Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Size: px
Start display at page:

Download "Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated."

Transcription

1 Heat Energy

2 Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated.

3 Thermometers are instruments designed to measure temperature. In order to do this, they take advantage of some property of matter that changes with temperature. Early thermometers:

4 Common thermometers used today include the liquid-in-glass type and the bimetallic strip.

5 Temperature is generally measured using either the Fahrenheit or the Celsius scale. The Kelvin scale is widely used in science. It has the same increments as celsius. Absolute zero is the coldest theoretical temperature that matter can approach. 0 K= C

6 The freezing point of water is 0 C, or 32 F; the boiling point of water is 100 C, or 212 F. The boiling and freezing points of water are good points for calibration of instruments. Knowing the temperatures in Celsius and Fahrenheit at these points can enable one to obtain a relationship relating the two scales. Both scales are linear. Let y= temp in Fahrenheit Let x= temp in Celsius General equation of a line: y= mx +b

7 We have two points on the line relating the two variables: (0,32) and (100,212) The slope m=(y 2 -y 1 )/(x 2 -x 1 )=9/5 The y intercept b is then found to be 32. The relationship can now be stated: y = 9 5 x + 32 There are easier genral rules of thumb for converting between the two temperature scales.

8 Heat We often speak of heat as though it were a material that flows from one object to another; it is not. Rather, it is a form of energy. Unit of heat: calorie (cal) or the Joule (J) 1 cal is the amount of heat necessary to raise the temperature of 1 g of water by 1 Celsius degree. Don t be fooled the calories on our food labels are really kilocalories (kcal or Calories), the heat necessary to raise 1 kg of water by 1 Celsius degree.

9 If heat is a form of energy, it ought to be possible to equate it to other forms. The experiment below found the mechanical equivalent of heat by using the falling weight to heat the water:

10 Definition of heat: Heat is energy transferred from one object to another because of a difference in temperature. Remember that the temperature of a gas is a measure of the kinetic energy of its molecules.

11 The sum total of all the energy of all the molecules in a substance is its internal (or thermal) energy. Temperature: measures molecules average kinetic energy Internal energy: total energy of all molecules Heat: transfer of energy due to difference in temperature

12 Methods of Heat transfer There are 3 methods of heat energy transfer: Conduction: require contact between matter and the energy moves through the matter. Convection:mass moves from one region to another(e.g. air thermals--hot air rises cold air sinks) Radiation: This refers to electromagnetic radiation and it can be transmitted through a vacuum.

13 Specific Heat The amount of heat required to change the temperature of a material is proportional to the mass and to the temperature change: The specific heat, c, is characteristic of the material. Some values are listed at left.

14 Specific heats of gases are more complicated, and are generally measured at constant pressure (c P ) or constant volume (c V ). Some sample values:

15 Calorimetry Closed system: no mass enters or leaves, but energy may be exchanged Open system: mass may transfer as well Isolated system: closed system where no energy in any form is transferred For an isolated system, Energy out of one part = energy into another part Or: heat lost = heat gained

16 Thermal Equilibrium (Zeroith Law) Lets take two objects (A and B) that are in physical contact, and are isolated from the environment. Let the initial temperatures of objects A and B be T Ai and T Bi respectively. Also let T Ai > T Bi.

17 Heat energy will flow from object A to B and in the process T A will decrease while T B increases. Eventually they will reach a final equilibrium temperature Teq. The only heat transfer occurred between the two objects but not with the environment. The heat lost by object A equals the heat gained by object B. If Q A is the heat object A, and Q B is the heat of object B, one can state: Q A +Q B =0 m A c A (T eq -T Ai )+m B c B (T eq -T Bi )=0

18 Example: 1) How much heat is required to raise the temperature of a 20 kg vat made of iron contaning 20 kg of water, from 10 0 C to 90 0 C? (C iron = 450 J/kg/ o C) a) Q=m 1 c 1 ΔT+m 2 c 2 ΔT =(20 kg)(450 J/kg/ o C)(80 o C) +(20 kg) (4186 J/kg/ o C)(80 o C) =720 kj+ 6700kJ= 7400 kj

