flow. For the purposes of this derivation, we assume that

More information

Mesoscale Meteorology Assignment #3 Q-G Theory Exercise. Due 23 February 2017

Mesoscale Meteorology Assignment #3 Q-G Theory Exercise. Due 23 February 2017 Mesoscale Meteorology Assignment #3 Q-G Theory Exercise 1. Consider the sounding given in Fig. 1 below. Due 23 February 2017 Figure 1. Skew T-ln p diagram from Tallahassee, FL (TLH). The observed temperature

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Metr 201 Quiz #2 100 pts. A. Short Answer and Definitions. (4 points each for a total of 28 points in this section).

Metr 201 Quiz #2 100 pts. A. Short Answer and Definitions. (4 points each for a total of 28 points in this section). Department of Earth & Climate Sciences Name San Francisco State University February 23, 2015 Metr 201 Quiz #2 100 pts. A. Short Answer and Definitions. (4 points each for a total of 28 points in this section).

More information

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere A Mathematical Model for the Fire-extinuishin Rocket Fliht in a Turbulent Atmosphere CRISTINA MIHAILESCU Electromecanica Ploiesti SA Soseaua Ploiesti-Tiroviste, Km 8 ROMANIA crismihailescu@yahoo.com http://www.elmec.ro

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Weather Briefing. Associated Press/Orlin Wagner - near Lawrence, Kansas, Tues. Feb. 26, 2013.

Weather Briefing. Associated Press/Orlin Wagner - near Lawrence, Kansas, Tues. Feb. 26, 2013. CHICAGO (Reuters) - A powerful winter storm that buried the U.S. Plains moved on Tuesday into the southern Great Lakes region, where it snarled the evening commute in Chicago and Milwaukee, created near-whiteout

More information

SEMESTER II EXAMINATION 2011/2012. ACM Synoptic Meteorology II

SEMESTER II EXAMINATION 2011/2012. ACM Synoptic Meteorology II SEMESTER II EXAMINATION 2011/2012 ACM 40540 Synoptic Meteorology II External examiner: Professor Peter A Clark Head of School: Dr Patrick Murphy Lecturer: Professor Peter Lynch Time Allowed: 2 hours Instructions

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

GEF 1100 Klimasystemet. Chapter 7: Balanced flow

GEF 1100 Klimasystemet. Chapter 7: Balanced flow GEF1100 Autumn 2016 27.09.2016 GEF 1100 Klimasystemet Chapter 7: Balanced flow Prof. Dr. Kirstin Krüger (MetOs, UiO) 1 Lecture Outline Ch. 7 Ch. 7 Balanced flow 1. Motivation 2. Geostrophic motion 2.1

More information

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values 3.2 Composite analysis 3.2.1 Pure gradient composites The composite initial NE report in the pure gradient northwest composite (N = 32) occurs where the mean sea level pressure (MSLP) gradient is strongest

More information

EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016

EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016 EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016 Professor: J.D. Wilson Time available: 50 mins Value: 25% No formula sheets; no use of tablet computers etc. or cell phones. Formulae/data at back.

More information

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic.

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic. Quasi-Geostrophic ω-equation For large-scale flow in the atmosphere, we have learned about two very important characteristics:. The atmosphere is approximately hydrostatic.. The atmosphere is approximately

More information

(a) Find the function that describes the fraction of light bulbs failing by time t e (0.1)x dx = [ e (0.1)x ] t 0 = 1 e (0.1)t.

