Temperature, Thermal Expansion and the Gas Laws

Size: px
Start display at page:

Download "Temperature, Thermal Expansion and the Gas Laws"

Transcription

1 Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes

2 Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal Gas Law Molecular Interpretation of Temperature

3 Temperature and Thermometers Temperature is a measure of how hot or cold something is. Thermometers are instruments designed to measure temperature. In order to do this, they take advantage of some property of matter that changes with temperature. Most materials expand when heated.

4 Temperature and Thermometers Common thermometers used today include the liquid-in-glass type and the bimetallic strip.

5 Temperature and Thermometers Temperature is generally measured using either the Kelvin, Celsius, or the Fahrenheit scale. Boiling Point (H O) Melting Point (H O) Kelvin Celsius Fahrenheit Absolute Zero

6 Thermal Equilibrium Two objects placed in thermal contact will eventually come to the same temperature. When they do, we say they are in thermal equilibrium. The Zeroth Law of Thermodynamics C A B If A is in thermal equilibrium with C and B is in thermal equilibrium with C Then A and B are in thermal equilibrium.

7 Thermal Expansion Expansion occurs when an object is heated. A steel washer is heated Does the hole increase or decrease in size?

8 Thermal Expansion When the washer is heated The hole becomes larger

9 Thermal Expansion L o L L L o T T L αl o T L L o αl o T Coefficient of linear expansion L L o (1+α T)

10 Expansion Problem Thermal Expansion shaft sleeve D d A cylindrical brass sleeve is to be shrunk-fitted over a brass shaft whose diameter is 3.1 cm at 0 o C. The diameter of the sleeve is cm at 0 o C. To what temperature must the sleeve be heated before it will slip over the shaft?

11 Expansion Problem Thermal Expansion To what temperature must the sleeve be heated before it will slip over the shaft? shaft D sleeve d L D d L α L i D d αd T ( ) T f T i α 19 x / o D 3.1 cm d cm T 0oC i C D d αdt f T f ( D d) αd ( 3.1 cm cm) 6 1/ o C( cm) 63 o C 19 x 10

12 Volume Expansion Thermal Expansion L o + L L o L o Lo L o + L L o + L New Volume V ( L ) 3 o + L Initial Volume V o L 3 o V L V V V 3 ( L) + 3 o + 3L o L + 3Lo L V V o 3L o L 3L o ( αlo T) 3 3αL o T L αl o T V 3αVo T

13 Thermal Expansion V 3αVo T Coefficient of Volume Expansion β 3α V βvo T V V o βv o T ( 1 + β T) V Vo

14 Expansion Problem An automobile fuel tank is filled to the brim with 45 L of gasoline at 10 o C. Immediately afterward, the vehicle is parked in the Sun, where the temperature is 35 o C. How much gasoline overflows from the tank as a result of expansion? Overflow Change in volume of the gasoline Thermal Expansion V V V G V S V β V G V ( β β ) V T G o T β S ( 4 ) 9.6 x x 10 45( 5) V 1.04 L o S V o T Change in volume of the steel gas tank

15 Thermal Expansion Potential Energy High Temperature Low Temperature Intermolecular Distance

16 The Ideal Gas Law Pressure (Pa) Volume (m 3 ) PV nrt Absolute Temperature (K) Gas Quantity (mol) Gas Constant (8.31 J/mol. K) (L. atm)/(mol. K) 1.99 cal/(mol. K)

17 The Ideal Gas Law A mole (mol) is defined as the number of grams of a substance that is numerically equal to the molecular mass of the substance: 1 mol H has a mass of g 1 mol Ne has a mass of 0 g 1 mol CO has a mass of 44 g The number of moles in a certain mass of material: mass n ( mol) molecular mass ( grams) ( g / mol) n m Μ The number of moles in a certain number of particles: ( mol) n molecules (particles) Avogadro's number ( particles / mol) n N N A

18 The Ideal Gas Law Pressure (Pa) Volume (m 3 ) PV NkT Absolute Temperature (K) Number of Molecules Boltzmann s Constant (1.38 x 10-3 J/K)

19 The Ideal Gas Law Boltzmann s Constant PV nrt NkT k nr N Gas Constant k R N n Avogadro s Number

20 The Ideal Gas Law A gas is contained in an 8.0 x 10 3 m 3 vessel at 0 o C and a pressure of 9.0 x 10 5 N/m. (a) Determine the number of moles of gas in the vessel. PV nrt 5 ( 3 ) 9.0 x 10 N/m 8.0 x 10 m n PV RT 8.31 J / mol K ( 93 K) n 3.0 mol

