Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3

Size: px
Start display at page:

Download "Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3"

Transcription

1 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 3 1. Use the hydrostatic equation to show that the mass of a vertical column of air of unit cross-section, extendin from the round to reat heiht, is ps,wherep s is the surface pressure. Insert numbers to estimate the mass on a column of air of area 1m 2. Use your answer to estimate the total mass of the atmosphere. From the hydrostatic relationship we can write (see Eq.3.4): p s = ρd surface Thus the mass of a column of air of area 1m 2 is the atmosphere is p s = =104 k. The total mass of the atmosphere is M a = 4πa2 p s = 4π ( ) = k Usin the hydrostatic equation, derive an expression for the pressure at the center of a planet in terms of its surface ravity, radius a and density ρ, assumin that the latter does not vary with depth. Insert values appropriate for the earth and evaluate the central pressure. [Hint: the ravity at radius r is (r) = Gm(r) where m(r) is the mass inside a radius r and G = k 1 m 3 s 2 is the ravitational constant. r 2 You may assume the density of rock is 2000 k m 3.] The hydrostatic equation is = ρ (r) (r) r where the acceleration due to ravity (r) at distance r is (r) = Gm (r) r 2 where m (r) is the mass inside radius r. If the planet has a uniform density m (r) = 4 3 πr3 ρ r = ρg4 3 πr3 ρ r 2 1

2 and so Zp o dp = 4 Z 0 3 πρ2 G rdr 0 a ivin p 0 = 2 3 πgρ2 a 2 Notin that M = 4 3 πa3 ρ isthemassoftheplanetand a = MG is the a 2 surface ravity, then p 0 = 1 2 aρa. Insertin numbers for the earth we find that: p 0 = = ' 10 6 atmospheres. 3. Consider a horiontally uniform atmosphere in hydrostatic balance. The atmosphere is isothermal, with temperature of 10 o C. Surface pressure is 1000hPa. (a) Consider the level that divides the atmosphere into two equal parts by mass (i.e., one-half of the atmospheric mass is above this level). What is the altitude, pressure, density and potential temperature at this level? For an isothermal atmosphere in hydrostatic balance, whence = ρ = p RT ³ p() =p(0) exp H where H = RT/. With R =287Jk 1 K 1, T = 10 C = 263 K, H =7.69 km. Mass above level is M() where M() = Z ρd= Z The level at which M() = M(0)/2 has d = p(). p() =p(0)/2 =500hPa = Pa. 2

3 At this level, the altitude is µ p() = H ln = H ln 2 = 7.69 ln 2 = 5.33 km. p(0) Temperature is 263K, so density is ρ = p/rt = / ( ) = k m 3. (b) Repeat the calculation of part (a) for the level below which lies 90% of the atmospheric mass. The level which has 90% of the mass below it has 10% above, so M() =0.1M(0), whence The altitude is Here, density is p() =0.1p(0) = 100hPa = Pa. = H ln µ p() =7.69 ln 10 = km. p(0) ρ = p()/rt =10 4 / ( ) = k m Derive an expression for the hydrostatic atmospheric pressure at heiht above the surface in terms of the surface pressure p s and the surface temperature T s for: (i) an isothermal atmosphere at temperature T s and (ii) an atmosphere with constant lapse rate of temperature Γ = dt. d Express your results in terms of the dry adiabatic lapse rate Γ d = (i) In interatin the hydrostatic equation over a depth of 10km in the atmosphere, can be taken as constant. Thus we have: ivin = p RT p() =p s e ( RTs ) for an isothermal atmosphere c p. 3