19 Example 2) 100 ml of water is heated from 25.0oC to 50.0oC. What is the thermal energy added to the water m = 100 g = kg c = 4.19 kj/kg.oc. Δt = ( )oC = 25.0oC. Q =? Q = mcδt = (0.100 kg) (4.19 kj/kg.oc) (25oC) = 10.5 kj 10.5 kj is used to heat 100 ml of water from 25.0oC to 50.0oC Physics 11 - Unit 4- Work and Energy 19

20 Example 3) If 200 cm 3 of tea at 95 0 C is poured into a 150 g glass cup initially at 25 0 C, what will be the final temperature T of the mixture when equilibrium is reached, assuming no heat is lost to the surroundings? (C glass = 840 J/kg/ o C)

21 Q 1 = heat of tea Q 2 = heat of cup Q 1 +Q 2 =0 m tea c tea (T-95 0 )+m glass c glass (T-25 0 )=0 Other option: T= 86 0 C heat lost by tea =heat gained by glass m tea c tea (95 0 -T)= m glass c glass (T-25 0 )

22 Example [efficiency]: A 1500 W electric kettle took 6.00 minutes to raise the temperature of 1.50 kg of water from 20 0 C to 95 0 C. What is the efficiency of the kettle? Solution : e = useful work input energy x100 = mcδt Pt = 1.5(4180)(75) (1500)(360) x 100 = 87%

23 Latent Heat Energy is required for a material to change phase, even though its temperature is not changing.

24 Heat of fusion, L F : heat required to change 1.0 kg of material from solid to liquid Heat of vaporization, L V : heat required to change 1.0 kg of material from liquid to vapor

25 The total heat required for a phase change depends on the total mass(m) and the latent (L) heat:

26 Calorimetry-with Latent heat Ex) 1.20 kg of iron at C is added to 3.40 kg of water at 80 0 C. Determine the final equilibrium temperature, if it is at C state how much has been converted to steam.(use c water =4180J/kg/ 0 C,c steam =2010 J/kg/ 0 C,,c iron =450 J/kg/ 0 C L v = 22.6x10 5 J/ kg,l f = 3.33x10 5 J/kg)

27 Solution: First one must determine of the equilibrium temperature T is greater than, equal, or less than C. Let Q 1 = heat to raise water to C Q 2 = heat to convert all the water to steam Q 3 = heat lost from iron cooling from C to C

28 Q 1 = (3.4)(4180)(20)= 2.84x10 5 J Q 2 = (3.4)(22.6x10 5 )= 7.684x10 6 J Q 3 = (1.2)(450)(741)= 4.00x10 5 J In this case Q 3 >Q 1, and Q 3 <Q 1 +Q 2 Therefore the final equilibrium temperature is at C. There is enough energy given up from the cooling iron to heat the water and convert some of the water to steam. The equation to solve can now be written: (3.4)(4180)(100-80)+m(22.6x10 5 )+(1.2)(450) ( )=0

29 m= 5.13x10-2 kg Other points: 1) If Q 3 = Q 1 +Q 2, all the water would be converted to steam, and T final =100 0 C. 2) If Q 3 >Q 1 +Q 2, then all the water would be converted to steam and the temperature raised above C. 3) If Q 3 <Q 1, there would only be water at a temperature below C.

30 Example 3) How much energy does a refrigerator have to remove from 1.50 kg of water at 20 0 C to make ice at C? (C ice = 2100J/kg/ o C, L F = 3.33x10 5 J/kg) Solution: Q=mc w (20 0 C)+mL F + mc ice (12 0 C) = 6.6x10 5 J

31 Problem Solving: Calorimetry 1. Is the system isolated? Are all significant sources of energy transfer known or calculable? 2. Apply conservation of energy. 3. If no phase changes occur, the heat transferred will depend on the mass, specific heat, and temperature change. 4. If there are, or may be, phase changes, terms that depend on the mass and the latent heat may also be present. Determine or estimate what phase the final system will be in.