21 The Ideal Gas Law A gas is contained in an 8.0 x 10 3 m 3 vessel at 0 oc and a pressure of 9.0 x 10 5 N/m. n 3.0 mol (b) How many molecules are in the vessel? N nn A 3.0 mol ( 3 molecules) 6.0 x 10 mol N 1.8 x 10 4 molecules

22 The Ideal Gas Law Problem A cylinder with a moveable piston contains gas at a temperature of 7 o C, a volume of 1.5 m 3, and an absolute pressure of 0.0 x 10 5 Pa. 0.0 x 10 5 Pa 1.5 m 3 7 o C 0.80 x 10 5 Pa 0.70 m 3 What will be its final temperature if the gas is compressed to 0.70 m 3 and the absolute pressure increases to 0.80 x 10 5 Pa?

23 Problem 0.0 x 10 5 Pa What will be its final temperature if the gas is compressed to 0.70 m 3 and the absolute pressure increases to 0.80 x 10 5 Pa? 1.5 m 3 PV Pf V T f nrt Pi V T i P f V Pi V PV T The Ideal Gas Law nr constant f i ( 5 ) f 0.8 x 10 Pa T f Ti 300 K 5 i 0. x 10 Pa 7 o C 0.7 m 560 K ( ) m x 10 5 Pa m 3 87 o C

24 Molecular Interpretation of Temperature Assumptions of kinetic theory: 1) large number of molecules, moving in random directions with a variety of speeds ) molecules are far apart, on average 3) molecules obey laws of classical mechanics and interact only when colliding 4) collisions are perfectly elastic

25 Molecular Interpretation of Temperature y z L v A x The force exerted on the wall by the collision of one molecule of mass m is F ( mv) t mv L v x x mv x L Then the average force due to N molecules colliding with that wall is F m L Nv x

26 Molecular Interpretation of Temperature z L y v A x The averages of the squares of the speeds in all three directions are equal: F 1 3 mnv L F m L Nv x So the pressure on the wall is: P F A 1 3 Nmv AL 1 3 Nmv V

27 Molecular Interpretation of Temperature P 1 3 Nmv V Rewriting, PV ( 1 m ) N 3 v NkT so ( 1 mv ) kt 3 ( KE) 1 mv 3 kt The average translational kinetic energy of the molecules in an ideal gas is directly proportional to the temperature of the gas.

28 Molecular Interpretation of Temperature Molecular Kinetic Energy Temperature is a measure of the average molecular kinetic energy. mv KE mv 3kT 3kT v( rms ) 3kT m

29 Molecular Interpretation of Temperature Problem What is the total random kinetic energy of all the molecules in one mole of hydrogen at a temperature of 300 K. Avogadro s number Kinetic energy per molecule K 3 NA kt K 6.0 x 10 3 molecules 1.38 x J K ( 300 K) K 3740 J

30 Molecular Interpretation of Temperature Problem Calculate the rms speed of a Nitrogen molecule (N ) when the temperature is 100 o C. Mass of N molecule: m 8.0 x x kg/mole molecules/mole x 10 kg rms speed: v( rms ) 3kT m ( 3 J/K) x x 10 6 kg 373 K v( rms ) 576 m/s

31 Molecular Interpretation of Temperature Problem If.0 mol of an ideal gas are confined to a 5.0 L vessel at a pressure of 8.0 x 10 5 Pa, what is the average kinetic energy of a gas molecule? Temperature of the gas: PV nrt ( 3 3 ) m PV 8.0 x 10 Pa 5.0 x 10 T nr J.0 mol 8.31 mol K Kinetic energy: K 3 kt x 10 J K 44 K 44 K 1.38 x 10 3 J molecule

32 Molecular Interpretation of Temperature Mean and rms Speed Mean Speed: v( mean ) 3.6 m/s rms Speed: ( 1) + ( 6) + ( 4) + ( ) + ( 6) + ( 3) + ( ) + ( 5) 8 v( rms ) 4.0 m/s

33 Summary Temperature is a measure of how hot or cold something is, and is measured by thermometers. There are three temperature scales in use: Celsius, Fahrenheit, and Kelvin. When heated, a solid will get longer by a fraction given by the coefficient of linear expansion. The fractional change in volume of gases, liquids, and solids is given by the coefficient of volume expansion.