4 and (ii) µ γ Ts Γ p() =p s T s γ 1 Γcp where γ = c p c v for an atmosphere with constant lapse rate. 5. Spectroscopic measurements show that a mass of water vapor of more than 3 km 2 in a column of atmosphere is opaque to the terrestrial waveband. Given that water vapor typically has a density of 10 2 k m 3 at sea level (see Fi.3.1) and decays in the vertical like e ( b),where is the heiht above the surface and b 3 km,estimate at what heiht the atmosphere becomes transparent to terrestrial radiation. By inspection of the observed vertical temperature profile showninfi.3.3, deduce the temperature of the atmosphere at this heiht. How does it compare to the emission temperature of the Earth, T e =255K,discussed in Chapter 2? Comment on your answer. Writin the density of water vapor ρ v = ρ vsurface e ( b) then the atmosphere becomes transparent to terrestrial radiation at a heiht, say, such that ρ v d = ρ ( b) e vsurface d = bρvsurface e b =3km 2 This ives =7kmif b =3km. The temperature at this heiht is 250 K, rouhly the same as the emission temperature of the planet. This provides excellent independent support to the idea that convective systems transport heat and moisture up to a heiht (and hence temperature) at which water vapor is the principle re-radiator of terrestrial wavelenths. 6. Make use of your answer to Q.1 of Chapter 1 to estimate the error incurred in p at 100 km throuh use of Eq.(3.11) if a constant value of is assumed. 4

5 Assumin an isothermal atmosphere, Eq.(3.11) reduces to p = p s exp( /H). Thus, iven that = p H s exp( /H) then δp = p H 2 H 2 s exp( /H)δH. Since H = RT this implies that: δp p = δ H Puttin in numbers we find, notin that δ 1), δp = 100 p =3%(from Q.1 of Chapter 3 =0.41 which is a lare error. When pressures are bein computed at many scale heihts above the surface, lare errors are incurred if variations in are not accounted for. 5

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere The vertical structure of the atmosphere. Physical properties of the atmosphere To first order, the gas pressure at the bottom of an atmospheric column balances the downward force of gravity on the column.

More information

AST111 PROBLEM SET 6 SOLUTIONS

AST111 PROBLEM SET 6 SOLUTIONS AST111 PROBLEM SET 6 SOLUTIONS Homework problems 1. Ideal gases in pressure balance Consider a parcel of molecular hydrogen at a temperature of 100 K in proximity to a parcel of ionized hydrogen at a temperature

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 / Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 / Solution. Solution Solution. For an altitude change dz, the atmospheric pressure change is : dp = ρgdz () where g is the acceleration of gravity, considered constant, ρ is the specific mass of air, which is considered as

More information

The Tropical Atmosphere: Hurricane Incubator

The Tropical Atmosphere: Hurricane Incubator The Tropical Atmosphere: Hurricane Incubator Images from journals published by the American Meteorological Society are copyright AMS and used with permission. A One-Dimensional Description of the Tropical

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Aorangi (Mt. Cook) we typically view the state of the troposphere on "isobaric surfaces" (surfaces of constant pressure) rather

Aorangi (Mt. Cook) we typically view the state of the troposphere on isobaric surfaces (surfaces of constant pressure) rather Ch3 (ctd.) EAS270_Ch3_BehaviourAtmos_B.odp JDW, EAS UAlberta, last mod. 19 Sept. 2016 Atmospheric "behaviour" Aorani (Mt. Cook) "ride" we typically view the state of the troposphere on "isobaric surfaces"

More information

Static Stellar Structure

Static Stellar Structure Most of the Life of A Star is Spent in Equilibrium Evolutionary Changes are generally slow and can usually be handled in a quasistationary manner We generally assume: Hydrostatic Equilibrium Thermodynamic

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 11 Polytropes and the Lane Emden Equation

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 11 Polytropes and the Lane Emden Equation Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 11 Polytropes and the Lane Emden Equation Reading/Homework Assignment Makeup class tomorrow morning at 9:00AM Read sections 2.5 to 2.9 in Rose

More information

Ay123 Set 1 solutions

Ay123 Set 1 solutions Ay13 Set 1 solutions Mia de los Reyes October 18 1. The scale of the Sun a Using the angular radius of the Sun and the radiant flux received at the top of the Earth s atmosphere, calculate the effective

More information

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere

ATMOS Lecture 6. Atmospheric Pressure Pressure Profiles for Idealized Atmosphere ATMOS 5130 Lecture 6 Atmospheric Pressure Pressure Profiles for Idealized Atmosphere Goal Understand how temperature, pressure and altitude are related in the atmosphere. Recall from last lecture Hypsometric

More information

Numerical Example An air parcel with mass of 1 kg rises adiabatically from sea level to an altitude of 3 km. What is its temperature change?

