Module 9 Weather Systems

Size: px
Start display at page:

Download "Module 9 Weather Systems"

Transcription

1 Module 9 Weather Systems In this module the theory of atmospheric dynamics is applied to different weather phenomena. The first section deals with extratropical cyclones, low and high pressure areas of the temperate latitudes. Also the mesoscale (surface) fronts and associated weather changes are dealt with. After that the focus is on smaller scale systems, tropical cyclones, strong convective systems and tornadoes. The Rossby number is introduced for scaling purposes. Read the parts of Wallace and Hobbs indicated below: Chapter 8 Weather Systems 8.1 Extratropical Cyclones An Overview Fronts and Surface Weather (not: 8.1.2f and g) Vertical Structure (not: 8.1.3c) Tropical Cyclones Structure, Thermodynamics, and Dynamics Genesis and Life Cycle Storm Surges Key concepts of the reading material Ridge Trough Warm front Cold front Plotting synoptic charts Rossby number Convective Available Potential Energy Convective Inhibition Cyclostrophic wind speed Questions you should be able to answer after reading the material Explain the typical sequence of weather observations when a warm front passes Explain the typical sequence of weather observations when a cold front passes What is an occlusion front? Why can the Coriolis force be neglected in a cyclostrophic flow? Read the background material presented below: Rossby number Rotating systems in the atmosphere can be described with the gradient wind equation. This equation holds the balance between the centrifugal force, the horizontal pressure gradient force (P) and the Coriolis force (C). As a start we repeat equation 7.16 from Wallace and Hobbs (page 283): 2 V n = - Φ - f k V (9.1) R T which can also be written in component form using natural coordinates: 2 V - - fv (9.2) R n T To simplify these equations we need to find the relative importance of individual terms so one can apply scale analysis. Relatively small terms can then be neglected. Note that the pressure gradient force can never be neglected as it is Meteorology and Climate 57 of 93

2 the only force that can drive horizontal motions in the atmosphere. The other terms of Equation 9.1 can be neglected under certain conditions. In case the isohypses are straight and parallel (i.e. no centrifugal force) we are left with an equation that has been named geostrophic balance. In physical terms this would mean the radius of curvature is infinitely large ( R ± ), and thus the wind follows a straight line. Motions like this are described in Wallace and Hobbs equation 7.15 (page 281): 1 V g k (9.3) f This equation can be derived from Equation 9.1. It is easier if we put Equation 9.3 in component form and natural coordinates: V g - 1 (9.4) f n To describe the flow around a normal (anti)cyclone the full gradient wind equation is needed. The resulting wind speed is either subgeostrophic (for cyclones) or supergeostrophic (for anticyclones). Neglecting the Coriolis force is permitted in cases with small horizontal scale. The remaining equation is a cyclostrophic balance. In this case the direction of the flow is not determined by the Coriolis force and can be both cyclonic and anticyclonic around a low pressure area (Figure 9.1). Using Equation 9.2 this would lead to 2 V - R n T Equation 8.5 on page 352 of Wallace and Hobbs states the same result but for isobars instead of isohypses: 2 v 1 p (9.5) r r Note that Wallace and Hobbs have replaced the n -coordinate with the r - coordinate which is in the opposite direction, hence the minus sign has disappeared. Also note that the geopotential has been rearranged to pressure (using equation 3.20 of Wallace and Hobbs, page 68). To determine whether it is allowed to neglect the Coriolis force the Rossby number is often used. The Rossby number is a dimensionless [-] indicator of the relative importance of the Coriolis force to the centrifugal force. The formal definition is: 2 V Fcf RT V Ro (9.6) C f V f R T Small values ( Ro ) of the Rossby number indicate that the flow is nearly in geostrophic balance. Large values ( Ro > 100) of the Rossby number indicate that cyclostrophic balance is valid. T Meteorology and Climate 58 of 93

3 v L P Fcf C L P v Fcf (a) Figure 9.1 Force balance around an anti-clockwise turning Low pressure area (a) and a clockwise turning Low pressure area (b). Both in the Northern Hemisphere. The latter can only exist if the Coriolis force is small compared to the other forces (e.g. in dust devils). (b) Exercise 1 Extratropical Cyclones 1.1a What kind of weather do the symbols in figure 9.2 indicate? 1.1b Create a plot for the following weather situation: It has been a cloudy day with a moderate breeze (14 kts) from the north west. Surface pressure is hpa and has risen slowly with 1.5 hpa. Temperature has been constant at 12 C (dew point 8 C). Continuous light rain led to a cumulative amount of 3 inches in the past 6 hours. Figure 9.2 Plot on a synoptic chart 1.2a What features indicate for an observer on Earth the passage of a: - cold front 1.2b - warm front Exercise 2* Simplifying Equations for Rotating Systems 2.1a In this exercise we will simplify the gradient wind equation, by neglecting small terms, depending on the magnitude of the terms. Which terms are important depends mainly on the size and the velocities of the system considered. Estimate typical velocities (V ) and length scales ( R T ) of: - a low-pressure system at 52 N 2.1b - a hurricane at 15 N 2.1c - a tornado at 52 N 2.1d - a dust devil at 52 N 2.1e - a bath-tube eddy at 52 N 2.2 For each of the systems now estimate the centrifugal force and the Coriolis force per unit mass. 2.3 Calculate the Rossby number, which is the ratio between the two forces. Meteorology and Climate 59 of 93

