Idealized Nonhydrostatic Supercell Simulations in the Global MPAS

Size: px
Start display at page:

Download "Idealized Nonhydrostatic Supercell Simulations in the Global MPAS"

Transcription

1 Idealized Nonhydrostatic Supercell Simulations in the Global Joe Klemp, Bill Skamarock, and Sang-Hun Park National Center for Atmospheric Research Boulder, Colorado

2 Typical characteristics: Supercell Thunderstorms Strong, long-lived convective cells Deep, persistent rotating updrafts May propagate tranverse to the mean winds May split into two counter-rotating storms Produce most of the world s intense tornadoes 3 April 1964 Oklahoma Splitting Supercell Storms Observed storm reflectivity 2 km cloud model simulation Wilhelmson & Klemp (JAS, 1982)

3 GOES East, UTC 3 km Global -A Simulation Initialization 4 day forecast valid UTC Surface Temperature Vertical Velocity at 200 hpa Maximum Reflectivity 50 km splitting supercell thunderstorms m/s Cold-pools from isolated storms ahead of the cold front K dbz

4 Simulations on a Reduced-Radius Earth Sphere Observations: Global grids required to resolve nonhydrostatic phenomena are often beyond the realm of feasibility (and not cost effective). Simulations on a reduced-radius sphere permit nonhydrostatic resolutions at reasonable computational cost. Phenomena on a reduced-radius earth sphere may have little physical relevance to the real atmosphere. Our philosophy: Idealized small-planet simulations should exhibit strong similarity to physically relevant geophysical flows For nonhydrostatic phenomena in a Cartesian geometry good correspondence with flow

5 - Atmosphere Equations Fully compressible nonhydrostatic equations Permits explicit simulation of clouds Solver Technology C-grid centroidal Voronoi mesh Unstructured grid permits conformal variable-resolution grids Most of the techniques for integrating the nonhydrostatic equations come from WRF. Supercell Simulation Initial sounding representative of supercell environment Convection initiated with low-level warm bubble (3o K) Minimal model physics (simple Kessler microphysics) Constant 2nd order viscosity (500 m2/s) permits convergence zt = 20 km, Δz = 500 m, No Coriolis force (f = 0)

6 Initial Sounding for Supercell Tests Based on historical supercell simulations (Weisman and Klemp, 1982, 1984) z 5 km surface 0 30 m/s Horizontal velocity, U eq On the sphere: U i = U eq cos φ CAPE ~ 2200 m 2 /s 2

7 Balanced Initial Conditions on the Sphere (f = 0) hydrostatic equation: gradient wind equation: Cross differentiating and equating π φz : Converges in ~ 3 iterations

8 Kessler Cloud Microphysics potential temperature water vapor mixing ratio cloud water mixing ratio rain water mixing ratio cloud evap. cond. rain evap. rain auto conv. rain coll. rain fall Kessler subroutine (~40 lines of code) computes increments to at the end of each time step

9 Supercell Simulations, & Reference Cloud Model Full model code used for idealized simulations Grid generated on flat plane with periodic boundaries ~500 m y d 500 m Rectangular Grid Δx x Vertical velocity contours at 1, 5, and 10 km (c.i. = 3 m/s) 30 m/s vertical velocity surface shaded in red Rainwater surfaces shaded as transparent shells Perturbation surface temperature shaded on baseplane

10 Maximum Vertical Velocity W max (m/s) Flat plane, Δ ~ 500 m X = 120, Δ ~ 500 m X = 120, Δ ~ 1000 m Time (s)

11 40N Rain Water q r, X = 120, Δ ~ 500 m, z = 5 km latitude 0 40S 30 min 60 min 90 min 120 min 0 c.i. 1 gm/kg 40E 80E 120E longitude

12 Vertical Velocity, X = 120, Δ ~ 500 m, z = 5 km 40N latitude 0 40S 30 min 60 min 90 min 120 min longitude 0 c.i. 2 m/s 40E 80E 120E

13 40N Vertical Velocity w at 2 h, z = 5 km latitude 0 40S flat plane ~ 500 m X = 120 ~ 500 m X = 120 ~ 1000 m c.i. 2 m/s longitude

14 Rain Water q v at 2 h, z = 5 km 40N latitude 0 40S flat plane ~ 500 m X = 120 ~ 500 m X = 120 ~ 1000 m c.i. 1 g/kg longitude