(a) Find the function that describes the fraction of light bulbs failing by time t e (0.1)x dx = [ e (0.1)x ] t 0 = 1 e (0.1)t. 1 M 13-Lecture March 8, 216 Contents: 1) Differential Equations 2) Unlimited Population Growth 3) Terminal velocity and stea states Voluntary Quiz: The probability density function of a liht bulb failin

More information

Synoptic Meteorology

Synoptic Meteorology M.Sc. in Meteorology Synoptic Meteorology [MAPH P312] Prof Peter Lynch Second Semester, 2004 2005 Seminar Room Dept. of Maths. Physics, UCD, Belfield. Part 9 Extratropical Weather Systems These lectures

More information

Lecture 10 March 15, 2010, Monday. Atmospheric Pressure & Wind: Part 1

Lecture 10 March 15, 2010, Monday. Atmospheric Pressure & Wind: Part 1 Lecture 10 March 15, 2010, Monday Atmospheric Pressure & Wind: Part 1 Speed, Velocity, Acceleration, Force, Pressure Atmospheric Pressure & Its Measurement Ideal Gas Law (Equation of State) Pressure Gradient

More information

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth The Continuity Equation: Dines Compensation and the Pressure Tendency Equation 1. General The Continuity Equation is a restatement of the principle of Conservation of Mass applied to the atmosphere. The

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Vertical Structure of Atmosphere

Vertical Structure of Atmosphere ATMOS 3110 Introduction to Atmospheric Sciences Distribution of atmospheric mass and gaseous constituents Because of the earth s gravitational field, the atmosphere exerts a downward forces on the earth

More information

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997)

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Matthew Potter, Lance Bosart, and Daniel Keyser Department of Atmospheric and Environmental

More information

Meteorology Lecture 15

Meteorology Lecture 15 Meteorology Lecture 15 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Atmosphere Properties and Instruments. Outline. AT351 Lab 2 January 30th, 2008

Atmosphere Properties and Instruments. Outline. AT351 Lab 2 January 30th, 2008 Atmosphere Properties and Instruments AT351 Lab 2 January 30th, 2008 Outline 1. Atmospheric Variables and How We Measure Them 2. Composition of the Atmosphere 3. How to Represent Weather Data Visually

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

5 Shallow water Q-G theory.

5 Shallow water Q-G theory. 5 Shallow water Q-G theory. So far we have discussed the fact that lare scale motions in the extra-tropical atmosphere are close to eostrophic balance i.e. the Rossby number is small. We have examined

More information

Appalachian Lee Troughs and their Association with Severe Thunderstorms

Appalachian Lee Troughs and their Association with Severe Thunderstorms Appalachian Lee Troughs and their Association with Severe Thunderstorms Daniel B. Thompson, Lance F. Bosart and Daniel Keyser Department of Atmospheric and Environmental Sciences University at Albany/SUNY,

More information

Chapter 12 Fronts & Air Masses

Chapter 12 Fronts & Air Masses Chapter overview: Anticyclones or highs Air Masses o Classification o Source regions o Air masses of North America Fronts o Stationary fronts o Cold fronts o Warm fronts o Fronts and the jet stream o Frontogenesis

More information

Simple Climate Models

Simple Climate Models Simple Climate Models Lecture 3 One-dimensional (vertical) radiative-convective models Vertical atmospheric processes The vertical is the second important dimension, because there are... Stron radients

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

THE SYNOPTIC ENVIRONMENT OF THE 11 APRIL 2001 CENTRAL PLAINS TORNADO OUTBREAK VIEWED IN THREE DIMENSIONS

THE SYNOPTIC ENVIRONMENT OF THE 11 APRIL 2001 CENTRAL PLAINS TORNADO OUTBREAK VIEWED IN THREE DIMENSIONS P1.1 THE SYNOPTIC ENVIRONMENT OF THE 11 APRIL 2001 CENTRAL PLAINS TORNADO OUTBREAK VIEWED IN THREE DIMENSIONS Daniel D. Nietfeld * NOAA/NWS/WFO Omaha/Valley, NE 1. INTRODUCTION A powerful low pressure

More information

EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011

EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011 EAS270, The Atmosphere Mid-term Exam 28 Oct. 2011 Professor: J.D. Wilson Time available: 50 mins Value: 20% Instructions: For each of the 30 multi-choice questions, choose the most logical option. Use

