PHYSICS 218 SOLUTION TO HW 8. Created: November 20, :15 pm Last updated: November 21, 2004

Size: px
Start display at page:

Download "PHYSICS 218 SOLUTION TO HW 8. Created: November 20, :15 pm Last updated: November 21, 2004"

Transcription

1 Created: November 20, :5 pm Last updated: November 2, Schroeder.6 (a) The three forces actin on the slab of thickness dz are ravity and the pressure from above and below. To achieve equilibrium they must add to zero. 0= mρadz [P (z + dz) P (z)]a () Expandin P(z) in a Taylor series yields P (z + dz) =P (z)+ P/ z dz = P (z)+ (z) and after division by Adz we thus find: = mρ (2) dz (b) The ideal as law is PV = Nk B T ρ =(mp )/(k B T ) insertin ives the barometric equation dz = m k B T P (3) (c) For a heiht independent temperature we use an exponential ansatz P (z) =P (0)e λz that yields dz = λp (0)eλz = m k B T P (0)eλz (4) This aain ives λ = (m)/(k B T ) and thus P (z) =P (0)e mz/kt (5) Substitutin this function for P (z) into the formula for ρ = mp/kt ives us ρ(z) = mp (0) kt e mz/kt = ρ(0)e mz/kt (6) (d) The numerical value for m/kt is equal to /m for an averae molecule mass 28.8u and a temperature of 293K. Thus we find Oden, Utah Leadville, Colorado Mt. Whitney, California Mt. Everest, Nepal/Tibet P / atm However we have to bear in mind that these values are approximate. Especially for the Mt. Everest we would find a very different value if we took the temperature decrease into account. 2. Schroeder.22 (a) Each molecule hittin the Area A will on averae exert a force of 2mv x, dividin the total force by this amount we find an approximation for the averae number of molecules hittin the wall. N = PA 2mv x t (7) (b) Usin ( /2 vx) 2 as an approximation to vx we use v 2 = vx 2 + vy 2 + vz 2 = 3vx 2 = 3kT/m to find v x kt/m.

2 (c) Usin the ideal as law to substitute P and (b) we find dn dt = PA 2mv x = A kt 2V m N (8) Aain an exponential ansatz N(t) =N(0)e t/τ will lead us to the result τ A kt N(t) = 2V m N(t) τ = 2V m A kt (9) (d) Assumin the same data for air as in () we find the characteristic time τ =6.88s. (e) Assumin a diameter of 28 and a radius of one inch we find a volume of m 3. Estimatin the pressure in the tire at the beinnin of the leakin to be about 4atm we can infer from the ideal as law that the density inside the tire is four times hiher than outside at sea level. We thus need that the number of molecules drops to a fourth. t τ = lo 4.38 (0) Now solvin for the size of the hole we have A = 2V τ m kt 2V.38 m = t kt = mm 2 () (f) We make the assumptions that the window with the do in it leaves about 000cm 2 uncovered, that the capsule miht approximately have a volume of 20m 3 and that it takes our adventurers about one second to et rid of the do. Assumin air at room temperature in their capsule we find τ =3.75s N final e /3.7 =0.39 (2) N initial We miht thus conclude that despite our rather positive assumptions this inenious method is not a realistic way to et rid of the do corpse. However it is not as bad as one miht suspect. 3. Schroeder.3 3 V / l final initial (a) 3 P / atm (b) With the mentioned assumption P (V )=c V and P i V i = 0.3J we find Vf 3Vi W = P (V )dv = cv dv = c V i V i 2 [9V i 2 Vi 2 ]= 4P i V i = 405.2J (3) The dimensions for the constant need to be [c] =N/m 5. 2