15 Vertical Velocity w at 2 h, z = 2.5 km 40N latitude 0 flat plane ~ 500 m X = 120 ~ 500 m X = 120 ~ 1000 m 40S c.i. 1 m/s longitude surface cold pool

16 Supercell Testcase- Summary Realistic supercell storms can be simulated in an idealized atmospheric environment with simple physics. Good correspondence between simulation on reduced radius sphere (X = 120) and results in a Cartesian geometry. -3 Grid size Δ ~ 1 km retains much of the -1 supercell structure obtained with Δ ~ 500 m. Further simulations needed to explore behavior as resolution is further reduced. -5

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS 9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS Ulrike Wissmeier, Robert Goler University of Munich, Germany 1 Introduction One does not associate severe storms with the tropics

More information

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data David Dowell and Wiebke Deierling National Center for Atmospheric Research, Boulder, CO Ensemble Data Assimilation

More information

Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling

Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling Using hybrid isentropic-sigma vertical coordinates in nonhydrostatic atmospheric modeling Michael D. Toy NCAR Earth System Laboratory/ Advanced Study Program Boulder, Colorado, USA 9th International SRNWP

More information

Experiments with Idealized Supercell Simulations

Experiments with Idealized Supercell Simulations Latent Heat Nudging in almo: Experiments with Idealized Supercell Simulations Daniel Leuenberger and Andrea Rossa MeteoSwiss Talk Outline Introduction Supercell Storms Characteristics Reference simulation

More information

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION JP1J.3 THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION Guoqing Ge 1,2,*, Jidong Gao 1, Kelvin Droegemeier 1,2 Center for Analysis and Prediction of Storms, University of Oklahoma,

More information

Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma 454 MONTHLY WEATHER REVIEW Retrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermodynamic Retrieval and Numerical Prediction STEPHEN S. WEYGANDT,*

More information

Real- Time Predic.on of the Tropics using the Model for Predic.on Across Scales (MPAS)

Real- Time Predic.on of the Tropics using the Model for Predic.on Across Scales (MPAS) Real- Time Predic.on of the Tropics using the Model for Predic.on Across Scales (MPAS) Chris Davis, Bill Skamarock, Joe Klemp, Dave Ahijevych, Wei Wang, and Michael Duda Na.onal Center for Atmospheric

More information

Evolution and Maintenance of the June 2003 Nocturnal Convection

Evolution and Maintenance of the June 2003 Nocturnal Convection Evolution and Maintenance of the 22-23 June 2003 Nocturnal Convection Jerilyn Billings NOAA/NWS Wichita, KS August 6 th, 2011 Work Completed at North Carolina State University for MS Thesis During the

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

Variable-Resoluiton Global Atmospheric Modeling Spanning Convective to Planetary Scales

Variable-Resoluiton Global Atmospheric Modeling Spanning Convective to Planetary Scales Variable-Resoluiton Global Atmospheric Modeling Spanning Convective to Planetary Scales Bill Skamarock, NCAR/MMM MPAS consists of geophysical fluid-flow solvers based on unstructured centroidal Voronoi

More information

16.4 SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS

16.4 SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS 1. SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS Nathan A. Snook* and Ming Xue University of Oklahoma, Norman, Oklahoma 1.

More information

11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries

11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries 11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries Greg L. Dial and Jonathan P. Racy Storm Prediction Center, Norman, Oklahoma 1. Introduction

More information

Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms

Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms GEOPHYSICAL RESEARCH LETTERS, VOL. 35,, doi:10.1029/2008gl035866, 2008 Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms Nathan Snook 1 and Ming Xue 1 Received

More information

Chapter 14 Thunderstorm Fundamentals

Chapter 14 Thunderstorm Fundamentals Chapter overview: Thunderstorm appearance Thunderstorm cells and evolution Thunderstorm types and organization o Single cell thunderstorms o Multicell thunderstorms o Orographic thunderstorms o Severe

More information

SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE

SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE 5.55 SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE Jacey Wipf* and Adam French South Dakota School of Mines and Technology 1. INTRODUCTION 2. METHODOLOGY Operational