4 2.4 Now, for each of the systems rewrite Wallace and Hobbs Equation 7.17 and neglect (if possible) the smallest term. Give also the official name of the resulting simplified equations (gradient wind equation, geostrophic balance, cyclostrophic approximation) and motivate your answer. 2.5a Do Wallace and Hobbs exercise 8.8j (page 371) about the rotation of tornadoes. 2.5b Do Wallace and Hobbs exercise 8.8o (page 371) about the force balance in cyclones. * This is an exercise at exam level Exercise 3 Deep convection 3.1a Shade convective available potential energy in the thermodynamic diagram of figure b Also indicate the energy needed to overcome the convective inhibition. 3.2a Find the wind speed for a tornado with radius 100 metres and a pressure deficit between core and surrounding environment of 4.0 kpa. 3.2b The Fujita (F) intensity scale is often used to classify the intensity of tornadoes. It is based on the damage caused by the tornado. The scale ranges from F0 for slight damage to F12 for damage caused by wind speeds of Mach 1. The lower wind speed bound for each F range (such as F2 and F3) is defined by: V = a ( 2F + 4) 1. 5 (9.6) -1 where a = 2.25ms. Tornadoes of F5 intensity and greater all cause nearly total destruction of most buildings and tress, so it is virtually impossible to identify tornadoes of F6 or greater based on damage surveys. In what category would the tornado of exercise 3.2a fall? Figure 9.3 Vertical profiles from a radio sounding from 24 June 1998 in Athens (Greece). Meteorology and Climate 60 of 93

5 Practical 9 Analysis of Weather Systems The typical characteristics of frontal systems and recognizing frontal systems on weather maps are connected to the weather elements measured at or near the surface. Especially for locating fronts on a surface chart it is important to know the differences between the various weather elements on both sides of a frontal system. Exercise 1. Characteristics of frontal systems - Read the separate file (in Blackboard or on W:\Projects\MAQ21806\unit9MC) Identification of fronts.pdf. It presents an overview of the way in which weather elements, such as wind, pressure and temperature, might change if a cold or warm front passes the observer. We have used the phrase might because not all elements will either: change at all, or change simultaneously, or change in the way described in the appendix. As these elements are measured near the earth s surface local circumstances such as the proximity to the coast, a lake, city or mountains or e.g. the fact that there is snow on the ground, may alter the behavior of these elements. What is in the tables must be rather viewed as a rule of thumb. 1. What usually happens with the pressure just after a cold front has passed the observer? 2. What is the reasons for this change in pressure? 3. What is the definition of the warm sector of a midlatitude cyclone? 4. Why is it sometimes difficult to locate fronts on the basis of gradients of surface temperature alone? 5. What usually happens with the cloud amount when a cold front passes the observer? 6. How can this be explained? 7. For a warm front, why is most of the precipitation located ahead of the front, i.e. before the front arrives? Exercise 2. Decoding meteorological data Meteorological data from observations is sent around the world in a specially coded and internationally accepted format, which makes it easy to read anywhere on earth. - To understand this format, open the file SYNOP_short.html (in Blackboard or on W:\Projects\MAQ21806\unit9MC) as you will need it to answer the following questions. We will decode some observational data in the following exercises. - For Nddff we have: Give the wind direction (in degrees). 9. Give the wind speed (in kts). Note that the wind speed may be either in m s -1 or kts (=knots) depending on an index value not discussed at this moment. For now assume that the unit for wind speed is kts. - The group i Ri xhvv reads Give the cloud base of the lowest clouds (average value in m). 11. Give the visibility (in km). - During the past hour a thunderstorm was observed, but at the moment of observation, say hours UTC, the rain had stopped and the thunderstorm was no longer active and had moved away. 12. In the 7wwW 1W 2 group what numbers should be allocated to ww? 13. And for the same group, what number should be allocated to W 1? Meteorology and Climate 61 of 93