32 5. Make sure that each term is in the right place. 6. There is only one final temperature when the system reaches equilibrium. 7. Solve.

33 Heat Transfer: Conduction Heat conduction can be visualized as occurring through molecular collisions. The heat flow per unit time is given by: H=

34 The constant k is called the thermal conductivity. Materials with large k are called conductors; those with small k are called insulators.

35 Building materials are measured using R values rather than thermal conductivity: Here, l is the thickness of the material.

36 Example problem: Calculate the rate of heat flow through a glass window 2.0m x 1.5m in area and 3.2 mm thick, if the temperatures at the inner and outer surfaces are 15 0 C and 14 0 C respectively.(k glass =0.84 J/s m C 0 )

37 Solution: ΔQ Δt = ka T T 1 2 l = (0.84J /s m C 0 )(3.0m 2 )( C C) (3.2x10 3 m) = 790 J/s

38 Effective Thermal Conductivity Lets assume one had two materials of given thickness (L 1 and L 2 ) and thermal conductivities(k 1 and k 2 ), and one wanted to replace both materials with on material with an equivalent thermal conductivity(k eff ) with a thickness (L 1 +L 2 ).The temperatures at the boundaries are T 1, T 2, and T 3.

39 It turns out that: L k eff = L 1 k 1 + L 2 k 2

40 Thermal Expansion Linear expansion occurs when an object is heated. ΔL = L 0 αδt or L = L 0 (1+ αδt) Here, α is the coefficient of linear expansion.

41 Volume expansion is similar, except that it is relevant for liquids and gases as well as solids: ΔV = V 0 βδt V = V 0 (1+ βδt) Here, β is the coefficient of volume expansion. For uniform solids,

42

43 Thermal Expansion of Water Water behaves differently from most other solids its minimum volume occurs when its temperature is 4 C. As it cools further, it expands, as anyone who has left a bottle in the freezer to cool and then forgets about it can testify.

44 Thought Experiment: If you were to heat up a plate of metal with a hole cut in it, what would happen to the size of the hole? Answer: The hole would get larger

45 β = 3α Question: Show that if one ignores insignificant terms. Start with a cube with initial dimensions L 0 and final dimensions L.

46 The Gas Laws The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state. We will deal here with gases that are not too dense. Boyle s Law: the volume of a given amount of gas is inversely proportional to the pressure as long as the temperature is constant.

47 The volume is linearly proportional to the temperature, as long as the temperature is somewhat above the condensation point and the pressure is constant: Extrapolating, the volume becomes zero at C; this temperature is called absolute zero.

48 The concept of absolute zero allows us to define a third temperature scale the absolute, or Kelvin, scale. This scale starts with 0 K at absolute zero, but otherwise is the same as the Celsius scale. Therefore, the freezing point of water is K, and the boiling point is K. Finally, when the volume is constant, the pressure is directly proportional to the temperature:

49 We can combine the three relations just derived into a single relation: What about the amount of gas present? If the temperature and pressure are constant, the volume is proportional to the amount of gas:

50 A mole (mol) is defined as the number of grams of a substance that is numerically equal to the molecular mass of the substance: 1 mol H 2 has a mass of 2 g 1 mol Ne has a mass of 20 g 1 mol CO 2 has a mass of 44 g The number of moles in a certain mass of material:

51 We can now write the ideal gas law: where n is the number of moles and R is the universal gas constant. Note on Units: One should generally use m 3, Pa, and K. It is often common to use kpa with litres(l).