More information

The effects of a river valley on an isolated cumulonimbus cloud development

The effects of a river valley on an isolated cumulonimbus cloud development Atmospheric Research 66 (2003) 123 139 www.elsevier.com/locate/atmos The effects of a river valley on an isolated cumulonimbus cloud development Mladjen Ćurić*, Dejan Janc, Dragana Vujović, Vladan Vučković

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

P1.16 ADIABATIC LAPSE RATES IN TORNADIC ENVIRONMENTS

P1.16 ADIABATIC LAPSE RATES IN TORNADIC ENVIRONMENTS P1.16 ADIABATIC LAPSE RATES IN TORNADIC ENVIRONMENTS Matthew D. Parker Convective Storms Group, The Mesoscale Nexus in Atmospheric Sciences North Carolina State University, Raleigh, North Carolina 1. INTRODUCTION

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

Genesis mechanism and structure of a supercell tornado in a fine-resolution numerical simulation

Genesis mechanism and structure of a supercell tornado in a fine-resolution numerical simulation Genesis mechanism and structure of a supercell tornado in a fine-resolution numerical simulation Akira T. Noda a, Hiroshi Niino b a Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai,

More information

11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms

11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms 11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms CHRISTOPHER J. NOWOTARSKI, PAUL M. MARKOWSKI, AND YVETTE P.

More information

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS)

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS) Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment Liu and Moncrieff (2017 JAS) Introduction Balance of lower-tropospheric wind shear and strength of evaporation-generated

More information

12.2 MESOVORTICES FORMED WITHIN BOW ECHOES: THEIR GENESIS AND SENSITIVITY TO THE ENVIRONMENT AND SYSTEM COLD POOL

12.2 MESOVORTICES FORMED WITHIN BOW ECHOES: THEIR GENESIS AND SENSITIVITY TO THE ENVIRONMENT AND SYSTEM COLD POOL 12.2 MESOVORTICES FORMED WITHIN BOW ECHOES: THEIR GENESIS AND SENSITIVITY TO THE ENVIRONMENT AND SYSTEM COLD POOL Nolan T. Atkins and Mike St. Laurent Lyndon State College, Lyndonville, Vermont 1. INTRODUCTION

More information

Chapter 3 Convective Dynamics Part VI. Supercell Storms. Supercell Photos

Chapter 3 Convective Dynamics Part VI. Supercell Storms. Supercell Photos Chapter 3 Convective Dynamics Part VI. Supercell Storms Photographs Todd Lindley (This part contains materials taken from UCAR MCS training module) Supercell Photos 1 Introduction A supercel storm is defined

More information

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines Note: Lecture notes presented here based on course Daily Weather Laboratory

More information

Weather report 28 November 2017 Campinas/SP

Weather report 28 November 2017 Campinas/SP Weather report 28 November 2017 Campinas/SP Summary: 1) Synoptic analysis and pre-convective environment 2) Verification 1) Synoptic analysis and pre-convective environment: At 1200 UTC 28 November 2017

More information

Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model

Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model International Journal of Scientific and Research Publications, Volume 5, Issue 6, June 2015 1 Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model Jaya Singh 1, Ajay Gairola 1, Someshwar

More information

Deterministic and Ensemble Storm scale Lightning Data Assimilation

Deterministic and Ensemble Storm scale Lightning Data Assimilation LI Mission Advisory Group & GOES-R Science Team Workshop 27-29 May 2015 Deterministic and Ensemble Storm scale Lightning Data Assimilation Don MacGorman, Ted Mansell (NOAA/National Severe Storms Lab) Alex

More information

Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content

Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content Color Plates Pacific Storm Track at Different Horizontal Resolutions Snap-shot of Column Liquid Water Content Fig. 2.8 A snapshot of the cyclone frontal-system by a nonhydrostatic model run with two very

More information

THUNDERSTORMS Brett Ewing October, 2003

THUNDERSTORMS Brett Ewing October, 2003 THUNDERSTORMS Brett Ewing October, 2003 A natural hazard that occurs often on a daily basis in the lower and mid-latitudes is thunderstorms. Thunderstorms is a weather system that can produce lightning,tornadoes,

More information

David C. Dowell NOAA/ESRL, Boulder, Colorado. 1. Introduction

David C. Dowell NOAA/ESRL, Boulder, Colorado. 1. Introduction 13.5 Impact of Microphysical Parameterizations on Supercell Thunderstorm Cold Pools using WRF-DART Experiments Anthony E. Reinhart *, Christopher C. Weiss, Texas Tech University, Lubbock, Texas David C.