3 (c) Knowin the ideal as law we have PV = NkT =(2/f)U. In the case of Helium, a monatomic as, f =3. Wehave U i = 3 2 P iv i U f = 3 2 9P iv i =9U i (4) and thus U =8U i =2P i V i = 25.6J. (d) We know from enery conservation U = Q + W and thus Q = U W = (2 ( 4))P i V i = 620.8J (5) (e) To realize a pressure risin proportional to the volume we need some device whose force increases linearly. A possible example is a cylinder with movable piston, if we connect the piston to a sprin. The volume increase leads to a linear decrease in the lenth of the sprin. This decrease via Hooke s law to a linearly risin pressure, if all other walls of the cylinder are fixed. 4. Schroeder.32 P/atm 200 V / l 0.99 The work needed is Vf W = V i P (V )dv, (6) the area under the curve in the PV-diaram. In our case however the volume occupied by the water almost does not chane at all. If we assume that the pressure rises linearly with the volume reduction the area under the curve is in ood approximation a trianle. W = m N/m 2 J (7) This is indeed very small, but we need to remember that work is force multiplied by distance. Here the latter one is obviously very small. 5. Schroeder.34 (a) We can always use U = Q + W = f/2 Nk T = f/2 V P, where the latter equality follows at fixed volume from the ideal as law. We find the derees of freedom to be = 5, where we only have two rotational derees of freedom as the rotation about the axis of the molecule is not excited for quantum mechanical reasons. A There is no chane in the volume, thus U =2.5V (P 2 P )=Q (8) 3

4 B The pressure is fixed, thus as T = p/nk V and and finally Q = U W =3.5P 2 (V 2 V ). C Aain no chane in volume, thus D Aain the pressure is fixed, thus U = f/2 V V =2.5P 2 (V 2 V ) (9) W = P 2 V = P 2 (V 2 V ) (20) U = 2.5V 2 (P 2 P )=Q (2) U = 2.5P (V 2 V ) and W = P (V 2 V ) (22) and Q = U W = 3.5P (V 2 V ). (b) Durin step A we fix the piston and heat the as. In step B we keep the force on the piston constant, leadin to an expansion of the as while we still add some heat. In C we cool the as until the force on the fixed piston is aain P. Finally in step D we compress the as, absorbin the amount of heat necessary to keep the pressure fixed. (c) U i = 2.5(V 2 V )(P 2 P )+2.5(P 2 P )(V 2 V ) = 0 (23) A,B,C,D This is expected, as the internal enery for an ideal as is only determined by its temperature. But the temperature does not chane under one whole cycle, as this means that the system returns to the initial values of the state variables P and V. A,B,C,D W i =( P 2 + P )(V 2 V ) (24) and from 0 = U = Q + W it follows Q =(P 2 P )(V 2 V ). We find that we have added heat to the system and the system in turn has performed work on the piston. 6. Schroeder.36 (a) Somce, by assumption, the process is adiabatic, the quantity PV γ is conserved. For air we have γ =(5+2)/5 =.4. P V γ =7P V γ 2 V 2 =0.249V =0.249l (25) (b) As no heat is exchaned, the work is equal to the chane in internal enery. W = 5 2 Nk(T 2 T )= 5 2 (P 2V 2 P V )= J = 88J (26) 2 (c) From the ideal as law we have that P γ T γ is another conserved quantity. Thus P 0.4 T.4 =(7P ) 0.4 T.4 2 T 2 =7 2/7 T =.74T = 522K (27) 4

5 7. Schroeder.4 (a) To heat 250 of water by 4K we use Q = C p T and assume that C p is rouhly constant and equal to 4.87J/K in this reime. Thus for our 250 we have C p = 047J/K. The amount of heat ained by the water is thus Q H2 O = 488J. (b) As we assume that there is no heat exchane with the styrofoam cup or the atmosphere we know immediately that Q metal = 488J. (c) We may assume that after a minute the metal is in thermal equilibrium with the water. Thus T =76K. Usin the same formula as in (a) we determine C p (metal) = 488J/76K =55J/K. (d) The metal used in this experiment has a specific heat capacity of 0.55J/K. 8. Schroeder.47 We add an amount of ice to absorb heat from the boilin tea so that ice and tea eventually reach thermal equilibrium at 65 deree Celsius. In this process the heat that can be absorbed by one ram of ice is Q = 7.5cal +80cal +65cal = 52.5 cal where the first contribution is the heat capacity of ice, the second one the latent heat and the last one the heat capacity of water. It is interestin to note that it takes almost as much heat to melt the ice at it takes to brin water to boilin. To cool our tea we need Q = 7000cal. Since we assume that the system does not exchane heat with its surroundins, the total chane in internal enery is zero. Obviously there is no work done either, thus (28) 0 = U = Q = x52.5cal/ +( 7000cal) x = 45.9 (29) 5