52 Problem Solving with the Ideal Gas Law Useful facts and definitions: Standard temperature and pressure (STP) Volume of 1 mol of an ideal gas is 22.4 L If the amount of gas does not change: Always measure T in kelvins P must be the absolute pressure

53 Since the gas constant is universal, the number of molecules in one mole is the same for all gases. That number is called Avogadro s number: The number of molecules in a gas is the number of moles (n) times Avogadro s number:

54 Therefore we can write: where k is called Boltzmann s constant.

55 Kinetic Theory and the Molecular Interpretation of Temperature

56 Assumptions of kinetic theory: large number of molecules, moving in random directions with a variety of speeds molecules are far apart, on average molecules obey laws of classical mechanics and interact only when colliding collisions are perfectly elastic

57 It can be shown that, See proof on pages of Ginacoli (5th ed) Recall that: so The average translational kinetic energy of the molecules in an ideal gas is directly proportional to the temperature of the gas.

58 We can invert this to find the average speed (root mean square) of molecules in a gas as a function of temperature:

59 Example: v avg versus v rms. One has 5 molecules travelling at speeds: 60 m/s, 55 m/s, 70 m/s, 73 m/s, and 62 m/s. a) What is the average speed of the molecules? b) What is v rms of the molecules? a) υ = = 64m /s b) υ rms = = 64.3m /s

60 Example: What is the average translational kinetic energy of molecules in a gas at 37 0 C? Solution E k = 3 2 kt = 3 2 (1.38x10 23 )(310) = 6.42x10 21 J

61 Example: What is the rms speed of air molecules (O 2 and N 2 ) at room temperature (20 0 C)? The molecular masses of O 2 and N 2 are 32 u and 28 u respectively. Also 1u=1.67x10-27 kg. Solution: m(o 2 )= (32)(1.67x10-27 kg)= 5.3x10-26 kg m(n 2 )= 4.7x10-26 kg Thus for Oxygen: For Nitrogen: υ rms = 3kT m = (3)(1.38x10 23 )(293) 5.3x10 26 = 480 m /s υ rms = 510 m /s

62 Distribution of Molecular Speeds These two graphs show the distribution of speeds of molecules in a gas, as derived by Maxwell. The most probable speed, v p, is not quite the same as the rms speed. As expected, the curves shift to the right with temperature.

63 The Laws of Thermodynamics

64 The First Law of Thermodynamics The change in internal energy of a closed system will be equal to the energy added to the system minus the work done by the system on its surroundings. This is the law of conservation of energy, written in a form useful to systems involving heat transfer. *On the AP formula sheet W is the work done on the system by the environment. This is why the formula is ΔU = Q +W on the formula sheet.

65 The sum total of all the energy of all the molecules in a substance is its internal (or thermal) energy U. ΔU is the change in internal energy of the system Temperature: measures molecules average kinetic energy. The internal energy U of a system, is directly correlated to the system s temperature. Q= Heat: a transfer of energy due to difference in temperature W= work. See next slide.

66 If the pressure is constant, the work done (W= work done by system) is the pressure multiplied by the change in volume: In general, the work done is the area under the curve of a P versus V diagram. In an isometric (isochoric) process, the volume does not change, so the work done is zero.

67 For processes where the pressure varies, the work done is the area under the P-V curve.

68 Thermodynamic Processes An isothermal process is one where the temperature does not change.

69 In order for an isothermal process to take place, we assume the system is in contact with a heat reservoir. In general, we assume that the system remains in equilibrium throughout all processes.

70 An adiabatic process is one where there is no heat flow into or out of the system. Question: Based on the 1st Law, how can you show that AB must be isothermal, and AC is adiabatic?

71 An isobaric process (a) occurs at constant pressure; an isometric (isochoric) one (b) at constant volume.

72

73 The Second Law of Thermodynamics The absence of the process illustrated above indicates that conservation of energy is not the whole story. If it were, movies run backwards would look perfectly normal to us!

74 The second law of thermodynamics is a statement about which processes occur and which do not. There are many ways to state the second law; here is one: Heat can flow spontaneously from a hot object to a cold object; it will not flow spontaneously from a cold object to a hot object. Entropy is another way of stating the law. The entropy (state of disorder) of the universe can only increase.