More information

Daniel T. Dawson II* 1,2, Ming Xue 1,2, Jason A. Milbrandt 2, M. K. Yau 3, and Guifu Zhang 2

Daniel T. Dawson II* 1,2, Ming Xue 1,2, Jason A. Milbrandt 2, M. K. Yau 3, and Guifu Zhang 2 Preprints, 22th Conf. on Weather Analysis and Forecasting and 18th Conf. on Numerical Weather Prediction Amer. Meteor. Soc., Park City, UT, 25-29 June 2007 10B.2 IMPACT OF MULTI-MOMENT MICROPHYSICS AND

More information

Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations

Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations Jörg Trentmann, Britta Wecker, Marcus Paulat, Heini Wernli, Ulrich Corsmeier, Jan Handwerker Goal Improve

More information

Evalua&ng theories for severe convec&ve weather using numerical simula&on

Evalua&ng theories for severe convec&ve weather using numerical simula&on Evalua&ng theories for severe convec&ve weather using numerical simula&on George H. Bryan NCAR Workshop on Severe Weather and Climate 15 March 2013 NCAR is sponsored by the Na&onal Science Founda&on Main

More information

A Targeted Modeling Study of the Interaction Between a Supercell and a Preexisting Airmass Boundary

A Targeted Modeling Study of the Interaction Between a Supercell and a Preexisting Airmass Boundary University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of 5-2010 A Targeted

More information

Introduction to Mesoscale Meteorology

Introduction to Mesoscale Meteorology Introduction to Mesoscale Meteorology Overview Scale Definitions Synoptic Synoptic derived from Greek synoptikos meaning general view of the whole. Also has grown to imply at the same time or simultaneous.

More information

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 Name & Signature Dr. Droegemeier Student ID Meteorology 1004 Introduction to Meteorology Fall, 2001 Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 BEFORE YOU BEGIN!! Please

More information

A Large-Eddy Simulation Study of Moist Convection Initiation over Heterogeneous Surface Fluxes

A Large-Eddy Simulation Study of Moist Convection Initiation over Heterogeneous Surface Fluxes A Large-Eddy Simulation Study of Moist Convection Initiation over Heterogeneous Surface Fluxes Song-Lak Kang Atmospheric Science Group, Texas Tech Univ. & George H. Bryan MMM, NCAR 20 th Symposium on Boundary

More information

P8.8 EXPLICIT SIMULATIONS OF CONVECTIVE-SCALE TRANSPORT OF MINERAL DUST IN SEVERE CONVECTIVE WEATHER. Tetsuya Takemi

P8.8 EXPLICIT SIMULATIONS OF CONVECTIVE-SCALE TRANSPORT OF MINERAL DUST IN SEVERE CONVECTIVE WEATHER. Tetsuya Takemi P8.8 EXPLICIT SIMULATIONS OF CONVECTIVE-SCALE TRANSPORT OF MINERAL DUST IN SEVERE CONVECTIVE WEATHER Tetsuya Takemi Dept. of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama,

More information

Chapter 3 Convective Dynamics

Chapter 3 Convective Dynamics Chapter 3 Convective Dynamics Photographs Todd Lindley 3.2 Ordinary or "air-mass storm 3.2.1. Main Characteristics Consists of a single cell (updraft/downdraft pair) Forms in environment characterized

More information

15B.7 RESPONSE OF CONVECTION TO HURRICANE-LIKE HORIZONTAL AND VERTICAL SHEARS

15B.7 RESPONSE OF CONVECTION TO HURRICANE-LIKE HORIZONTAL AND VERTICAL SHEARS 15B.7 RESPONSE OF CONVECTION TO HURRICANE-LIKE HORIZONTAL AND VERTICAL SHEARS Christopher M. Rozoff *, W. D. Terwey, M. T. Montgomery, and W. H. Schubert Dept. of Atmospheric Science, Colorado State Univ.,

More information

Environmental stability control of the intensity of squall lines under low-level shear conditions

Environmental stability control of the intensity of squall lines under low-level shear conditions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007jd008793, 2007 Environmental stability control of the intensity of squall lines under low-level shear conditions Tetsuya Takemi 1 Received 12

More information

Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE

Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE Jason Otkin and Becky Cintineo University of Wisconsin-Madison, Cooperative Institute