More information

[16] Planetary Meteorology (10/24/17)

[16] Planetary Meteorology (10/24/17) 1 [16] Planetary Meteorology (10/24/17) Upcoming Items 1. Homework #7 due now. 2. Homework #8 due in one week. 3. Midterm #2 on Nov 7 4. Read pages 239-240 (magnetic fields) and Ch. 10.6 by next class

More information

Idealized Nonhydrostatic Supercell Simulations in the Global MPAS

Idealized Nonhydrostatic Supercell Simulations in the Global MPAS Idealized Nonhydrostatic Supercell Simulations in the Global Joe Klemp, Bill Skamarock, and Sang-Hun Park National Center for Atmospheric Research Boulder, Colorado Typical characteristics: Supercell Thunderstorms

More information

Final Examination, MEA 443 Fall 2008, Lackmann

Final Examination, MEA 443 Fall 2008, Lackmann Place an X here to count it double! Name: Final Examination, MEA 443 Fall 2008, Lackmann If you wish to have the final exam count double and replace your midterm score, place an X in the box above. As

More information

EAS270, The Atmosphere Mid-term Exam 27 Oct, 2006

EAS270, The Atmosphere Mid-term Exam 27 Oct, 2006 EAS270, The Atmosphere Mid-term Exam 27 Oct, 2006 Professor: J.D. Wilson Time available: 50 mins Value: 20% Instructions: For all 32 multi-choice questions, choose what you consider to be the best (or

More information

Module 9 Weather Systems

Module 9 Weather Systems Module 9 Weather Systems In this module the theory of atmospheric dynamics is applied to different weather phenomena. The first section deals with extratropical cyclones, low and high pressure areas of

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

Wire antenna model of the vertical grounding electrode

Wire antenna model of the vertical grounding electrode Boundary Elements and Other Mesh Reduction Methods XXXV 13 Wire antenna model of the vertical roundin electrode D. Poljak & S. Sesnic University of Split, FESB, Split, Croatia Abstract A straiht wire antenna

More information

Problem Set: Fall #1 - Solutions

Problem Set: Fall #1 - Solutions Problem Set: Fall #1 - Solutions 1. (a) The car stops speedin up in the neative direction and beins deceleratin, probably brakin. (b) Calculate the averae velocity over each time interval. v av0 v 0 +

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere.

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere. Lecture 3: Applications of Basic Equations Pressure as Vertical Coordinate From the hydrostatic equation, it is clear that a single valued monotonic relationship exists between pressure and height in each

More information

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS 1. The atmosphere is a continuous fluid that envelops the globe, so that weather observation, analysis, and forecasting require international

More information

Fundamental Meteo Concepts

Fundamental Meteo Concepts Fundamental Meteo Concepts Atmos 5110 Synoptic Dynamic Meteorology I Instructor: Jim Steenburgh jim.steenburgh@utah.edu 801-581-8727 Suite 480/Office 488 INSCC Suggested reading: Lackmann (2011), sections

More information

b. The boundary between two different air masses is called a.

b. The boundary between two different air masses is called a. NAME Earth Science Weather WebQuest Part 1. Air Masses 1. Find out what an air mass is. http://okfirst.mesonet.org/train/meteorology/airmasses.html a. What is an air mass? An air mass is b. The boundary

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

Final Examination, MEA 443 Fall 2003, Lackmann

Final Examination, MEA 443 Fall 2003, Lackmann Place an X here to count it double! Name: Final Eamination, MEA 443 Fall 003, Lackmann If ou wish to have the final eam count double, and dro our lowest score in an of the three semester eams, mark an

More information

INTRODUCTION TO METEOROLOGY PART TWO SC 208 DECEMBER 2, 2014 JOHN BUSH

INTRODUCTION TO METEOROLOGY PART TWO SC 208 DECEMBER 2, 2014 JOHN BUSH INTRODUCTION TO METEOROLOGY PART TWO SC 208 DECEMBER 2, 2014 JOHN BUSH Meteorology ATMOSPHERIC SCIENCES Short term weather systems in time spans of hours, days, weeks or months Emphasis is on forecasting