75 Heat Engines It is easy to produce thermal energy using work, but how does one produce work using thermal energy? This is a heat engine; mechanical energy can be obtained from thermal energy only when heat can flow from a higher temperature to a lower temperature.

76 We will discuss only engines that run in a repeating cycle; the change in internal energy over a cycle is zero, as the system returns to its initial state. The high temperature reservoir transfers an amount of heat Q H to the engine, where part of it is transformed into work W and the rest, Q L, is exhausted to the lower temperature reservoir. Note that all three of these quantities are positive.

77 A steam engine is one type of heat engine.

78 The internal combustion engine is a type of heat engine as well.

79 The efficiency of a heat engine is the ratio of the work done to the heat input: Using conservation of energy to eliminate W, we find:

80 The Carnot engine was created to examine the efficiency of a heat engine. It is idealized, as it has no friction. Each leg of its cycle is reversible. The Carnot cycle consists of: Isothermal expansion Adiabatic expansion Isothermal compression Adiabatic compression An example is on the next slide.

81 Carnot Cycle

82 For an ideal reversible engine, the efficiency can be written in terms of the temperature: From this we see that 100% efficiency can be achieved only if the cold reservoir is at absolute zero, which is impossible. Real engines have some frictional losses; the best achieve 60-80% of the Carnot value of efficiency.

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T) Physics 111 Lecture 35 (Walker: 16.1-3) Thermal Physics I: Temperature Thermal Expansion April 29, 2009 Lecture 35 1/26 Temperature (T) Temperature (T) is a measure of how hot or cold something is Temperature

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Atomic Theory, Temperature and Thermal Expansion

Atomic Theory, Temperature and Thermal Expansion Chapter V Thermodynamics Day 1 Atomic Theory, Temperature and Thermal Expansion Sections 13-1, 13-2 and 13-4 Atomic Theory We step back to the atomic level where the atom,ατoµoς, is indivisible, that is,

More information

Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation.

Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation. Phys101 Lectures 33, 34 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation. Ref: 14-1,2,3,4,6,7,8. Page 1 Heat as Energy Transfer We often

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

17-6 The Gas Laws and Absolute Temperature

17-6 The Gas Laws and Absolute Temperature 17-6 The Gas Laws and Absolute Temperature The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state. We will deal here with gases that are not too dense.

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Chapter 14 Heat. Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli

Chapter 14 Heat. Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!!

Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!! Thermal Energy Heat and Temperature are not the same!! Cold is the absence of heat, not an energy Same concept as light/dark Cold can t come in, heat flows out Heat flows from High Temp Low Temp Temp vs.

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Chapter 14 Temperature and Heat To understand temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving heat, phase changes and calorimetry.

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

CHAPTER 15 The Laws of Thermodynamics. Units

CHAPTER 15 The Laws of Thermodynamics. Units CHAPTER 15 The Laws of Thermodynamics Units The First Law of Thermodynamics Thermodynamic Processes and the First Law Human Metabolism and the First Law The Second Law of Thermodynamics Introduction Heat

More information

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

More information

Thermal Physics. Slide 1 / 163. Slide 2 / 163. Slide 3 / 163. Thermal Physics.

Thermal Physics. Slide 1 / 163. Slide 2 / 163. Slide 3 / 163. Thermal Physics. Slide 1 / 163 Slide 2 / 163 Thermal Physics www.njctl.org Thermal Physics Temperature, Thermal Equilibrium and Thermometers Thermal Expansion Heat and Temperature Change Thermal Equilibrium : Heat Calculations

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

Thermodynamics Problem Set. The amount of heat necessary to raise a body one degree of temperature (K or o C) is called:

Thermodynamics Problem Set. The amount of heat necessary to raise a body one degree of temperature (K or o C) is called: Thermodynamics Problem Set 1. 100 o C converted to both the Fahrenheit scale and the kelvin scale is which of the following? a. 238 o F, 373.15 K b. 88 o F, 273.15 K c. 238 o F, 273.15 K d. 212 o F, 373.15

