Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Size: px
Start display at page:

Download "Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation"

Transcription

1 Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

2 First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere is at the surface. This planet has an exact nonlinear equilibrium solution for the flow of the atmosphere, characterized by 1. Every column is in radiative-convective equilibrium, 2. Wind vanishes at planet s surface 3. Horizontal pressure gradients balanced by Coriolis accelerations

3 Hydrostatic balance: p = ρ g z In pressure coordinates: φ = α, p where α = 1 specific volume, ρ φ = gz geopotential

4 Geostrophic balance on a sphere: p 2 rel φ u = 2 Ω sinθu tan rel a θ a Can be phrased in terms of absolute angular momentum per unit mass: θ ( cos ) M = acosθ Ω a θ + u φ M Ω a cos θ = sinθ θ a 2 cos 3 θ

5 Eliminate φ using hydrostatic equation: cos p p 2 1 tan θ M α T s* = = 2 2 a θ p θ p θ s* (Thermal wind equation) Take s* = s*( θ ) (convective neutrality) Integrate upward from surface (p=p 0 ), taking u=0 at surface:

6 s * M = a cos θ Ω a cos θ cotθ( T ) s T θ 2 s * u + 2Ω acosθu+ cotθ( T ) s T = 0. θ u ( T T) s * s 2 Ω sin θ y Implies strongest west-east winds where entropy gradient is strongest, weighted toward equator

7 Two potential problems with this solution: 1. Not enough angular momentum available for required west-east wind, 2. Equilibrium solution may be unstable

8 How much angular momentum is needed? At the tropopause, s * M = a cos θ Ω a cos θ cotθ Ts Tt ( ) How much angular momentum is available? M eq =Ω a θ s * ( T ) s Tt θ Ω a ( θ ) tanθ 1 cos cos 2 θ

9 More generally, we require that angular momentum decrease away from the equator: 2 1 M sinθ θ < 0 1 s * Ω θ + θ θ > sinθ θ θ a cos cos cot ( T ) s Tt 0. Let y 2 sec θ T T s * + y > y Ω a y 3 s t

10 What happens when this condition is violated? Overturning circulation must develop Acts to drive actual entropy distribution back toward criticality Postulate constant angular momentum at tropopause: M t = Ωa 2

11 Integrate thermal wind equations down from tropopause: s * M =Ω a + a cos θcotθ T Tt ( ) θ Note: u at surface always < 0 for supercritical entropy distribution

12

13

14 Critical entropy distribution: Ts Tt s * 1 1 = Ω a y 2 y Ts Tt Ts Tt * 1 1 s* = s eq y+ Ω a Ω a 2 y Ts Tt * = 1 cos 2 2 s θ eq + 2 Ω a 2 cos θ

15 Violation results in large-scale overturning circulation, known as the Hadley Circulation, that transports heat poleward and drives surface entropy gradient back toward its critical value From "The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes - Vol. 1" by MIT Press. Courtesy of MIT Press. Used with permission.

16

17 Simulations by Held and Hou (1980)

18

19 Zonal wind at tropopause

20 The cross-equatorial Hadley Circulation

21 Numerical simulation using a 2-D primitive equation model with parameterized convection (Pauluis, 2004) Imposed sea surface temperature

22

23 Why is there ascent on cold side of equator? Meridional pressure gradient above the PBL: ϕ = V v 2 Ω sinθ u y 1 2 v y 2 2Ωsinθ u

24 Hydrostatic: ϕ = ϕ R p pbl ( T ) PBL v pbl pbl pbl v = R y y p y pbl p ϕ ϕ p T 2 1 v ppbl Tv = 2Ωsinθ u R 2 y p y pbl

25 PBL momentum: ϕ V v Fv = 2Ωsinθ u y pbl v 1 v ppbl Tv Fv + R + 2Ωsinθ u u 2 y 2 y p y pbl F v dominant when pbl V Fv CD v h h< C y ~ D pbl ( ) pbl

26 Thin, frictionally dominated PBL: V ppbl Tv CD v R + 2Ωsinθ u h p y u constrained by angular momentum conservation: u u min max pbl Ωa = cosθ Ωa 2 = sin θ cosθ 2 2 sin θ sin θ0, ( )

27 Cold side of equator: V ppbl T CD v R + 2Ω atanθ sin θ sin θ h p y Warm side of equator: v pbl V ppbl Tv CD v R + 2Ω atanθ sin h p y pbl 2 2 θ