Numerical Example An air parcel with mass of 1 kg rises adiabatically from sea level to an altitude of 3 km. What is its temperature change? Numerical Example An air parcel with mass of 1 kg rises adiabatically from sea level to an altitude of 3 km. What is its temperature change? From the 1 st law, T = -g/c p z + Q/m air /c p Here, Q = 0,

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics Atmospheric Composition What is the composition of the Earth s atmosphere? Gaseous Constituents of the Earth s atmosphere (dry air) Constituent Molecular Weight Fractional Concentration

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3) Physics 411 Homework # Due:..18 Mechanics I 1. A projectile is fired from the oriin of a coordinate system, in the x-y plane (x is the horizontal displacement; y, the vertical with initial velocity v =

More information

Monday 7 October 2013, Class #15

Monday 7 October 2013, Class #15 Monday 7 October 2013, Class #15 Concepts for Today (Basics for Thermodynamics) Weather versus climate Lapse Rate (Adiabatic Lapse Rate) Ideal Gas Law Adiabatic Processes Potential Temperature Hydrostatic

More information

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium Goal: Develop a 1D description of the [tropical] atmosphere Vertical temperature profile Total atmospheric mass: ~5.15x10

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity.

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity. Institute of Applied Physics University of Bern Outline A planetary atmosphere consists of different gases hold to the planet by gravity The laws of thermodynamics hold structure as vertical coordinate

More information

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere Physical Properties of the Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

1 Thermodynamics: some Preliminaries

1 Thermodynamics: some Preliminaries 1 Thermodynamics: some Preliminaries Beforewebegintoconsider thetransfer ofradiation through an atmosphere, let s consider the structure of an atmosphere with a little thermodynamics. This material hopefully

More information

Chapter 2 Earth s atmosphere (Lectures 4 and 5)

Chapter 2 Earth s atmosphere (Lectures 4 and 5) Chapter 2 Earth s atmosphere (Lectures 4 and 5) Keywords: Earth s atmosphere; International standard atmosphere; geopotential altitude; stability of atmosphere. Topics 2.1 Introduction 2.2 Earth s atmosphere

More information

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field. Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics R. Wordsworth February 12, 2015 1 Objectives Derive hydrostatic equation Derive dry and moist adiabats Understand how the theory relates to observed properties of real atmospheres

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2.

Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2. CHM 5423 Atmospheric Chemistry Problem Set 1 Due date: Thursday, September 10 th. Do the following problems. Show your work. Data for Titan, a moon of Saturn, is given below, and may be used to answer

More information

Astronomy 111 Practice Midterm #2

Astronomy 111 Practice Midterm #2 Astronomy 111 Practice Midterm #2 Prof. Douglass Fall 2018 Name: If this were a real exam, you would be reminded of the Exam rules here: You may consult only one page of formulas and constants and a calculator

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2017-2018) G. Vladilo The Earth is the only planet of the Solar System with

More information

Lecture 3: Convective Heat Transfer I

Lecture 3: Convective Heat Transfer I Lecture 3: Convective Heat Transfer I Kerry Emanuel; notes by Paige Martin and Daniel Mukiibi June 18 1 Introduction In the first lecture, we discussed radiative transfer in the climate system. Here, we

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Contents

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

Physics 20 Lesson 22 Gravitational Field Strength

Physics 20 Lesson 22 Gravitational Field Strength Physics 0 Lesson Gravitational ield Strenth Refer to Pearson paes 16 to 9 for a discussion of ravitational field strenth. I. Gravitational field strenth (acceleration due to ravity) Near the surface of