More information

Temperature, Thermal Expansion, and Ideal Gas Law

Temperature, Thermal Expansion, and Ideal Gas Law Temperature, Thermal Expansion, and Ideal Gas Law The Density of copper is 8.9 E 3 kg/m^3 and each copper atom has a mass of 63 u, where 1u= 1.66 E -27 kg. Estimate the average distance between neighboring

More information

This Week. 6/2/2015 Physics 214 Summer

This Week. 6/2/2015 Physics 214 Summer This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

Module - 1: Thermodynamics

Module - 1: Thermodynamics Thermodynamics: Module - : Thermodynamics Thermodynamics (Greek: thermos = heat and dynamic = change) is the study of the conversion of energy between heat and other forms, mechanical in particular. All

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Thermodynamics B Test

Thermodynamics B Test Northern Regional: January 19 th, 2019 Thermodynamics B Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105.

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105. Slide 1 / 105 Slide 2 / 105 Topics to be covered Thermal Physics Temperature and Thermal quilibrium Gas Laws Internal nergy Heat Work Laws of Thermodynamics Heat ngines Slide 3 / 105 Thermodynamics System

More information

Temperature Energy and Heat

Temperature Energy and Heat CHAPTER 3 Temperature Energy and Heat 3.1 Temperature What is temperature? Why is temperature important in chemistry? How is energy related to temperature? 2 3.1 Temperature Milk fat particles are being

More information

Zeroth Law of Thermodynamics

Zeroth Law of Thermodynamics Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

Chapter 16. Copyright 2010 Pearson Education, Inc.

Chapter 16. Copyright 2010 Pearson Education, Inc. Chapter 16 Temperature and Heat Units of Chapter 16 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection,

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury? Q15 Is it possible for a solid metal ball to float in mercury? A). Yes. B). No. The upward force is the weight of liquid displaced and the downward force is the weight of the ball. If the density of the

More information

Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Chapters 16 Temperature and Heat

Chapters 16 Temperature and Heat Chapters 16 Temperature and Heat 1 Overview of Chapter 16 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heat Conduction, Convection,

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

Lecture 24. Paths on the pv diagram

Lecture 24. Paths on the pv diagram Goals: Lecture 24 Chapter 17 Apply heat and energy transfer processes Recognize adiabatic processes Chapter 18 Follow the connection between temperature, thermal energy, and the average translational kinetic

More information

2012 Thermodynamics Division C

2012 Thermodynamics Division C Team: Team Number: Team Member Names: 1. 2. Instructions: Answer all questions on the test paper. If you need more room, you may attach extra paper. The test is worth a total of 50 points. Show all work

More information

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK Question The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Answer: The relation between kelvin scale and

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins Photo: S. T. Cummins Announcements Today is our final class! We will first discuss more on Chapters 14-15 and then conduct a short

More information

Lecture 22. Temperature and Heat

Lecture 22. Temperature and Heat Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

More information

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat SPH3U Thermal Physics electrons and holes in semiconductors An Introductory ourse in Thermodynamics converting energy into work magnetism thin films and surface chemistry thermal radiation (global warming)

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

More information

Topic 3 &10 Review Thermodynamics

Topic 3 &10 Review Thermodynamics Name: Date: Topic 3 &10 Review Thermodynamics 1. The kelvin temperature of an object is a measure of A. the total energy of the molecules of the object. B. the total kinetic energy of the molecules of

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat 16-1 Temperature and the Zeroth Law of Thermodynamics Definition of heat: Heat is the energy transferred between objects because of a temperature difference. Objects are

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

1. How much heat was needed to raise the bullet to its final temperature?

1. How much heat was needed to raise the bullet to its final temperature? Name: Date: Use the following to answer question 1: A 0.0500-kg lead bullet of volume 5.00 10 6 m 3 at 20.0 C hits a block that is made of an ideal thermal insulator and comes to rest at its center. At

More information

AAST/AEDT AP PHYSICS B: HEAT

AAST/AEDT AP PHYSICS B: HEAT 1 AAST/AEDT AP PHYSICS B: HEAT If we contact two objects with the different temperatures, the hotter one starts to cool and the colder one starts to increase its temperature. The effect can be easily explained.