34 Summary Ideal gas law: PV nrt One mole of a substance is the number of grams equal to the atomic or molecular mass. Each mole contains Avogadro s number of atoms or molecules. The average kinetic energy of molecules in a gas is proportional to the temperature: ( KE) 1 mv 3 kt

35

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

17-6 The Gas Laws and Absolute Temperature

17-6 The Gas Laws and Absolute Temperature 17-6 The Gas Laws and Absolute Temperature The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state. We will deal here with gases that are not too dense.

More information

Chapter 10, Thermal Physics

Chapter 10, Thermal Physics CHAPTER 10 1. If it is given that 546 K equals 273 C, then it follows that 400 K equals: a. 127 C b. 150 C c. 473 C d. 1 200 C 2. A steel wire, 150 m long at 10 C, has a coefficient of linear expansion

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

What is Temperature?

What is Temperature? What is Temperature? Observation: When objects are placed near each other, they may change, even if no work is done. (Example: when you put water from the hot tap next to water from the cold tap, they

More information

Chapter 10: Thermal Physics

Chapter 10: Thermal Physics Chapter 10: hermal Physics hermal physics is the study of emperature, Heat, and how these affect matter. hermal equilibrium eists when two objects in thermal contact with each other cease to echange energy.

More information

11/22/2010. Mid term results. Thermal physics

11/22/2010. Mid term results. Thermal physics Mid term results Thermal physics 1 Zeroth law of thermodynamics If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

More information

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T) Physics 111 Lecture 35 (Walker: 16.1-3) Thermal Physics I: Temperature Thermal Expansion April 29, 2009 Lecture 35 1/26 Temperature (T) Temperature (T) is a measure of how hot or cold something is Temperature

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Zeroeth Law Two systems individually in thermal equilibrium with a third system (such

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Temperature, Thermal Expansion, and Ideal Gas Law

Temperature, Thermal Expansion, and Ideal Gas Law Temperature, Thermal Expansion, and Ideal Gas Law The Density of copper is 8.9 E 3 kg/m^3 and each copper atom has a mass of 63 u, where 1u= 1.66 E -27 kg. Estimate the average distance between neighboring

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

More information

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law: Physics 231 Lecture 30 Main points of today s lecture: Ideal gas law: PV = nrt = Nk BT 2 N 1 2 N 3 3 V 2 3 V 2 2 P = m v = KE ; KE KE = kbt Phases of Matter Slide 12-16 Ideal Gas: properties Approximate

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Chapter 17. Temperature. Dr. Armen Kocharian

Chapter 17. Temperature. Dr. Armen Kocharian Chapter 17 Temperature Dr. Armen Kocharian Temperature We associate the concept of temperature with how hot or cold an objects feels Our senses provide us with a qualitative indication of temperature Our

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases. Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, 2008. Kinetic theory of gases. http://eml.ou.edu/physics/module/thermal/ketcher/idg4.avi Physics 121. April

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Ideal Gases Name: Class: Date: Time: 247 minutes Marks: 205 marks Comments: Page 1 of 48 1 Which one of the graphs below shows the relationship between the internal energy of an ideal gas (y-axis) and

More information

Lecture 3. The Kinetic Molecular Theory of Gases

Lecture 3. The Kinetic Molecular Theory of Gases Lecture 3. The Kinetic Molecular Theory of Gases THE IDEAL GAS LAW: A purely empirical law solely the consequence of experimental observations Explains the behavior of gases over a limited range of conditions

More information

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v) PHYSICS 220 Lecture 22 Temperature and Ideal Gas Moving Observer and Source Combine: f o = f s (1-v o /v) / (1-v s /v) A: You are driving along the highway at 65 mph, and behind you a police car, also

More information

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES.