6 - Temperatures measured at a station are T = 3.7 C and Td = -1.2 C. 14. Give the value for the code 1s nttt. 15. Also give the value for the code 2s nt dt dt d. Exercise 3. Reading the plot model For use on a weather map all data, after decoding, should be represented in such a manner that it is easy to read. Therefore it should be printed both systematically and in an internationally agreed manner. Representing observation data is such a way is called plotting. Read Plotting symbols.pdf (in Blackboard or on W:\Projects\MAQ21806\unit9MC) carefully and then answer questions on the following observations: - Observation: total cloud cover = 4/ What is the corresponding codeletter of this observation? 17. What is the coded value of this observation? 18. What is the symbol of this observation? - Observation: low cloud type stratocumulus. 19. What is the corresponding code of this observation? 20. What is the coded value of this observation? 21. What is the symbol of this observation? - Observation: pressure decreasing, then increasing resultant pressure lower. 22. What is the corresponding code of this observation? 23. What is the coded value of this observation? 24. What is the symbol of this observation? - Weather type: continuous moderate rain. 25. What is the ww -value? 26. What is the symbol? - Weather type: fog, sky not visible, thinning. 27. What is the ww -value? 28. What is the symbol? - Weather type: light rain showers. 29. What is the ww -value? 30. What is the symbol? - Weather type: hail showers within the past hour, but not at observation time. 31. What is the ww -value? 32. What is the symbol? 33. What information is decoded correctly from the following plot: Exercise 4. Passage of two fronts In the course of 18 hours two fronts passed a certain station in the South of England. Figure 9.4 shows the observations of the most important meteorological variables versus time (UTC). 34. At what time (UTC) did the warm front pass over the station? 35. From the observations as presented in Figure 9.4, the warm front passage can be detected in the following elements. 36. At what time (UTC) did the cold front pass over the station? - The cold front passage can (or cannot!) be deduced from the following elements: 37. From the observations as presented in Figure 9.4, the cold front passage can be detected in the following elements. Meteorology and Climate 62 of 93

7 Exercise 5. Reading the weather map In the weather map (Figure 9.5) isobars (thin black lines and three cold fronts (thick black lines) have been drawn. Only one of the cold fronts is the real one, the other two are incorrect. 38. What is the estimated pressure (in hpa) of the cyclonic centre lying over the Irish Sea (i.e. between England/Wales and Ireland)? 39. Does the closed isobar over Southern Sweden indicate a high pressure (anticyclone) or a low pressure (cyclone) area? 40. What is the correct location of the cold front (A, B, or C)? Meteorology and Climate 63 of 93

8 Figure 9.4 Observations of meteorological data during the passage of two fronts in December in Southern England. Time is in UTC, p in hpa, T and Td in C, VV (horizontal visibility) in m, h* (height of the lowest cloud base) in m. Meteorology and Climate 64 of 93

9 Figure 9.5 Weather map with three possible cold front locations. A larger version (higher resolution) can be found on Blackboard. Meteorology and Climate 65 of 93

10

Chapter 1 Anatomy of a Cyclone

Chapter 1 Anatomy of a Cyclone Chapter 1 Anatomy of a Cyclone The Beast in the East 15-17 February 2003 Extra-tropical cyclone an area of low pressure outside of the tropics Other names for extra-tropical cyclones: Cyclone Mid-latitude

More information

Practical Atmospheric Analysis

Practical Atmospheric Analysis Chapter 12 Practical Atmospheric Analysis With the ready availability of computer forecast models and statistical forecast data, it is very easy to prepare a forecast without ever looking at actual observations,

More information

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather.

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather. EARTH'S ATMOSPHERE Composition of the atmosphere - Earth's atmosphere consists of nitrogen ( %), oxygen ( %), small amounts of carbon dioxide, methane, argon, krypton, ozone, neon and other gases such

More information

2. What are the four most common gasses in the atmosphere and their percentages?

2. What are the four most common gasses in the atmosphere and their percentages? Meteorology Review Directions: Answer the following open ended review questions. Utilize a diagram where appropriate and do make sure that you label and describe the drawing. Atmospheric Composition 1.

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

Mid-Latitude Cyclones and Fronts. Lecture 12 AOS 101

Mid-Latitude Cyclones and Fronts. Lecture 12 AOS 101 Mid-Latitude Cyclones and Fronts Lecture 12 AOS 101 Homework 4 COLDEST TEMPS GEOSTROPHIC BALANCE Homework 4 FASTEST WINDS L Consider an air parcel rising through the atmosphere The parcel expands as it

More information

Unit: Weather Study Guide

Unit: Weather Study Guide Name: Period: Unit: Weather Study Guide Define each vocabulary word on a separate piece of paper or index card. Weather Climate Temperature Wind chill Heat index Sky conditions UV index Visibility Wind

More information

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the Weather Notes Weather Weather is the of the Earth s atmosphere at a place and time It is the movement of through the atmosphere o Energy comes from the The sun is the force that weather The sun s energy

More information

Go With the Flow From High to Low Investigating Isobars

Go With the Flow From High to Low Investigating Isobars Go With the Flow From High to Low Investigating Isobars Science 10 Mrs. Purba Air Masses The air over a warm surface can be heated, causing it to rise above more dense air. The result is the formation

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

Chapter 12 Fronts & Air Masses

Chapter 12 Fronts & Air Masses Chapter overview: Anticyclones or highs Air Masses o Classification o Source regions o Air masses of North America Fronts o Stationary fronts o Cold fronts o Warm fronts o Fronts and the jet stream o Frontogenesis