28

29 p = 50 pbl mb

30 = 100 ppbl mb

31 p = pbl 200 mb

32 Two-D primitive equation model Parameterizations of convection fractional cloudiness radiation surface fluxes Ocean mixed layer energy budget Model forced by annual cycle of solar radiation Available for class projects (see course web page)

33

34

35

36

37

38

39

40 Relationship between moist convection and Hadley flow Boundary layer entropy equilibrium hypothesis (Raymond, 1995)

41 sb h 0= F M + 1 w s s t Mass: ( ( σ ) )( ) s d d b m ( 1 ) M M σ w = w u d d b

42 F M w s u b s s b m = + (1) Free troposphere heat balance: ( M M w) S = Q, u d cool S c p T θ θ z Convective downdraft: M & ( 1 ) = ε M d p u

43 ε M = w+ p u Q& cool S (2) Combine (1) and (2) M Note that w u Let wb = γ w 1 ε F Q& = 1 γε p sb sm S 1 F γ s Q& = 1 γε p sb sm S M u > w p s cool cool,

44 Radiative-convective equilibrium: w=0 F = M s u = Q& s s Q& ( ), cool b m cool Sε p Sε. p Define F ( ) s eq Q& s s ( ) cool b m Sε p

45 Then w ε p F F s s = 1 γε s s s s ( ) eq ( ) p b m b m eq Surface fluxes: ( * ) 0 F C V s s s k b w > 0 if F s > F eq (s b -s m ) < (s b -s m ) eq Q cool < (Q cool ) eq

46 Note also that we must have M u 0 so in circumstances under which (1) and (2) yield M u < 0 we take M = u 0, F w = or s s = w s s b s s b m w b m b Q& = cool S F radiative-subsidence balance

47 Weak Temperature Gradient Approximation (WTG) Sobel and Bretherton, 2000 Ignore time dependence of T above PBL Determine w from aforementioned equations Determine vorticity from w Determine T by inverting balanced flow

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States See CalTech 2005 paper on course web site Free troposphere assumed to have moist adiabatic lapse rate (s* does

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Isentropic flows and monsoonal circulations

Isentropic flows and monsoonal circulations Isentropic flows and monsoonal circulations Olivier Pauluis (NYU) Monsoons- Past, Present and future May 20th, 2015 Caltech, Pasadena Outline Introduction Global monsoon in isentropic coordinates Dry ventilation

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

7 The General Circulation

7 The General Circulation 7 The General Circulation 7.1 The axisymmetric state At the beginning of the class, we discussed the nonlinear, inviscid, axisymmetric theory of the meridional structure of the atmosphere. The important

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Start heated bottle experiment Scientific Practice Observe nature Develop a model*/hypothesis for what is happening Carry out experiments Make

More information

Tropical Meridional Circulations: The Hadley Cell

Tropical Meridional Circulations: The Hadley Cell Tropical Meridional Circulations: The Hadley Cell Introduction Throughout much of the previous sections, we have alluded to but not fully described the mean meridional overturning circulation of the tropics

More information

Goal: Understand the dynamics and thermodynamics of the Hadley circulation

Goal: Understand the dynamics and thermodynamics of the Hadley circulation Description of the zonal mean tropical overturning (or Hadley) circulation Some simple dynamical and thermodynamic models of the Hadley circulation* The Hadley circulation in a global circulation context

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

More on Diabatic Processes

More on Diabatic Processes More on Diabatic Processes Chapter 3 Write Qtotal = Qrad + Qcond + Qsen total heating radiative heating condensationa l heating sensible heating While diabatic processes drive atmospheric motions, the

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0 References Held, Isaac M., and Hou, A. Y., 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515-533. Held, Isaac M., and Suarez, M. J., 1994: A proposal

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

The meteorology of monsoons

The meteorology of monsoons 978--521-84799-5 - The Asian Monsoon: Causes, History and Effects 1 The meteorology of monsoons 1.1 Introduction Monsoon circulations are major features of the tropical atmosphere, which, primarily through

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech

More information

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case Climate of an Earth- like Aquaplanet: the high- obliquity case and the

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies)

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) 1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) We saw that the middle atmospheric temperature structure (which, through thermal wind balance, determines the mean

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

The Tropical Atmosphere: Hurricane Incubator

The Tropical Atmosphere: Hurricane Incubator The Tropical Atmosphere: Hurricane Incubator Images from journals published by the American Meteorological Society are copyright AMS and used with permission. A One-Dimensional Description of the Tropical

More information

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven Modelling the atmosphere Hennie Kelder University of Technology Eindhoven Content Basics of the atmosphere Atmospheric dynamics Large scale circulation Planetary waves Brewer-Dobson circulation Some Key