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES. !! www.clutchprep.com CONCEPT: ATOMIC VIEW OF AN IDEAL GAS Remember! A gas is a type of fluid whose volume can change to fill a container - What makes a gas ideal? An IDEAL GAS is a gas whose particles

More information

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013 Physics 160 Thermodynamics and Statistical Physics: Lecture 2 Dr. Rengachary Parthasarathy Jan 28, 2013 Chapter 1: Energy in Thermal Physics Due Date Section 1.1 1.1 2/3 Section 1.2: 1.12, 1.14, 1.16,

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

Chapter 10. Answers to Even Numbered Problems. 2. (a) 251 C. (b) 1.36 atm C, C. 6. (a) 273 C (b) 1.27 atm, 1.74 atm

Chapter 10. Answers to Even Numbered Problems. 2. (a) 251 C. (b) 1.36 atm C, C. 6. (a) 273 C (b) 1.27 atm, 1.74 atm hapter Answers to Even Numbered Problems. (a) 5 (b).6 atm 4. 56.7, -6. 6. (a) 7 (b).7 atm,.74 atm 8. (a) 8 F (b) 45 K. (a) 6 (b) 6. (a) L. m.49 mm (b) fast 4..9 8. 8.7 m..5 km, accordion-like expansion

More information

Chapter 17 Thermal Expansion and the Gas Laws

Chapter 17 Thermal Expansion and the Gas Laws So many of the properties of matter, especially when in the gaseous form, can be deduced from the hypothesis that their minute parts are in rapid motion, the velocity increasing with the temperature, that

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

Compiled and rearranged by Sajit Chandra Shakya

Compiled and rearranged by Sajit Chandra Shakya 1 (a) (i) The kinetic theory of gases leads to the equation m = kt. (b) Explain the significance of the quantity m... the equation to suggest what is meant by the absolute zero of temperature...

More information

Physics 101: Lecture 23 Temperature and Ideal Gas

Physics 101: Lecture 23 Temperature and Ideal Gas EXAM III Physics 101: Lecture 23 Temperature and Ideal Gas Today s lecture will cover Textbook Chapter 13.1-13.4 Temperature of Earth s surface/clouds from NASA/AIRS satellite Physics 101: Lecture 23,

More information

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1 PHYSICS 220 Lecture 22 Temperature and Ideal Gas Textbook Sections 14.1 14.3 Lecture 22 Purdue University, Physics 220 1 Overview Last Lecture Speed of sound v = sqrt(b/ρ) Intensity level β = (10 db) log

More information

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.)

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) (Syllabus) Temperature Thermal Expansion Temperature and Heat Heat and Work The first Law Heat Transfer Temperature Thermodynamics:

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

CHAPTER III: Kinetic Theory of Gases [5%]

CHAPTER III: Kinetic Theory of Gases [5%] CHAPTER III: Kinetic Theory of Gases [5%] Introduction The kinetic theory of gases (also known as kinetic-molecular theory) is a law that explains the behavior of a hypothetical ideal gas. According to

More information

PhysicsAndMathsTutor.com 1 2 (*) (1)

PhysicsAndMathsTutor.com 1 2 (*) (1) PhysicsAndMathsTutor.com 1 1. (a) pressure (*) Pa or N m volume m (*) (*) (not allow kpa) number of moles mol (or none) molar gas constant J K 1 mol 1 (mol 1 implies molar) temperature K 4 (b) (i) W(=

More information

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar Gases A Chemistry Lecture Outline Name: Basics on Gases composition of the atmosphere: properties of gases: vapors: gases of substances that are normally liquids or solids Equation for pressure: 1 atm

More information

Atomic Theory, Temperature and Thermal Expansion

Atomic Theory, Temperature and Thermal Expansion Chapter V Thermodynamics Day 1 Atomic Theory, Temperature and Thermal Expansion Sections 13-1, 13-2 and 13-4 Atomic Theory We step back to the atomic level where the atom,ατoµoς, is indivisible, that is,

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics ecture Series Reference: Chap 0 Halliday & Resnick Fundamental of Physics 6 th edition Kinetic Theory of Gases Microscopic Thermodynamics Applied Sciences Education Research Group (ASERG)

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 Thermodynamics A practical science initially concerned with economics, industry, real life problems. DYNAMICS -- Concerned with the concepts of energy transfers between a system and its environment and

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

More information

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I.

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I. Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: 33 1. The unit of universal gas constant in S.I.unit is A. calorie per degree Celsius B. joule per mole C. joule/k mole C 2.

More information

Serway_ISM_V1 1 Chapter 10. Thermal Physics. it would if filled with the material making up the rest of the object.