More information

Remote Sensing Observations AOSC 200 Tim Canty

Remote Sensing Observations AOSC 200 Tim Canty Remote Sensing Observations AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Maps Radar Satellite Observations Lecture 04 Feb 7 2019 1 Today s Weather Map http://www.wpc.ncep.noaa.gov/sfc/namussfcwbg.gif

More information

In this chapter, we will examine

In this chapter, we will examine In this chapter, we will examine Surface and upper level pressure charts The forces that influence the winds The equations that govern atmospheric motion Simple balanced flows Geostrophic wind (quantitative)

More information

Vertical structure. To conclude, we will review the critical factors invloved in the development of extratropical storms.

Vertical structure. To conclude, we will review the critical factors invloved in the development of extratropical storms. Vertical structure Now we will examine the vertical structure of the intense baroclinic wave using three visualization tools: Upper level charts at selected pressure levels Vertical soundings for selected

More information

Weather report 28 November 2017 Campinas/SP

Weather report 28 November 2017 Campinas/SP Weather report 28 November 2017 Campinas/SP Summary: 1) Synoptic analysis and pre-convective environment 2) Verification 1) Synoptic analysis and pre-convective environment: At 1200 UTC 28 November 2017

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points.

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points. Name Date ERTH 465 Fall 2015 Lab 5 Absolute Geostrophic Vorticity 200 points. 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work in mathematical

More information

Dr. Christopher M. Godfrey University of North Carolina at Asheville

Dr. Christopher M. Godfrey University of North Carolina at Asheville Surface and Upper-Air Observations Surface Observations Collect information for synoptic-scale weather Most surface observations are automated (e.g., Automated Surface Observing System) Also mesoscale

More information

ESE / GE 148a: Introduction to Climate

ESE / GE 148a: Introduction to Climate ESE / GE 148a: Introduction to Climate Organizational Details - I TA: Xianglei Huang: Xianglei (Luke) is a graduate student in Planetary Science and is working with Prof. Yuk Yung

More information

Hadley Circulation in Action. MET 200 Lecture 12! Global Winds: The General Circulation of the Atmosphere. Scales of Motion

Hadley Circulation in Action. MET 200 Lecture 12! Global Winds: The General Circulation of the Atmosphere. Scales of Motion Hadley Circulation in Action MET 200 Lecture 12! Global Winds: The General Circulation of the Atmosphere 1 2 Previous Lecture Local Winds cales of Motion Eddies ea Breeze Mountain-Valley Circulations Chinook

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

THE MAP ROOM. BAND ON THE RUN Chasing the Physical Processes Associated with Heavy Snowfall

THE MAP ROOM. BAND ON THE RUN Chasing the Physical Processes Associated with Heavy Snowfall THE MAP ROOM BAND ON THE RUN Chasing the Physical Processes Associated with Heavy Snowfall BY CHARLES E. GRAVES, JAMES T. MOORE, MARC J. SINGER, AND SAM NG AFFILIATIONS: GRAVES, MOORE, AND NG Department

More information

Cunningham, Drew Homework 32 Due: Apr , 4:00 am Inst: Florin 1

Cunningham, Drew Homework 32 Due: Apr , 4:00 am Inst: Florin 1 Cunninham, Drew Homework 3 Due: Apr 1 006, 4:00 am Inst: Florin 1 This print-out should have 10 questions. Multiple-choice questions may continue on the next column or pae find all choices before answerin.

More information

Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics.

Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics. Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics. Polar Front Theory a theory that explains the life cycle of mid latitude cyclones and their associated

More information

The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds.

The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds. 2.4.3. Low-level (especially nocturnal) Jet The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds. A LLJ can occur under

More information