More information

Module 9 Weather Systems

Module 9 Weather Systems Module 9 Weather Systems In this module the theory of atmospheric dynamics is applied to different weather phenomena. The first section deals with extratropical cyclones, low and high pressure areas of

More information

Jidong Gao and David Stensrud. NOAA/National Severe Storm Laboratory Norman, Oklahoma

Jidong Gao and David Stensrud. NOAA/National Severe Storm Laboratory Norman, Oklahoma Assimilation of Reflectivity and Radial Velocity in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification Jidong Gao and David Stensrud NOAA/National Severe Storm Laboratory Norman,

More information

Department of Geosciences San Francisco State University Spring Metr 201 Monteverdi Quiz #5 Key (100 points)

Department of Geosciences San Francisco State University Spring Metr 201 Monteverdi Quiz #5 Key (100 points) Department of Geosciences Name San Francisco State University Spring 2012 Metr 201 Monteverdi Quiz #5 Key (100 points) 1. Fill in the Blank or short definition. (3 points each for a total of 15 points)

More information

3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL

3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL 3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL Q. Zhao 1*, J. Cook 1, Q. Xu 2, and P. Harasti 3 1 Naval Research Laboratory, Monterey,

More information

The Integration of WRF Model Forecasts for Mesoscale Convective Systems Interacting with the Mountains of Western North Carolina

The Integration of WRF Model Forecasts for Mesoscale Convective Systems Interacting with the Mountains of Western North Carolina Proceedings of The National Conference On Undergraduate Research (NCUR) 2006 The University of North Carolina at Asheville Asheville, North Carolina April 6-8, 2006 The Integration of WRF Model Forecasts

More information

Tornadogenesis in Supercells: The Three Main Ingredients. Ted Funk

Tornadogenesis in Supercells: The Three Main Ingredients. Ted Funk Tornadogenesis in Supercells: The Three Main Ingredients Ted Funk NWS Louisville, KY Spring 2002 Environmental Parameters Supercells occur within environments exhibiting several wellknown characteristics

More information

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Photographs Todd Lindley Bright band associated with stratiform precipitation in a squall line system 1 Bright

More information

A numerical study of cell merger over Cuba Part II: sensitivity to environmental conditions

A numerical study of cell merger over Cuba Part II: sensitivity to environmental conditions Ann. Geophys., 24, 2793 2808, 2006 European Geosciences Union 2006 Annales Geophysicae A numerical study of cell merger over Cuba Part II: sensitivity to environmental conditions D. Pozo 1, I. Borrajero

More information

The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters

The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters 2671 The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters EDWIN J. ADLERMAN School of Meteorology, University of Oklahoma, Norman,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this class, we will examine atmospheric phenomena that occurs at the mesoscale, including some boundary layer processes, convective storms, and hurricanes. We will emphasize

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803

Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803 Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803 1. INTRODUCTION A strong cold front brought severe weather to much of

More information

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1.

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1. Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation Kevin Gray and Jeffrey Frame Department of Atmospheric Sciences, University of Illinois

More information

Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002

Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002 OCTOBER 2007 X I A O A N D S U N 3381 Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002 QINGNONG XIAO AND JUANZHEN SUN Mesoscale

More information

Jili Dong Ming Xue Kelvin Droegemeier. 1 Introduction

Jili Dong Ming Xue Kelvin Droegemeier. 1 Introduction Meteorol Atmos Phys (2011) 112:41 61 DOI 10.1007/s00703-011-0130-3 ORIGINAL PAPER The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms

More information

Annual Report for Blue Waters Allocation: Sonia Lasher-Trapp, Oct 2017

Annual Report for Blue Waters Allocation: Sonia Lasher-Trapp, Oct 2017 Annual Report for Blue Waters Allocation: Sonia Lasher-Trapp, Oct 2017 Project Information: Untangling Entrainment Effects on Hail and Rain in Deep Convective Clouds o Sonia Lasher-Trapp, UIUC, slasher@illinois.edu

More information

Severe Weather Event of 13 July 2014

Severe Weather Event of 13 July 2014 Severe Weather Event of 13 July 2014 By Richard H. Grumm and Elyse M. Colbert National Weather Service State College, PA 1. Overview Severe weather affected the eastern United States (Fig. 1) from northwestern