More information

ATSC 201 Final Exam Name: Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and

ATSC 201 Final Exam Name: Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and Prof. Stull (open book) Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and 2. (6 pts) For the most-used imager channels on weather

More information

Weather Notes. Chapter 16, 17, & 18

Weather Notes. Chapter 16, 17, & 18 Weather Notes Chapter 16, 17, & 18 Weather Weather is the condition of the Earth s atmosphere at a particular place and time Weather It is the movement of energy through the atmosphere Energy comes from

More information

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 Name & Signature Dr. Droegemeier Student ID Meteorology 1004 Introduction to Meteorology Fall, 2001 Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 BEFORE YOU BEGIN!! Please

More information

1. Which weather map symbol is associated with extremely low air pressure? A) B) C) D) 2. The diagram below represents a weather instrument.

1. Which weather map symbol is associated with extremely low air pressure? A) B) C) D) 2. The diagram below represents a weather instrument. 1. Which weather map symbol is associated with extremely low air pressure? 2. The diagram below represents a weather instrument. Which weather variable was this instrument designed to measure? A) air pressure

More information

DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2012 Test #1 200 pts. Part I. Surface Chart Interpretation.

DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2012 Test #1 200 pts. Part I. Surface Chart Interpretation. DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY NAME Metr 356.01 Fall 2012 Test #1 200 pts Part I. Surface Chart Interpretation. Figure 1. Surface Chart for 1500Z 7 September 2007 1 1. Pressure

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Lab 19.2 Synoptic Weather Maps

Lab 19.2 Synoptic Weather Maps Lab 19.2 Synoptic Weather Maps Name: Partner: Purpose The purpose of this lab is to have you read and interpret the information displayed on synoptic weather maps. You will also learn the techniques used

More information

MET 3502 Synoptic Meteorology. Lecture 5: Surface Weather Elements

MET 3502 Synoptic Meteorology. Lecture 5: Surface Weather Elements MET 3502 Synoptic Meteorology Lecture 5: Surface Weather Elements Surface Weather Elements Not observations of the surface, but Observations made by an observer (or instrument) at the surface Example:

More information

Synoptic Meteorology I: Other Force Balances

Synoptic Meteorology I: Other Force Balances Synoptic Meteorology I: Other Force Balances For Further Reading Section.1.3 of Mid-Latitude Atmospheric Dynamics by J. Martin provides a discussion of the frictional force and considerations related to

More information

25.1 Air Masses. Section 25.1 Objectives

25.1 Air Masses. Section 25.1 Objectives Section 25.1 Objectives Explain how an air mass forms. List the four main types of air masses. Describe how air masses affect the weather of North America. Air Masses 25.1 Air Masses Differences in air

More information

Air Masses of North America cp and ca air masses Air mass characterized by very cold and dry conditions

Air Masses of North America cp and ca air masses Air mass characterized by very cold and dry conditions Chapter 8: Air Masses, Fronts, and Middle-Latitude Cyclones Air masses Fronts Middle-latitude cyclones Air Masses Air mass an extremely large body of air whose properties of temperature and humidity are

More information

Key. Name: OBJECTIVES

Key. Name: OBJECTIVES Name: Key OBJECTIVES Correctly define: air mass, air pressure, anemometer, barometer, cyclone, dew point, front, isobar, isotherm, meteorology, precipitation, psychrometer, relative humidity, saturated,

More information

FORMATION OF AIR MASSES

FORMATION OF AIR MASSES Chapter 24: Weather (air mass, fronts, Weather instruments, and forecasting the weather) Name: Period: Due Date: Air Mass Use the terms from the following list to complete the sentences below. Each term

More information

Weather and Climate Basics

Weather and Climate Basics Weather and Climate Basics Laura Boekel Forecaster at Bureau of Meteorology Aims of this presentation To describe what I do as a forecaster at the Bureau of Meteorology To provide an interesting introduction

More information

Weather and Climate Basics

Weather and Climate Basics Aims of this presentation Weather and Climate Basics To describe what I do as a forecaster at the Bureau of Meteorology Laura Boekel Forecaster at Bureau of Meteorology To provide an interesting introduction

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. CH.15 practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The short-term state of the atmosphere is called a) climate. c) water cycle. b) weather.

More information

Storm and Storm Systems Related Vocabulary and Definitions. Magnitudes are measured differently for different hazard types:

Storm and Storm Systems Related Vocabulary and Definitions. Magnitudes are measured differently for different hazard types: Storm and Storm Systems Related Vocabulary and Definitions Magnitude: this is an indication of the scale of an event, often synonymous with intensity or size. In natural systems, magnitude is also related

More information

True or false: The atmosphere is always in hydrostatic balance. A. True B. False

True or false: The atmosphere is always in hydrostatic balance. A. True B. False Clicker Questions and Clicker Quizzes Clicker Questions Chapter 7 Of the four forces that affect the motion of air in our atmosphere, which is to thank for opposing the vertical pressure gradient force

More information

WEATHER. Review Note Cards

WEATHER. Review Note Cards WEATHER Review Note Cards Thermometer Weather instrument that measures air temperature Units include F, C, and K ESRT 13 Sling Psychrometer Weather instrument that measures relative humidity and dewpoint

More information

Introduction to Mesoscale Meteorology

Introduction to Mesoscale Meteorology Introduction to Mesoscale Meteorology Overview Scale Definitions Synoptic Synoptic derived from Greek synoptikos meaning general view of the whole. Also has grown to imply at the same time or simultaneous.