Test Review # 7. Combined Gas Law PV T PV T. Ideal Gas Law PV = nrt. Chemistry H-3: Form TR7.6A

Test Review # 7. Combined Gas Law PV T PV T. Ideal Gas Law PV = nrt. Chemistry H-3: Form TR7.6A Chemistry H-3: Form TR7.6A TEST 9 REVIEW Name Date Period Test Review # 7 ENERGY Calculatin Joules. When you heat a solid, it s temperature enerally oes up. There is a relationship between heat and temperature,

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1 P340: hermodynamics and Statistical Physics, Exam#, Solution. (0 point) When gasoline explodes in an automobile cylinder, the temperature is about 2000 K, the pressure is is 8.0 0 5 Pa, and the volume

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names:

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names: Problem 1 (2.5 points) 1 2 3 4 Match the above shown players of the best baseball team in the world with the following names: A. Derek Jeter B. Mariano Rivera C. Johnny Damon D. Jorge Posada 1234 = a.

More information

Problems of the 9 th International Physics Olympiads (Budapest, Hungary, 1976)

Problems of the 9 th International Physics Olympiads (Budapest, Hungary, 1976) Problems of the 9 th International Physics Olympiads (Budapest, Hunary, 1976) Theoretical problems Problem 1 A hollow sphere of radius R = 0.5 m rotates about a vertical axis throuh its centre with an

More information

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Compiled and rearranged by Sajit Chandra Shakya

Compiled and rearranged by Sajit Chandra Shakya 1 (a) (i) The kinetic theory of gases leads to the equation m = kt. (b) Explain the significance of the quantity m... the equation to suggest what is meant by the absolute zero of temperature...

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

This relationship is known as the ideal gas law and is mathematically described with the formula below:

This relationship is known as the ideal gas law and is mathematically described with the formula below: Chemistry 20 Ideal as law If we combine all the information contained in Boyle s, Charles and Avoadro s laws, we can derive an expression that describes the temperature, pressure and volume of a as. This

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems for Ch. 19/20 Ideal gas how to find P/V/T changes. How to calculate energy required for a given T

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems Ideal gas how to find P/V/T changes. E.g., gas scaling, intro to the ideal gas law, pressure cooker,

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

11 Free vibrations: one degree of freedom

11 Free vibrations: one degree of freedom 11 Free vibrations: one deree of freedom 11.1 A uniform riid disk of radius r and mass m rolls without slippin inside a circular track of radius R, as shown in the fiure. The centroidal moment of inertia

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

Physics 4C Spring 2016 Test 2

Physics 4C Spring 2016 Test 2 Physics 4C Spring 2016 Test 2 Name: May 17, 2017 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must give your answer in terms of the variables

More information

Thermodynamics and Statistical Physics Exam

Thermodynamics and Statistical Physics Exam Thermodynamics and Statistical Physics Exam You may use your textbook (Thermal Physics by Schroeder) and a calculator. 1. Short questions. No calculation needed. (a) Two rooms A and B in a building are

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

S6. (a) State what is meant by an ideal gas...

S6. (a) State what is meant by an ideal gas... IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 3 TEST REVIEW S1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation.

More information

ABCD42BEF F2 F8 5 4D6589 CC8 9

ABCD42BEF F2 F8 5 4D6589 CC8 9 ABCD BEF F F D CC Vetri Velan GSI, Physics 7B Midterm 1: Problem 3 3. a) Since the collisions with the walls are all elastic, for each given wall, only one component of the velocity matters. Consider

More information

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation. 1 A kettle is rated as 2.3 kw. A mass of 750 g of water at 20 C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes,