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

1 The circulation of a zonally symmetric atmosphere. 1.1 Angular momentum conservation and its implications

1 The circulation of a zonally symmetric atmosphere. 1.1 Angular momentum conservation and its implications 1 The circulation of a zonally symmetric atmosphere We will begin our attempts to understand the big picture of the structure of the atmosphere by asking about what theory predicts if we ignore eddies

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on the General Circulation of the Atmosphere and Oceans: a Modern Perspective

More information

Parameterizing large-scale dynamics using the weak temperature gradient approximation

Parameterizing large-scale dynamics using the weak temperature gradient approximation Parameterizing large-scale dynamics using the weak temperature gradient approximation Adam Sobel Columbia University NCAR IMAGe Workshop, Nov. 3 2005 In the tropics, our picture of the dynamics should

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation

Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation Equator (f=0) p W Pacific Warm SST x E Pacific Colder SST Ocean heat loss Very cold deep ocean Understand cloud feedbacks on:

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

ENERGETICS. [This article treats a technical aspect of climate and weather studies; some of it is intended for readers at an advanced level.

ENERGETICS. [This article treats a technical aspect of climate and weather studies; some of it is intended for readers at an advanced level. ENERGETICS. [This article treats a technical aspect of climate and weather studies; some of it is intended for readers at an advanced level.] Atmospheric energetics, the study of the distribution and transformation

More information

General Circulation of the Atmosphere. René Garreaud

General Circulation of the Atmosphere. René Garreaud General Circulation of the Atmosphere René Garreaud www.dgf.uchile.cl/rene General circulation of the Atmosphere Low latitude areas receive more solar energy than high latitudes (because of earth sphericity).

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

Ocean currents: some misconceptions and some dynamics

Ocean currents: some misconceptions and some dynamics Ocean currents: some misconceptions and some dynamics Joe LaCasce Dept. Geosciences October 30, 2012 Where is the Gulf Stream? BBC Weather Center Where is the Gulf Stream? Univ. Bergen news website (2011)

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 19 Learning objectives: develop a physical understanding of ocean thermodynamic processes 1. Ocean surface heat fluxes; 2. Mixed layer temperature

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Wind Evaporation Feedback and the Axisymmetric Transition to Angular Momentum Conserving Hadley Flow

Wind Evaporation Feedback and the Axisymmetric Transition to Angular Momentum Conserving Hadley Flow 3758 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65 Wind Evaporation Feedback and the Axisymmetric Transition to Angular Momentum Conserving Hadley Flow WILLIAM R. BOOS AND KERRY

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Tropical Meteorology. Kerry Emanuel Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology Cambridge, MA 02139, USA

Tropical Meteorology. Kerry Emanuel Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology Cambridge, MA 02139, USA Tropical Meteorology Kerry Emanuel Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology Cambridge, MA 02139, USA October 5, 1999 Introduction 1 Radiative-Convective Equilibrium

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

Adiabatic expansion Isothermal compression Adiabatic compression

Adiabatic expansion Isothermal compression Adiabatic compression Tropical Cyclones: Steady State Physics 1 Energy Production 2 Carnot Theorem: Maximum efficiency results from a pa rticular energy e cycle: Isothermal expansion Adiabatic expansion Isothermal compression

More information

The General Circulation of the Atmosphere

The General Circulation of the Atmosphere Annu. Rev. Earth Planet. Sci. 2006. 34:655 88 The Annual Review of Earth and Planetary Science is online at earth.annualreviews.org doi: 10.1146/ annurev.earth.34.031405.125144 Copyright c 2006 by Annual

More information

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA A mechanistic model study of quasi-stationary wave reflection D.A. Ortland T.J. Dunkerton ortland@nwra.com NorthWest Research Associates Bellevue WA Quasi-stationary flow Describe in terms of zonal mean

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

ATS 421/521. Climate Modeling. Spring 2015

ATS 421/521. Climate Modeling. Spring 2015 ATS 421/521 Climate Modeling Spring 2015 Lecture 9 Hadley Circulation (Held and Hou, 1980) General Circulation Models (tetbook chapter 3.2.3; course notes chapter 5.3) The Primitive Equations (tetbook

More information

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES 1-28-16 Today What determines

More information

Chapter 7. Atmospheric Models. 7.1 Atmospheric structure. 7.2 Single layer model of atmosphere

Chapter 7. Atmospheric Models. 7.1 Atmospheric structure. 7.2 Single layer model of atmosphere Chapter 7 Atmospheric Models An accurate model of the atmosphere requires the representation of continuous vertical pro- les, leading to a fully three-dimensional treatment. However, many aspects of atmospheric