More information

Use the terms from the following list to complete the sentences below. Each term may be used only once.

Use the terms from the following list to complete the sentences below. Each term may be used only once. Skills Worksheet Directed Reading Section: Air Masses Use the terms from the following list to complete the sentences below. Each term may be used only once. high pressure poles low pressure equator wind

More information

5 Atmospheric Disturbances 7 1.Cyclones- tropical and temperate and associated weather conditions. 2.Anticyclones and associated weather conditions.

5 Atmospheric Disturbances 7 1.Cyclones- tropical and temperate and associated weather conditions. 2.Anticyclones and associated weather conditions. 5 Atmospheric Disturbances 7 1.Cyclones- tropical and temperate and associated weather conditions. 2.Anticyclones and associated weather conditions. atmospheric disturbances (weather systems) that are

More information

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth. Meteorology I. The Atmosphere - the thin envelope of gas that surrounds the earth. A. Atmospheric Structure - the atmosphere is divided into five distinct layers that are based on their unique characteristics.

More information

4/29/2011. Mid-latitude cyclones form along a

4/29/2011. Mid-latitude cyclones form along a Chapter 10: Cyclones: East of the Rocky Mountain Extratropical Cyclones Environment prior to the development of the Cyclone Initial Development of the Extratropical Cyclone Early Weather Along the Fronts

More information

YOU MUST USE WHAT YOU KNOW ABOUT THE MOVEMENT OF AIR MASSES DUE TO THE CORIOLIS EFFECT TO FORECAST!

YOU MUST USE WHAT YOU KNOW ABOUT THE MOVEMENT OF AIR MASSES DUE TO THE CORIOLIS EFFECT TO FORECAST! For this project you will apply past and present data to predict and future weather patterns and events and justify the predictions in terms of energy transfer between various systems. You will use this

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Fundamental Meteo Concepts

Fundamental Meteo Concepts Fundamental Meteo Concepts Atmos 5110 Synoptic Dynamic Meteorology I Instructor: Jim Steenburgh jim.steenburgh@utah.edu 801-581-8727 Suite 480/Office 488 INSCC Suggested reading: Lackmann (2011), sections

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Answer each section in a separate booklet.

Answer each section in a separate booklet. DURATION: 3 HOURS TOTAL MARKS: 150 Internal Examiners: Dr S Pillay & Mr J Lutchmiah External Examiner: Dr J Odindi NOTE: This paper consists of 8 pages and an MCQ answer sheet. Please ensure that you have

More information

Synoptic Meteorology

Synoptic Meteorology M.Sc. in Meteorology Synoptic Meteorology [MAPH P312] Prof Peter Lynch Second Semester, 2004 2005 Seminar Room Dept. of Maths. Physics, UCD, Belfield. Part 9 Extratropical Weather Systems These lectures

More information

Weather and Climate Review

Weather and Climate Review Weather and Climate Review STUFF YOU NEED TO KNOW and to UNDERSTAND! 1) Because water has a higher specific heat than land, water will warm and cool more slowly than the land will. Because of this: a)

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this class, we will examine atmospheric phenomena that occurs at the mesoscale, including some boundary layer processes, convective storms, and hurricanes. We will emphasize

More information

ESCI 1010 Lab 6 Midlatitude Cyclones and Thunderstorms

ESCI 1010 Lab 6 Midlatitude Cyclones and Thunderstorms ESCI 1010 Lab 6 Midlatitude Cyclones and Thunderstorms Before Lab: Review pages 244-324 in your Weather and Climate textbook. Pay special attention to the sections entitled Fronts, Life Cyclone of a Midlatitude

More information

NAME: Log onto YouTube and search for jocrisci channel.