More information

Radiative Transfer Chapter 3, Hartmann

Radiative Transfer Chapter 3, Hartmann Radiative Transfer Chapter 3, Hartmann Shortwave Absorption: Clouds, H 2 0, O 3, some CO 2 Shortwave Reflection: Clouds, surface, atmosphere Longwave Absorption: Clouds, H 2 0, CO 2, CH 4, N 2 O Planck

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed York University Department of Earth and Space Science and Engineering ESSE 3030 Department of Physics and Astronomy PHYS 3080 Atmospheric Radiation and Thermodynamics Final Examination 2:00 PM 11 December

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2016-2017) G. Vladilo The Earth is the only planet of the Solar System with

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

The dynamics of a simple troposphere-stratosphere model

The dynamics of a simple troposphere-stratosphere model The dynamics of a simple troposphere-stratosphere model by Jessica Duin under supervision of Prof. Dr. A. Doelman, UvA Dr. W.T.M. Verkley, KNMI August 31, 25 Universiteit van Amsterdam Korteweg-de vries

More information

Course Principles Climate Sciences: Atmospheric Thermodynamics

Course Principles Climate Sciences: Atmospheric Thermodynamics Atmospheric Thermodynamics Climate Sciences: Atmospheric Thermodynamics Ch1 Composition Ch5 Nucleation Ch6 Processes Ch7 Stability Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text:

More information

ATMO 551a Intro to Optical Depth Fall τ υ,z. dz = di υ. B[ v,t(z) ]e

ATMO 551a Intro to Optical Depth Fall τ υ,z. dz = di υ. B[ v,t(z) ]e Atmospheric Radiative Transfer We need to understand how energy is transferred via radiation within the atmosphere. We introduce the concept of optical depth. We will further show that the light moves

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

ATMO551a Fall Vertical Structure of Earth s Atmosphere

ATMO551a Fall Vertical Structure of Earth s Atmosphere Vertical Structure of Earth s Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

The Behaviour of the Atmosphere

The Behaviour of the Atmosphere 3 The Behaviour of the Atmosphere Learning Goals After studying this chapter, students should be able to: apply the ideal gas law and the concept of hydrostatic balance to the atmosphere (pp. 49 54); apply

More information

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp A problem with using entropy as a variable is that it is not a particularly intuitive concept. The mechanics of using entropy for evaluating system evolution is well developed, but it sometimes feels a

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Simple Climate Models

Simple Climate Models Simple Climate Models Lecture 3 One-dimensional (vertical) radiative-convective models Vertical atmospheric processes The vertical is the second important dimension, because there are... Stron radients

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART16: PLANETARY ATMOSPHERES Francis Nimmo Last Week How do planets form? They accrete from the solar nebula (dust+gas) They may subsequently migrate Where do atmospheres come from? Primary, secondary,

More information

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ

More information

Ross Salawitch. Class Web Site: 4) Geostrophy (balance of pressure force & Coriolis Force storms)

Ross Salawitch. Class Web Site:  4) Geostrophy (balance of pressure force & Coriolis Force storms) Fundamentals of Earth s Atmosphere AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals: 1) Tie up loose ends from last lecture 2) Barometric law (pressure

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A particle of mass m is projected vertically upwards, at time t =, with speed. The particle is mv subject to air resistance of manitude, where v is the speed of the particle at time t and is a positive

More information

Temperature and Thermodynamics, Part II. Topics to be Covered

Temperature and Thermodynamics, Part II. Topics to be Covered Teperature and Therodynaics, Part II Topics to be Covered Profiles of Teperature in the Boundary Layer Potential teperature Adiabatic Lapse Rate Theral Stratification 1/8/17 Why are We Interested in Theral

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc Examination Day 15th May 2014 14:30 17:00 ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY

More information

Physics 556 Stellar Astrophysics Prof. James Buckley

Physics 556 Stellar Astrophysics Prof. James Buckley hysics 556 Stellar Astrophysics rof. James Buckley Lecture 8 Convection and the Lane Emden Equations for Stellar Structure Reading/Homework Assignment Read sections 2.5 to 2.9 in Rose over spring break!