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

14.1 Simple model of global radiation balance

14.1 Simple model of global radiation balance Chapter 1 Global Circulations 1.1 Simple model of global radiation balance The earth receives energy from the sun in the form of visible, near-infrared, and ultraviolet radiation. Most of this energy is

More information

Fundamentals of Weather and Climate

Fundamentals of Weather and Climate Fundamentals of Weather and Climate ROBIN McILVEEN Environmental Science Division Institute of Environmental and Biological Sciences Lancaster University CHAPMAN & HALL London Glasgow Weinheim New York

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

The Hadley Circulation and the Weak Temperature Gradient Approximation

The Hadley Circulation and the Weak Temperature Gradient Approximation 1744 JOURNAL OF THE ATMOSPHERIC SCIENCES The Hadley Circulation and the Weak Temperature Gradient Approximation L. M. POLVANI AND A. H. SOBEL Department of Applied Physics and Applied Mathematics, and

More information

Vertical Structure of Atmosphere

Vertical Structure of Atmosphere ATMOS 3110 Introduction to Atmospheric Sciences Distribution of atmospheric mass and gaseous constituents Because of the earth s gravitational field, the atmosphere exerts a downward forces on the earth

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

The Equations of Motion in a Rotating Coordinate System. Chapter 3

The Equations of Motion in a Rotating Coordinate System. Chapter 3 The Equations of Motion in a Rotating Coordinate System Chapter 3 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study

More information

Boundary layer controls on extratropical cyclone development

Boundary layer controls on extratropical cyclone development Boundary layer controls on extratropical cyclone development R. S. Plant (With thanks to: I. A. Boutle and S. E. Belcher) 28th May 2010 University of East Anglia Outline Introduction and background Baroclinic

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7 Atmospheric Sciences 321 Science of Climate Lecture 20: More Ocean: Chapter 7 Community Business Quiz discussion Next Topic will be Chapter 8, Natural Climate variability in the instrumental record. Homework

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

Parameterizing large-scale circulations based on the weak temperature gradient approximation

Parameterizing large-scale circulations based on the weak temperature gradient approximation Parameterizing large-scale circulations based on the weak temperature gradient approximation Bob Plant, Chimene Daleu, Steve Woolnough and thanks to GASS WTG project participants Department of Meteorology,

More information

Radiative-Convective Instability

Radiative-Convective Instability Radiative-Convective Instability Kerry Emanuel, Allison Wing, and Emmanuel Vincent Massachusetts Institute of Technology Self-Aggregation of Deep Moist Convection Cloud Clusters Tropical Cyclone Genesis

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

Rotating stratified turbulence in the Earth s atmosphere

Rotating stratified turbulence in the Earth s atmosphere Rotating stratified turbulence in the Earth s atmosphere Peter Haynes, Centre for Atmospheric Science, DAMTP, University of Cambridge. Outline 1. Introduction 2. Momentum transport in the atmosphere 3.

More information

Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation in a Model with Two Vertical Modes

Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation in a Model with Two Vertical Modes Theoretical and Computational Fluid Dynamics manuscript No. (will be inserted by the editor) Samuel P. Burns Adam H. Sobel Lorenzo M. Polvani Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

In two-dimensional barotropic flow, there is an exact relationship between mass

In two-dimensional barotropic flow, there is an exact relationship between mass 19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass streamfunction ψ and the conserved quantity, vorticity (η) given by η = 2 ψ.the evolution of the

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

The general circulation of the atmosphere

The general circulation of the atmosphere Lecture Summer term 2015 The general circulation of the atmosphere Prof. Dr. Volkmar Wirth, Zi. 426, Tel.: 39-22868, vwirth@uni-mainz.de Lecture: 2 Stunden pro Woche Recommended reading Hartmann, D. L.,

More information

MAR 110 LECTURE #9 Earth s Heat Budget / Atmosphere Dynamics

MAR 110 LECTURE #9 Earth s Heat Budget / Atmosphere Dynamics MAR 110: Lecture 9 Outline Heat Budget / Atmosphere Dynamics 1 MAR 110 LECTURE #9 Earth s Heat Budget / Atmosphere Dynamics External Energy Source-the Sun The portion of the sun s energy that is intercepted

More information

Equatorial Superrotation on Tidally Locked Exoplanets

Equatorial Superrotation on Tidally Locked Exoplanets Equatorial Superrotation on Tidally Locked Exoplanets Adam P. Showman University of Arizona Lorenzo M. Polvani Columbia University Synopsis Most 3D atmospheric circulation models of tidally locked exoplanets

More information