NAME: Log onto YouTube and search for jocrisci channel. NAME: Log onto YouTube and search for jocrisci channel. REFERENCE TABLES (Videos 8.1 & 8.2 ESRT 12, 13a, 14b) 1. Use the temperature scales on page 13. (notes-air temperature conversions) a. 80 C to F

More information

DEPARTMENT OF EARTH & CLIMATE SCIENCES Name SAN FRANCISCO STATE UNIVERSITY Nov 29, ERTH 360 Test #2 200 pts

DEPARTMENT OF EARTH & CLIMATE SCIENCES Name SAN FRANCISCO STATE UNIVERSITY Nov 29, ERTH 360 Test #2 200 pts DEPARTMENT OF EARTH & CLIMATE SCIENCES Name SAN FRANCISCO STATE UNIVERSITY Nov 29, 2018 ERTH 360 Test #2 200 pts Each question is worth 4 points. Indicate your BEST CHOICE for each question on the Scantron

More information

Critical Thinking Review

Critical Thinking Review Critical Thinking Review (wk3) Cognitive Skill of the Week: Analysis Analysis is the examination of a system (or complex), its components (or ingredients), and the linkages among these components. One

More information

Mid-latitude Cyclones & Air Masses

Mid-latitude Cyclones & Air Masses Lab 9 Mid-latitude Cyclones & Air Masses This lab will introduce students to the patterns of surface winds around the center of a midlatitude cyclone of low pressure. The types of weather associated with

More information

Lecture 14. Extratropical Cyclones extratropical cyclone

Lecture 14. Extratropical Cyclones extratropical cyclone Lecture 14. Extratropical Cyclones In mid-latitudes, much of our weather is associated with a particular kind of storm, the extratropical cyclone Cyclone: circulation around low pressure center Some midwesterners

More information

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere.

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere. Lecture 3: Applications of Basic Equations Pressure as Vertical Coordinate From the hydrostatic equation, it is clear that a single valued monotonic relationship exists between pressure and height in each

More information

b. The boundary between two different air masses is called a.

b. The boundary between two different air masses is called a. NAME Earth Science Weather WebQuest Part 1. Air Masses 1. Find out what an air mass is. http://okfirst.mesonet.org/train/meteorology/airmasses.html a. What is an air mass? An air mass is b. The boundary

More information

Department of Earth & Climate Sciences San Francisco State University

Department of Earth & Climate Sciences San Francisco State University Department of Earth & Climate Sciences San Francisco State University Name ERTH 260: Inclass Exercise #5 Working With Weather Maps and Soundings: Finding Pressure Features and Fronts Due Wednesday 28 February

More information

CURRICULUM OUTLINE. DEPARTMENT: Science DATE: January, 2004

CURRICULUM OUTLINE. DEPARTMENT: Science DATE: January, 2004 PARAMUS ELEMENTARY SCHOOL PARAMUS, NEW JERSEY CURRICULUM OUTLINE DEPARTMENT: Science DATE: January, 2004 COURSE: The Earth s Atmosphere GRADE LEVEL: Grade 6 I. COURSE DESCRIPTION: The student will explore

More information

Atmospheric Pressure and Wind Frode Stordal, University of Oslo

Atmospheric Pressure and Wind Frode Stordal, University of Oslo Chapter 4 Lecture Understanding Weather and Climate Seventh Edition Atmospheric Pressure and Wind Frode Stordal, University of Oslo Redina L. Herman Western Illinois University The Concept of Pressure

More information

Weather and the Atmosphere. RAP Short Course

Weather and the Atmosphere. RAP Short Course Weather and the Atmosphere RAP Short Course Syllabus 1) Vertical structure and composition of the atmosphere, basic weather variables 2) Warming Earth and its atmosphere the diurnal and seasonal cycles

More information

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17 Chapter 24 Tropical Cyclones Tropical Cyclones Most destructive storms on the planet Originate over tropical waters, but their paths often take them over land and into midlatitudes Names Hurricane (Atlantic

More information

Fronts in November 1998 Storm

Fronts in November 1998 Storm Fronts in November 1998 Storm Much of the significant weather observed in association with extratropical storms tends to be concentrated within narrow bands called frontal zones. Fronts in November 1998

More information

Page 1. Name:

Page 1. Name: Name: 1) As the difference between the dewpoint temperature and the air temperature decreases, the probability of precipitation increases remains the same decreases 2) Which statement best explains why

More information

3 Severe Weather. Critical Thinking

3 Severe Weather. Critical Thinking CHAPTER 2 3 Severe Weather SECTION Understanding Weather BEFORE YOU READ After you read this section, you should be able to answer these questions: What are some types of severe weather? How can you stay

More information

Problem #1: The Gradient Wind in Natural Coordinates (Due Friday, Feb. 28; 20 pts total)

Problem #1: The Gradient Wind in Natural Coordinates (Due Friday, Feb. 28; 20 pts total) METR 50: Atmospheric Dynamics II Dr. Dave Dempsey Spring 014 Problem #1: The Gradient Wind in Natural Coordinates (Due Friday, Feb. 8; 0 pts total) In natural (s,n,p) coordinates, the synoptic-scaled,

More information

Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics.

Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics. Middle Latitude Cyclones a storm that forms at middle and high latitudes, outside of the tropics. Polar Front Theory a theory that explains the life cycle of mid latitude cyclones and their associated

More information

Earth Science Chapter 16 and 17. Weather and Climate

Earth Science Chapter 16 and 17. Weather and Climate Earth Science Chapter 16 and 17 Weather and Climate Prediction Old way Groundhog Color of the sky Modern way satellites instruments computers Goal Weather Factors Studied by meteorologists Several factors

More information

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. -tropical storms. -Storm surge

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. -tropical storms. -Storm surge (1 of 12) Further Reading: Chapter 08 of the text book Outline - tornadoes -tropical storms -Storm surge (2 of 12) Introduction Previously, We talked about fronts and their relationship to air masses Also

More information

Wind, Water, Weather and Seasons Test Review

Wind, Water, Weather and Seasons Test Review Name: Wind, Water, Weather and Seasons Test Review Period: Please complete the following review to prepare for your exam over wind and ocean currents, weather, and the Earth- Moon- Sun systems. Your test

More information

Weather Systems III: Thunderstorms and Twisters

Weather Systems III: Thunderstorms and Twisters Weather Systems III: Thunderstorms and Twisters Review 1. Definition of airmasses? Bergeron classification of air masses 2. Surface weather analysis: Station model, wind speed code, present weather 3.

More information

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS 1. The atmosphere is a continuous fluid that envelops the globe, so that weather observation, analysis, and forecasting require international

More information

Module 11: Meteorology Topic 6 Content: Severe Weather Notes

Module 11: Meteorology Topic 6 Content: Severe Weather Notes Severe weather can pose a risk to you and your property. Meteorologists monitor extreme weather to inform the public about dangerous atmospheric conditions. Thunderstorms, hurricanes, and tornadoes are

More information

Chapter 24 Tropical Cyclones

Chapter 24 Tropical Cyclones Chapter 24 Tropical Cyclones Tropical Weather Systems Tropical disturbance a cluster of thunderstorms about 250 to 600 km in diameter, originating in the tropics or sub-tropics Tropical depression a cluster

More information

Chapter 12: Meteorology

Chapter 12: Meteorology Chapter 12: Meteorology Section 1: The Causes of Weather 1. Compare and contrast weather and climate. 2. Analyze how imbalances in the heating of Earth s surface create weather. 3. Describe how and where

More information

Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty

Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty Fun with Weather Maps! (no, really stop laughing) AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Observations Station Model Temperature Maps Pressure Maps

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

RR#4 - Multiple Choice

RR#4 - Multiple Choice 1. The map below shows the amount of snowfall, in inches, produced by a lake-effect snowstorm in central New York State. The wind that produced this snowfall pattern most likely came from the 1) northeast

More information

Guided Notes Weather. Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models

Guided Notes Weather. Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models Guided Notes Weather Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models. 1. What is weather? Weather: short-term atmospheric conditions in a specific area at a specific time

More information

METEOROLOGY. 1 The average height of the tropopause at 50 N is about A 14 km B 16 km C 11 km D 8 km

METEOROLOGY. 1 The average height of the tropopause at 50 N is about A 14 km B 16 km C 11 km D 8 km 1 The average height of the tropopause at 50 N is about A 14 km B 16 km C 11 km D 8 km 2 In the lower part of the stratosphere the temperature A is almost constant B decreases with altitude C increases

More information

Science Olympiad Meteorology Quiz #1 Page 1 of 7

Science Olympiad Meteorology Quiz #1 Page 1 of 7 1) What is generally true about the stratosphere: a) Has turbulent updrafts and downdrafts. b) Has either a stable or increasing temperature profile with altitude. c) Where the auroras occur. d) Both a)

More information

DEPARTMENT OF EARTH & CLIMATE SCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2014 Test #1 September 30, 2014

DEPARTMENT OF EARTH & CLIMATE SCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2014 Test #1 September 30, 2014 DEPARTMENT OF EARTH & CLIMATE SCIENCES SAN FRANCISCO STATE UNIVERSITY NAME Metr 302.02 Fall 2014 Test #1 September 30, 2014 200 pts (4 pts each answer) Part I. Surface Chart Interpretation. Questions 1

More information

vis = 74 visibility = vis - 50, for 56 vis 80

vis = 74 visibility = vis - 50, for 56 vis 80 ATSC 201 Fall 2018 Assignment 11 Answer Key Total marks out of 69 Chapter 9: A1h, A7a, A8h, A10all Chapter 12: A1h, A7h, A8h, A11g, E21, E23 Chapter 9 A1h) Find the pressure "reduced to sea level" using

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. - cyclones and anti-cyclones. -tropical storms. -Storm surge

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. - cyclones and anti-cyclones. -tropical storms. -Storm surge (1 of 16) Further Reading: Chapter 08 of the text book Outline - cyclones and anti-cyclones - tornadoes -tropical storms -Storm surge (2 of 16) Introduction Previously, We talked about fronts and their

More information

http://www.ssec.wisc.edu/data/composites.html Red curve: Incoming solar radiation Blue curve: Outgoing infrared radiation. Three-cell model of general circulation Mid-latitudes: 30 to 60 latitude MID-LATITUDES

More information

Science 1206 SAMPLE Test ( Weather Dynamics)

Science 1206 SAMPLE Test ( Weather Dynamics) Science 1206 SAMPLE Test ( Weather Dynamics) Name:. Part A: Multiple Choice (60%) Shade the letter of the best answer on the Scantron sheet provided. 1. Which term refers to the current atmospheric conditions?