More information

[16] Planetary Meteorology (10/24/17)

[16] Planetary Meteorology (10/24/17) 1 [16] Planetary Meteorology (10/24/17) Upcoming Items 1. Homework #7 due now. 2. Homework #8 due in one week. 3. Midterm #2 on Nov 7 4. Read pages 239-240 (magnetic fields) and Ch. 10.6 by next class

More information

An alternative, less empirical approach (though still full of brazen assumptions) is the following:

An alternative, less empirical approach (though still full of brazen assumptions) is the following: ERTH 500: More Notes on Final Project: Dr. Dave Dempsey Earth Systems II Modeling the Dept. of (Spring 2016) Cenozoic Icehouse Earth Earth & Climate Sciences More notes on Upslope/Monsoon Precipitation

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10 Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 10 Reading/Homework Assignment Makeup class tomorrow morning at 9:00AM Read sections 2.5 to 2.9 in Rose over spring break! Stellar Structure

More information

AVERAGE AND STANDARD DEVIATION

AVERAGE AND STANDARD DEVIATION AVERAGE AND STANDARD DEVIATION Link to: physicspaes home pae. To leave a comment or report an error, please use the auxiliary blo. Post date: 2 Jun 25. Reference: Griffiths, David J. (25), Introduction

More information

Atmosphere and Climate

Atmosphere and Climate Atmosphere and Climate The atmosphere is a complex hydrodynamical system, driven by radiative, convective, gravitational, and rotational forces, which can cause frequent dynamic fluctuations in temperature

More information

11 Free vibrations: one degree of freedom

11 Free vibrations: one degree of freedom 11 Free vibrations: one deree of freedom 11.1 A uniform riid disk of radius r and mass m rolls without slippin inside a circular track of radius R, as shown in the fiure. The centroidal moment of inertia

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

GEF2200 atmospheric physics 2018

GEF2200 atmospheric physics 2018 GEF2200 atmospheric physics 208 Solutions: thermodynamics 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.8r Unsaturated air is lifted (adiabatically): The first pair of quantities

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 17, 2014 1:00PM to 3:00PM General Physics (Part I) Section 5. Two hours are permitted for the completion of this section

More information

[ ][ ] mg = R GM g = R GM = g R 2. Definition of G: From (1) we have, 2 NEWTON S LAW OF GRAVITATION:

[ ][ ] mg = R GM g = R GM = g R 2. Definition of G: From (1) we have, 2 NEWTON S LAW OF GRAVITATION: NEWTON S LAW OF GAVITATION: Statement: Every particle in the universe attracts every other particle with a force which is directly proportional to the product of the masses and inversely proportional to

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

Radiative transfer in planetary atmospheres

Radiative transfer in planetary atmospheres Chapter 9 Radiative transfer in planetary atmospheres Warning: This chapter is just a very rough introduction to planetary atmospheres. Since the discovery of planets around other stars than the sun, the

More information

PHYS 124 Section A01 Final Examination Autumn 2006

PHYS 124 Section A01 Final Examination Autumn 2006 PHYS 14 Section A1 Final Examination Autumn 6 Name : S Student ID Number : Instructor : Marc de Montiny Time : Monday, December 18, 6 9: 11: AM Room : Tory Lecture (Turtle) TL-B Instructions : This booklet

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

Chapter 14 - Fluids. Pressure is defined as the perpendicular force on a surface per unit surface area.

Chapter 14 - Fluids. Pressure is defined as the perpendicular force on a surface per unit surface area. Chapter 4 - Fluids This chapter deals ith fluids, hich means a liquid or a as. It covers both fluid statics (fluids at rest) and fluid dynamics (fluids in motion). Pressure in a fluid Pressure is defined

More information

5 Shallow water Q-G theory.

5 Shallow water Q-G theory. 5 Shallow water Q-G theory. So far we have discussed the fact that lare scale motions in the extra-tropical atmosphere are close to eostrophic balance i.e. the Rossby number is small. We have examined

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Friday 8 September, :00-4:00 Class#05