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and Section 1 Temperature and Thermal Equilibrium Preview Objectives Defining Temperature Thermal Equilibrium Thermal Expansion Measuring Temperature Section 1 Temperature and Thermal Equilibrium Objectives

More information

We call the characteristic of a system that determines how much its temperature will change heat capacity.

We call the characteristic of a system that determines how much its temperature will change heat capacity. 3/3 Measuring Heat If all we do is add heat to a system its temperature will rise. How much the temperature rises depends on the system. We call the characteristic of a system that determines how much

More information

Physics 100 Lecture 5. Laws of Thermodynamics February 5, 2018

Physics 100 Lecture 5. Laws of Thermodynamics February 5, 2018 3 Physics 100 Lecture 5 Laws of Thermodynamics February 5, 2018 4 Class Quiz 2-3: A block of wood loses 100 J of gravitational potential energy as it slides down a ramp. If it has 90 J of kinetic energy

More information

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide.

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide. Slide 1 / 67 Slide 2 / 67 8th Grade Thermal Energy Study Guide 2015-10-09 www.njctl.org Slide 3 / 67 Thermal Energy Study Guide www.njctl.org Slide 4 / 67 Part 1 Define the following terms and/or concepts

More information

MATTER AND HEAT. Chapter 4 OUTLINE GOALS

MATTER AND HEAT. Chapter 4 OUTLINE GOALS Chapter 4 MATTER AND HEAT OUTLINE Temperature and Heat 4.1 Temperature 4.2 Heat 4.3 Metabolic Energy Fluids 4.4 Density 4.5 Pressure 4.6 Buoyancy 4.7 The Gas Laws Kinetic Theory of Matter 4.8 Kinetic Theory

More information

8th Grade. Thermal Energy Study Guide.

8th Grade. Thermal Energy Study Guide. 1 8th Grade Thermal Energy Study Guide 2015 10 09 www.njctl.org 2 Thermal Energy Study Guide www.njctl.org 3 Part 1 Define the following terms and/or concepts 4 1 Temperature 5 2 Kinetic Energy 6 3 Thermal

More information

Chapter 17 Temperature and heat

Chapter 17 Temperature and heat Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

More information

THERMODINAMICS. Tóth Mónika

THERMODINAMICS. Tóth Mónika THERMODINAMICS Tóth Mónika 2014 monika.a.toth@aok.pte.hu Temperature Temperature: is related to the average energy of the motion of the particles of an object or system. Different temperature scales. Thermometer

More information

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Temperature and Thermal Energy thermodynamics: the study of heat caloric theory: early theory of TE honolulu.hawaii.edu An incorrect theory which serves as a model for scientific growth language retains

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Temperature and Thermal Energy thermodynamics: the study of heat. Kinetic Molecular Theory notes.notebook. April 01, 2019

Temperature and Thermal Energy thermodynamics: the study of heat. Kinetic Molecular Theory notes.notebook. April 01, 2019 Temperature and Thermal Energy thermodynamics: the study of heat caloric theory: early theory of TE honolulu.hawaii.edu An incorrect theory which serves as a model for scientific growth language retains

More information

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009 Physics 111 Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review May 15, 2009 Review Session: Today, 3:10-4:00, TH230. Final exam, Monday May 18, 10:45-1:15. Lecture 42 1/32 The Physics 111 Final

More information

Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. Thermal Energy Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. And remember: heat will always transfer from a warm object to a cold object. HEAT

More information

HEAT HISTORY. D. Whitehall

HEAT HISTORY. D. Whitehall 1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J.

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J. CALORIEMETRY CALORIMETRY Heat is the kinetic energy due to random motion of the molecules of a substance is called heat energy. Heat is a an invisible energy, that causes in us the sensation of hotness

More information