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

Tropical Cyclones. Objectives

Tropical Cyclones. Objectives Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/8/2012 Objectives From this lecture you should understand: Global tracks of TCs and the seasons when they are most common General circulation

More information

Ch. 3: Weather Patterns

Ch. 3: Weather Patterns Ch. 3: Weather Patterns Sect. 1: Air Mass & Fronts Sect. 2: Storms Sect. 3: Predicting the Weather Sect. 4: Weather forecasters use advanced technologies Ch. 3 Weather Fronts and Storms Objective(s) 7.E.1.3

More information

Dr. Christopher M. Godfrey University of North Carolina at Asheville

Dr. Christopher M. Godfrey University of North Carolina at Asheville Surface and Upper-Air Observations Surface Observations Collect information for synoptic-scale weather Most surface observations are automated (e.g., Automated Surface Observing System) Also mesoscale

More information

NOTES Surface Weather Maps.notebook. April 05, atmospheric. rises. Coriolis. Coriolis. counterclockwise. counterclockwise. point. origin.

NOTES Surface Weather Maps.notebook. April 05, atmospheric. rises. Coriolis. Coriolis. counterclockwise. counterclockwise. point. origin. Surface Weather Maps L Symbol : Indicates an area of low air pressure (aka, pressure or pressure). Called a relatively barometric atmospheric cyclone Formation: As warm air in the center cyclone of a,

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Severe weather. Some case studies for medium-range forecasting. T. La Rocca, Department of Synoptic Meteorology, Italian Met. Service, Rome.

Severe weather. Some case studies for medium-range forecasting. T. La Rocca, Department of Synoptic Meteorology, Italian Met. Service, Rome. Severe weather. Some case studies for medium-range forecasting T. La Rocca, Department of Synoptic Meteorology, Italian Met. Service, Rome. The Met Alert Messages by the Watch Office of the Public Safety

More information

Class Notes: Weather

Class Notes: Weather Name: Date: Period: Weather The Physical Setting: Earth Science I. Cyclonic Weather Hurricane - Hurricane Statistics Largest of all the storms Approximately per year Nearly deaths per year Saffir-Simpson

More information

Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class)

Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class) Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class) 1. General Circulation Briefly describe where each of the following features is found in the earth s general

More information

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere Earth s atmospheric layers Earth s atmosphere is the layer of gases that surrounds the planet and makes conditions on Earth suitable for living things. Layers Earth s atmosphere is divided into several

More information

ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain

ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain References: Forecaster s Guide to Tropical Meteorology (updated), Ramage Tropical Climatology, McGregor and Nieuwolt Climate and Weather

More information

Fronts. Direction of Front

Fronts. Direction of Front Fronts Direction of Front Direction of Front Warm Front A cold air mass meets and displaces a warm air mass. Because the moving cold air is more dense, it moves under the less-dense warm air, pushing it

More information

Figure 1. Idealized global atmospheric circulation (C = surface convergence, D = surface divergence).

Figure 1. Idealized global atmospheric circulation (C = surface convergence, D = surface divergence). page - Laboratory Exercise #8 - Introduction to Atmospheric Science: Global Circulation and Weather Makers Section A - Global Atmospheric Circulation: To understand weather you need to understand how the

More information

Standard 3, Objective 2: Describe elements of weather and the factors that cause them to vary from day to day.

Standard 3, Objective 2: Describe elements of weather and the factors that cause them to vary from day to day. o Vocabulary o Weather o Occluded Front o Low Pressure System o Stationary Front o High Pressure System o Air Masses o Cold Front o Warm Front Standard 3, Objective 2: Describe elements of weather and

More information

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning.

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning. WEATHER rain thunder The explosive sound of air as it is heated by lightning. rainbow lightning hurricane They are intense storms with swirling winds up to 150 miles per hour. tornado cold front warm front

More information

Appalachian Lee Troughs and their Association with Severe Thunderstorms

Appalachian Lee Troughs and their Association with Severe Thunderstorms Appalachian Lee Troughs and their Association with Severe Thunderstorms Daniel B. Thompson, Lance F. Bosart and Daniel Keyser Department of Atmospheric and Environmental Sciences University at Albany/SUNY,

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

Weather, Air Masses, Fronts and Global Wind Patterns. Meteorology

Weather, Air Masses, Fronts and Global Wind Patterns. Meteorology Weather, Air Masses, Fronts and Global Wind Patterns Meteorology Weather is what conditions of the atmosphere are over a short period of time. Climate is how the atmosphere "behaves" over long periods

More information

Mr. P s Science Test!

Mr. P s Science Test! WEATHER- 2017 Mr. P s Science Test! # Name Date 1. Draw and label a weather station model. (10 pts) 2. The is the layer of the atmosphere with our weather. 3. Meteorologists classify clouds in about different

More information