Friday 8 September, :00-4:00 Class#05 Friday 8 September, 2017 3:00-4:00 Class#05 Topics for the hour Global Energy Budget, schematic view Solar Radiation Blackbody Radiation http://www2.gi.alaska.edu/~bhatt/teaching/atm694.fall2017/ notes.html

More information

1. Runaway Greenhouse

1. Runaway Greenhouse 1. Runaway Greenhouse Making the simple complicated is commonplace; making the complicated simple, awesomely simple, that s creativity. - Charlie Mingus (Jazz Musician) Initially we assume that the radiative

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle Course.8, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Enery Cycle Enery Forms: As we saw in our discussion of the heat budet, the enery content of the atmosphere per

More information

Solved examples of Gravitation

Solved examples of Gravitation Solved examples of Gravitation Example 1 The time period of Moon around the Earth is n times that of Earth around the Sun. If the ratio of the distance of the Earth from the Sun to that of the distance

More information

PHYSICS 218 SOLUTION TO HW 8. Created: November 20, :15 pm Last updated: November 21, 2004

PHYSICS 218 SOLUTION TO HW 8. Created: November 20, :15 pm Last updated: November 21, 2004 Created: November 20, 2004 7:5 pm Last updated: November 2, 2004. Schroeder.6 (a) The three forces actin on the slab of thickness dz are ravity and the pressure from above and below. To achieve equilibrium

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Linear Theory of Stellar Pulsation

Linear Theory of Stellar Pulsation Linear Theory of Stellar Pulsation Mir Emad Aghili Department of Physics and Astronomy, University of Mississippi, University, MS, 38677 Introduction The first pulsating star to be discovered was omicron

More information

SEMESTER I EXAMINATION 2009/2010. MAPH Physical Meteorology

SEMESTER I EXAMINATION 2009/2010. MAPH Physical Meteorology SEMESTER I EXAMINATION 2009/2010 MAPH 40240 Physical Meteorology Extern examiner: Professor Keith Shine Head of School: Professor Micheal O Searcoid Examiner: Dr. Rodrigo Caballero Time Allowed: 2 hours

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Global Energy Balance: Greenhouse Effect

Global Energy Balance: Greenhouse Effect Global Energy Balance: Greenhouse Effect Atmospheric Composition & Structure Physical Causes of Greenhouse Effects Chapter 3: 44 48. Atmospheric Composition Why does water vapor vary so much? Saturation

More information

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc/MSci Examination Day 28th April 2015 18:30 21:00 SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL

More information

Calculus Math 21B, Winter 2009 Final Exam: Solutions

Calculus Math 21B, Winter 2009 Final Exam: Solutions Calculus Math B, Winter 9 Final Exam: Solutions. (a) Express the area of the region enclosed between the x-axis and the curve y = x 4 x for x as a definite integral. (b) Find the area by evaluating the

More information

Temperature profile of the Troposphere

Temperature profile of the Troposphere roposphere he troposphere is the lowest atmospheric layer reaching an altitude o about 20 km. Density, pressure and temperature decline with altitude. he troposphere is largely convective, which translates

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Summary of stellar equations

Summary of stellar equations Chapter 8 Summary of stellar equations Two equations governing hydrostatic equilibrium, dm dr = 4πr2 ρ(r) Mass conservation dp dr = Gm(r) r 2 ρ Hydrostatic equilibrium, three equations for luminosity and

More information

(! g. + f ) Dt. $% (" g. + f ) + f

(! g. + f ) Dt. $% ( g. + f ) + f The QG Vorticity equation The complete derivation of the QG vorticity equation can be found in Chapter 6.2.. Please read this section and keep in mind that extra approximations have been made besides those

More information

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr.

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. References: ESCI 340 - Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. DeCaria Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

Thermodynamic Energy Equation

Thermodynamic Energy Equation Thermodynamic Energy Equation The temperature tendency is = u T x v T y w T z + dt dt (1) where dt/dt is the individual derivative of temperature. This temperature change experienced by the air parcel

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information