More information

Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts

Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts Ryan Sobash 10 March 2010 M.S. Thesis Defense 1 Motivation When the SPC first started issuing

More information

School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma 46 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 23 An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar

More information

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c)

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c) 9B.3 IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST Tetsuya Iwabuchi *, J. J. Braun, and T. Van Hove UCAR, Boulder, Colorado 1. INTRODUCTION

More information

P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL. Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS

P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL. Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS Philip N. Schumacher NOAA/NWS Weather Forecaster Office, Sioux

More information

Evaluation of an Explicit One-Dimensional Time Dependent Tilting Cloud Model: Sensitivity to Relative Humidity

Evaluation of an Explicit One-Dimensional Time Dependent Tilting Cloud Model: Sensitivity to Relative Humidity Journal of the Meteorological Society of Japan, Vol. 88, No. 2, pp. 95--121, 2010. 95 DOI:10.2151/jmsj.2010-201 Evaluation of an Explicit One-Dimensional Time Dependent Tilting Cloud Model: Sensitivity

More information

Kelly Mahoney NOAA ESRL Physical Sciences Division

Kelly Mahoney NOAA ESRL Physical Sciences Division The role of gray zone convective model physics in highresolution simulations of the 2013 Colorado Front Range Flood WRF model simulated precipitation over terrain in CO Front Range Kelly Mahoney NOAA ESRL

More information

A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection

A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection 140 M O N T H L Y W E A T H E R R E V I E W VOLUME 138 A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection RICHARD P. JAMES AND PAUL M. MARKOWSKI Department of Meteorology, The

More information

H 2 O 2 (ppbv) at z = 11.5 m.s.l.

H 2 O 2 (ppbv) at z = 11.5 m.s.l. THE INFLUENCE OF CLOUD PROCESSES ON THE DISTRIBUTION OF CHEMICAL SPECIES FOR THE 10 JULY 1996 STERAO/DEEP CONVECTION STORM Mary C. Barth 1, William C. Skamarock 1,andAmy L. Stuart 2 1 National Center for

More information

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO Simulation Experiment of Squall Line Observed in the Huaihe River Basin, China Kazuhisa Tusboki 1 and Atsushi Sakakibara 2 1 Hydrospheric Atmospheric Research Center, Nagoya University 2 Research Organization

More information

P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION

P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION Huaqing Cai*, Rita Roberts, Dan Megenhardt, Eric Nelson and Matthias Steiner National Center for Atmospheric Research, Boulder, CO, 80307,

More information

1A.1 A UNIQUE COLD-SEASON SUPERCELL PRODUCES AN EF1 SNOWNADO

1A.1 A UNIQUE COLD-SEASON SUPERCELL PRODUCES AN EF1 SNOWNADO 1A.1 A UNIQUE COLD-SEASON SUPERCELL PRODUCES AN EF1 SNOWNADO David Sills 1*, Marie-Ève Giguère 2, and John Henderson 3 1 Science and Technology Branch, Environment and Climate Change Canada (ECCC), King

More information

CONVECTIVE CLOUD MICROPHYSICS IN A HIGH-RESOLUTION NWP MODEL

CONVECTIVE CLOUD MICROPHYSICS IN A HIGH-RESOLUTION NWP MODEL CONVECTIVE CLOUD MICROPHYSICS IN A HIGH-RESOLUTION NWP MODEL J. Trentmann 1, A. Seifert 2, H. Wernli 1 1 Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany 2 German Weather

More information

8A.6 MESOCYCLONE AND RFD EVOLUTION IN SIMULATED SUPERCELL STORMS WITH VARYING WIND PROFILES

8A.6 MESOCYCLONE AND RFD EVOLUTION IN SIMULATED SUPERCELL STORMS WITH VARYING WIND PROFILES 8A.6 MESOCYCLONE AND RFD EVOLUTION IN SIMULATED SUPERCELL STORMS WITH VARYING WIND PROFILES Matthew S. Van Den Broeke Jerry M. Straka University of Oklahoma, Norman, Oklahoma Erik Rasmussen Rasmussen Systems,

More information

Thunderstorm Dynamics. Helicity and Hodographs and their effect on thunderstorm longevity. Bluestein Vol II. Page