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

THERMAL EXPANSION PRACTICE PROBLEMS

THERMAL EXPANSION PRACTICE PROBLEMS THERMAL EXPANSION PRACTICE PROBLEMS Thermal Expansion: A copper sphere has a diameter of 2.000 cm and is at room temperature (20 C). An aluminum plate has a circular cut-out with a diameter of 1.995 cm

More information

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats Physics 111 Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, 2009 Lecture 39 1/26 Latent Heats The heat required to convert from one phase to another is called

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

Chapter 21 Solutions

Chapter 21 Solutions Chapter 1 Solutions *1.1 One mole of helium contains Avogadro's number of molecules and has a mass of 4.00 g. Let us call m the mass of one atom, and we have N A m 4.00 g/mol 4.00 g/mol or m 6.0 10 3 molecules/mol

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME258. Thermodynamics

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME258. Thermodynamics s SCHOOL OF COMPUING, ENGINEERING AND MAHEMAICS SEMESER EXAMINAIONS 04/05 ME58 hermodynamics ime allowed: WO hours Answer: Any FOUR Questions Items permitted: Any approved calculator Items supplied: Steam

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

More information

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B 4C_PLC http://www.cabrillo.edu/~jmccullough/physics4c/files/4c_plc/4c_plc.htm Page 1 of 8 /6/201 1. The heat capacity at constant volume and the heat capacity at constant pressure have different values

More information

The Kinetic Theory of Gases (1)

The Kinetic Theory of Gases (1) Chapter 4 The Kinetic Theory of Gases () Topics Motivation and assumptions for a kinetic theory of gases Joule expansion The role of collisions Probabilities and how to combine them The velocity distribution

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel.

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel. Chapter Thirteen KINETIC THEORY MCQ I 13.1 A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500m s 1

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 32: Heat and Work II Slide 32-1 Recap: the first law of thermodynamics Two ways to raise temperature: Thermally: flow of heat Energy

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian Chapter 10-11 Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian 1) Temperature 2) Expansion of Matter 3) Ideal Gas Law 4) Kinetic Theory of Gases 5) Energy, Heat transfer and

More information

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position?

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position? PHYS 213 Exams Database Midterm (A) A block slides across a rough surface, eventually coming to a stop. 1) What happens to the block's internal thermal energy and entropy? a. and both stay the same b.

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Cyclic Processes. water

Cyclic Processes. water Name Cyclic Processes Cyclic Processes A fixed quantity of ideal gas is contained within a metal cylinder that is sealed with a movable, frictionless, insulating piston. (The piston can move up or down

More information

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1 Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins (7th, 8th & 9th editions) Section 2.1 of Atkins (10th, 11th editions) Expansion Work General Expression for Work Free

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

M o d u l e B a s i c A e r o d y n a m i c s

M o d u l e B a s i c A e r o d y n a m i c s Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

C p = (3/2) R + R, KE change + work. Also Independent of T

C p = (3/2) R + R, KE change + work. Also Independent of T Heat Capacity Summary for Ideal Gases: C v = (3/2) R, KE change only. Note, C v independent of T. C p = (3/2) R + R, KE change + work. Also Independent of T C p /C v = [(5/2)R]/[(3/2)R] = 5/3 C p /C v

More information

HEAT- I Part - A C D A B. Te m p. Heat input

HEAT- I Part - A C D A B. Te m p. Heat input e m p HE- I Part -. solid material is supplied with heat at a constant rate. he temperature of the material is changing with heat input as shown in the graph. Study the graph carefully and answer the following

More information

Chapter 12. Temperature and Heat

Chapter 12. Temperature and Heat Chapter 12 Temperature and Heat 12.1 Common Temperature Scales Temperatures are reported in degrees Celsius or degrees Fahrenheit. Kelvin Scale 100 o C or 212 o F T K = T + 273.15 Temperature changes,

More information

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt).

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). Thermal Physics 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). 2) Statistical Mechanics: Uses models (can be more complicated)

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 27, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law

More information

Lecture 18 Molecular Motion and Kinetic Energy

Lecture 18 Molecular Motion and Kinetic Energy Physical Principles in Biology Biology 3550 Fall 2017 Lecture 18 Molecular Motion and Kinetic Energy Monday, 2 October c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Fick s First

More information