Serway_ISM_V1 1 Chapter 10. Thermal Physics. it would if filled with the material making up the rest of the object. Serway_ISM_V1 1 Chapter 10 10 Thermal Physics ANSWERS TO MULTIPLE CHOICE QUESTIONS 1., and the correct response is choice (e). 2. The correct choice is (b). When an object, containing a cavity, is heated,

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Zeroth Law of Thermodynamics

Zeroth Law of Thermodynamics Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers Chapter 0 Some Vocabulary Thermal Physics, Temperature and Heat Thermodynamics: Study of energy transfers (engines) Changes of state (solid, liquid, gas...) Heat: Transfer of microscopic thermal energy

More information

General Physics I. Lecture 23: Basic Concepts of Thermodynamics

General Physics I. Lecture 23: Basic Concepts of Thermodynamics General Physics I Lecture 23: Basic Concepts of Thermodynamics Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Temperature [Operational definition] Temperature is what you measure with

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Characteristics of Unlike liquids and solids, they Expand to fill their containers.

More information

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian Chapter 10-11 Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian 1) Temperature 2) Expansion of Matter 3) Ideal Gas Law 4) Kinetic Theory of Gases 5) Energy, Heat transfer and

More information

PHYSICS 151 Notes for Online Lecture #33

PHYSICS 151 Notes for Online Lecture #33 PHYSICS 151 otes for Online Lecture #33 Moving From Fluids o Gases here is a quantity called compressibility that helps distinguish between solids, liquids and gases. If you squeeze a solid with your hands,

More information

AP Chemistry Unit 5 - Gases

AP Chemistry Unit 5 - Gases Common Gases at Room Temperature AP Chemistry Unit 5 - Gases Know these! HCN toxic slight odor of almonds HS toxic odor of rotten eggs CO toxic odorless CO odorless CH4 methane odorless, flammable CH4

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018 Physics 161 Lecture 14 Kinetic Theory of Gas October 18, 2018 1 Exam 1, Thursday 18 Oct The exam will start promptly at 10:00pm. You will be permitted to open your exam at 10:00pm. You will have until

More information

CHEMISTRY Matter and Change. Chapter 13: Gases

CHEMISTRY Matter and Change. Chapter 13: Gases CHEMISTRY Matter and Change Chapter 13: Gases CHAPTER 13 Table Of Contents Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry Click a hyperlink to view the corresponding

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Gases, Liquids, Solids, and Intermolecular Forces

Gases, Liquids, Solids, and Intermolecular Forces Chapter 6 Gases, Liquids, Solids, and Intermolecular Forces Solids: The particles of a solid have fixed positions and exhibit motions of vibration. Liquids: The particles of a liquid are free to move within

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER CHAPTER 9 The Gaseous State CHAPTER 10 Solids, Liquids, and Phase Transitions CHAPTER 11 Solutions 392 Gas Liquid Solid 9 THE GASEOUS STATE 9.1 The

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Physics 231 Lecture 29 Some slides relevant to Wed. Lecture. The notes for the lecture given by Dr. Nagy can be found at

Physics 231 Lecture 29 Some slides relevant to Wed. Lecture. The notes for the lecture given by Dr. Nagy can be found at Physics 231 Lecture 29 Some slides relevant to Wed. Lecture. he notes for the lecture given by Dr. Nagy can be found at Main points : emperature and thermometers hermal expansion ΔL αδl; ΔA γa Δ; ΔV βvδ

More information

Topic 3 &10 Review Thermodynamics

Topic 3 &10 Review Thermodynamics Name: Date: Topic 3 &10 Review Thermodynamics 1. The kelvin temperature of an object is a measure of A. the total energy of the molecules of the object. B. the total kinetic energy of the molecules of

More information

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas Chapter 9 - GASES 9. Quantitative analysis of gas 9.4 emperature 9.5 esting the ideal gas Quantitative analysis of an ideal gas We need more simplifying assumptions. Assume that the particles do not collide

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision.

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. 1 (a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. State two more assumptions that are made in the kinetic

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass TOPICS 1. Intermolecular Forces 2. Properties of Gases 3. Pressure 4. Gas Laws Boyle, Charles, Lussac 5. Ideal Gas Law 6. Gas Stoichiometry 7. Partial Pressure 8. Kinetic Molecular Theory 9. Effusion &

More information

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses 14 The IDEAL GAS LAW and KINETIC THEORY 14.1 Molecular Mass, The Mole, and Avogadro s Number Atomic Masses The SI Unit of mass: An atomic mass unit is de ned as a unit of mass equal to 1/12 of the mass

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information