Thunderstorm Dynamics. Helicity and Hodographs and their effect on thunderstorm longevity. Bluestein Vol II. Page Thunderstorm Dynamics Helicity and Hodographs and their effect on thunderstorm longevity Bluestein Vol II. Page471-476. Dowsell, 1991: A REVIEW FOR FORECASTERS ON THE APPLICATION OF HODOGRAPHS TO FORECASTING

More information

ATS 351, Spring 2010 Lab #11 Severe Weather 54 points

ATS 351, Spring 2010 Lab #11 Severe Weather 54 points ATS 351, Spring 2010 Lab #11 Severe Weather 54 points Question 1 (10 points): Thunderstorm development a) Sketch and describe the stages of development of a single cell thunderstorm. About how long does

More information

Gravity waves near convection: causes and consequences

Gravity waves near convection: causes and consequences Gravity waves near convection: causes and consequences Robert Fovell UCLA Atmospheric & Oceanic Sciences rfovell@ucla.edu Outline Basics Mechanically generated stratospheric gravity waves Thermally induced

More information

Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW

Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L07808, doi:10.1029/2006gl028847, 2007 Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW

More information

P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments

P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments Adam J. French and Matthew D. Parker North Carolina State University, Raleigh, North Carolina 1. INTRODUCTION A principle

More information

Extratropical transition of North Atlantic tropical cyclones in variable-resolution CAM5

Extratropical transition of North Atlantic tropical cyclones in variable-resolution CAM5 Extratropical transition of North Atlantic tropical cyclones in variable-resolution CAM5 Diana Thatcher, Christiane Jablonowski University of Michigan Colin Zarzycki National Center for Atmospheric Research

More information

P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED

P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED Doug Dokken, Rich Naistat, Bill Togstad, and Kurt Scholz. Keenan Weise, John Nelson, Luke Edholm, and Pat Shanahan. 1. INTRODUCTION

More information

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle

The WRF NMM Core. Zavisa Janjic Talk modified and presented by Matthew Pyle The WRF NMM Core Zavisa Janjic (Zavisa.Janjic@noaa.gov) Talk modified and presented by Matthew Pyle (Matthew.Pyle@noaa.gov) NMM Dynamic Solver Basic Principles Equations / Variables Model Integration Horizontal

More information

Convective Dynamics. Jeremy A. Gibbs. March 10, University of Oklahoma

Convective Dynamics. Jeremy A. Gibbs. March 10, University of Oklahoma Convective Dynamics Jeremy A. Gibbs University of Oklahoma gibbz@ou.edu March 10, 2015 1 / 66 Overview Multicellular Storms Intro Lifecycle Thunderstorm Outflow as a Density Current Cell Regeneration 2

More information

10.6 Simulated squall lines with and without cloud shading effects

10.6 Simulated squall lines with and without cloud shading effects 1.6 Simulated squall lines with and without cloud shading effects ANDREW J. OBERTHALER AND PAUL M. MARKOWSKI Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

More information

Thermally Induced Compression Waves and Gravity Waves Generated by Convective Storms

Thermally Induced Compression Waves and Gravity Waves Generated by Convective Storms 3251 Thermally Induced Compression Waves and Gravity Waves Generated by Convective Storms MELVILLE E. NICHOLLS AND ROGER A. PIELKE SR. Department of Atmospheric Science, Colorado State University, Fort

More information

The Influence of Horizontal Environmental Variability on Numerically Simulated Convective Storms. Part I: Variations in Vertical Shear

The Influence of Horizontal Environmental Variability on Numerically Simulated Convective Storms. Part I: Variations in Vertical Shear OCTOBER 2007 R I C HARDSON ET AL. 3429 The Influence of Horizontal Environmental Variability on Numerically Simulated Convective Storms. Part I: Variations in Vertical Shear YVETTE P. RICHARDSON* AND KELVIN

More information

Minor Winter Flooding Event in northwestern Pennsylvania January 2017

Minor Winter Flooding Event in northwestern Pennsylvania January 2017 1. Overview Minor Winter Flooding Event in northwestern Pennsylvania 12-13 January 2017 By Richard H. Grumm National Weather Service State College, PA A combination of snow melt, frozen ground, and areas

More information

Theories on the Optimal Conditions of Long-Lived Squall Lines

Theories on the Optimal Conditions of Long-Lived Squall Lines Theories on the Optimal Conditions of Long-Lived Squall Lines References: Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two -dimensional convection in nonconstant shear: A model of midlatitude

More information

NOTES AND CORRESPONDENCE. Characteristics and Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves in Ensemble Numerical Simulations

NOTES AND CORRESPONDENCE. Characteristics and Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves in Ensemble Numerical Simulations OCTOBER 2007 N O T E S A N D C O R R E S P O N D E N C E 3723 NOTES AND CORRESPONDENCE Characteristics and Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves in Ensemble Numerical Simulations

More information

Ming Xue, Mingjing Tong and Kelvin K. Droegemeier

Ming Xue, Mingjing Tong and Kelvin K. Droegemeier Preprint, 9 th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surfaces American Meteorological Society, San Diego, CA 25 9.3. Impact of Radar Configuration

More information

Mechanisms of Cell Regeneration, Development, and Propagation within a Two-Dimensional Multicell Storm

Mechanisms of Cell Regeneration, Development, and Propagation within a Two-Dimensional Multicell Storm 15 MAY 1998 LIN ET AL. 1867 Mechanisms of Cell Regeneration, Development, and Propagation within a Two-Dimensional Multicell Storm YUH-LANG LIN, ROY L. DEAL, AND MARK S. KULIE Department of Marine, Earth,

More information

MASTER. Hung-Neng S. Chin

MASTER. Hung-Neng S. Chin A Sensitivity Study of the Mesoscale Characteristics of Squall-Line Systems to Environmental Conditions: Implication of Anvil Cirrus Parameterization Hung-Neng S. Chin This paper was prepared for submittal

More information

An improvement of the SBU-YLIN microphysics scheme in squall line simulation

An improvement of the SBU-YLIN microphysics scheme in squall line simulation 1 An improvement of the SBU-YLIN microphysics scheme in squall line simulation Qifeng QIAN* 1, and Yanluan Lin 1 ABSTRACT The default SBU-YLIN scheme in Weather Research and Forecasting Model (WRF) is

More information

THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE

THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE JP1.17 THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE So-Young Ha *1,, Ying-Hwa Kuo 1, Gyu-Ho Lim 1 National Center for Atmospheric

More information

Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803

Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803 Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803 1. INTRODUCTION A rapidly deepening surface cyclone raced

More information

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorms are responsible for most of what we refer to as severe weather,

More information

The New Thompson Microphysical Scheme in WRF

The New Thompson Microphysical Scheme in WRF The New Thompson Microphysical Scheme in WRF by W.D. Hall, Roy M. Rasmussen, and Gregory Thompson RAL, National Center for Atmospheric Research Boulder, CO 80307 Work funded by the FAA AWRP program Introduction

More information

Post Processing of Hurricane Model Forecasts

Post Processing of Hurricane Model Forecasts Post Processing of Hurricane Model Forecasts T. N. Krishnamurti Florida State University Tallahassee, FL Collaborators: Anu Simon, Mrinal Biswas, Andrew Martin, Christopher Davis, Aarolyn Hayes, Naomi

More information

An Iterative Ensemble Square Root Filter and Tests with Simulated Radar Data for Storm Scale Data Assimilation

An Iterative Ensemble Square Root Filter and Tests with Simulated Radar Data for Storm Scale Data Assimilation An Iterative Ensemble Square Root Filter and Tests with Simulated Radar Data for Storm Scale Data Assimilation Shizhang Wang 1,2, Ming Xue 2,3*, Alexander D. Schenkman 2,3, and Jinzhong Min 1 1 Jiangsu

More information

P13A.7 Multi-pass objective analyses of radar data: Preliminary results

P13A.7 Multi-pass objective analyses of radar data: Preliminary results P13A.7 Multi-pass objective analyses of radar data: Preliminary results MARIO MAJCEN, PAUL MARKOWSKI, AND YVETTE RICHARDSON Department of Meteorology, Pennsylvania State University, University Park, PA

More information

Single-Doppler EnKF assimilation of high-resolution data from the 29 May 2004 OKC supercell: Comparisons with dual-doppler analyses.

Single-Doppler EnKF assimilation of high-resolution data from the 29 May 2004 OKC supercell: Comparisons with dual-doppler analyses. Single-Doppler assimilation of high-resolution data from the 29 May 2004 OKC supercell: Comparisons with dual-doppler analyses. Lou Wicker NOAA/National Severe Storms Lab, Norman OK With lots of help from:

More information