# Lecture 24. Paths on the pv diagram

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Goals: Lecture 24 Chapter 17 Apply heat and energy transfer processes Recognize adiabatic processes Chapter 18 Follow the connection between temperature, thermal energy, and the average translational kinetic energy molecules Understand the molecular basis for pressure and the idealgas law. To predict the molar specific heats of gases and solids. Assignment HW10, Due Wednesday 9:00 AM For Thursday, Read through all of Chapter 18 Physics 207: Lecture 24, Pg 1 Paths on the p diagram (4) Isobaric (3) Isothermal (2) Isochoric (1) Adiabatic W = - p???? W = 0???? p T 1 T 2 Ideal gas T 4 T 3 Physics 207: Lecture 24, Pg 2 Page 1

2 Isothermal processes Work done when P = nrt = constant P = nrt / W W = = final initial f i p d nrt = (area under curve) d / = nrt f i d / W = nrt ln( / ) f i p 3 T 1 T 2 T 3 T 4 Physics 207: Lecture 24, Pg 3 Adiabatic Processes An adiabatic process is process in which there is no thermal energy transfer to or from a system (Q = 0) A reversible adiabatic process involves a worked expansion in which we can return all of the energy transferred. In this case P γ = const. All real processes are not. p T 1 T 2 T 4 T 3 Physics 207: Lecture 24, Pg 4 Page 2

3 Work and Ideal Gas Processes (on system) Isothermal W = nrt ln( / ) f i Isobaric W Isochoric W = p = 0 ( f - ) FYI: Adiabatic (and reversible) W 2 = Pd = 1 i 2 1 const γ d = const γ γ γ ( 2 1 Physics 207: Lecture 24, Pg 5 ) Combinations of Isothermal & Adiabatic Processes All engines employ a thermodynamic cycle W = ± (area under each p curve) W cycle = area shaded in turquoise Watch sign of the work! Physics 207: Lecture 24, Pg 6 Page 3

4 Relationship between energy transfer and T Physics 207: Lecture 24, Pg 7 Heat and Latent Heat Latent heat of transformation L is the energy required for 1 kg of substance to undergo a phase change. (J / kg) Q = ±ML Specific heat c of a substance is the energy required to raise the temperature of 1 kg by 1 K. (Units: J / K kg ) Q = M c T Molar specific heat C of a gas at constant volume is the energy required to raise the temperature of 1 mol by 1 K. Q = n C T If a phase transition involved then the heat transferred is Q = ±ML+M c T Physics 207: Lecture 24, Pg 8 Page 4

5 Q : Latent heat and specific heat The molar specific heat of gasses depends on the process path C = molar specific heat at constant volume C p = molar specific heat at constant pressure C p = C +R (R is the universal gas constant) γ = C p C Physics 207: Lecture 24, Pg 9 Mechanical equivalent of heat Heating liquid water: Q = amount of heat that must be supplied to raise the temperature by an amount T. [Q] = Joules or calories. 1 Cal = J 1 kcal = 1 Cal = 4186 J calorie: energy to raise 1 g of water from 14.5 to 15.5 C (James Prescott Joule found the mechanical equivalent of heat.) Sign convention: +Q : heat gained - Q : heat lost Physics 207: Lecture 24, Pg 10 Page 5

6 Exercise The specific heat (Q = M c T) of aluminum is about twice that of iron. Consider two blocks of equal mass, one made of aluminum and the other one made of iron, initially in thermal equilibrium. Heat is added to each block at the same constant rate until it reaches a temperature of 500 K. Which of the following statements is true? (a) The iron takes less time than the aluminum to reach 500 K (b) The aluminum takes less time than the iron to reach 500 K (c) The two blocks take the same amount of time to reach 500 K Physics 207: Lecture 24, Pg 11 Heat and Ideal Gas Processes (on system) Isothermal Expansion/Contraction E Th = 0 = W + Q Q = W Isobaric Q = nc T = n( C + R) T p Isochoric Q = nc T Adiabatic Q = 0 Physics 207: Lecture 24, Pg 12 Page 6

7 Two process are shown that take an ideal gas from state 1 to state 3. Compare the work done by process A to the work done by process B. A. W A > W B B. W A < W B C. W A = W B = 0 D. W A = W B but neither is zero ON BY A 1 3 W 1 2 = 0 (isochoric) B 1 2 W 1 2 = -½ (p 1 +p 2 )( 2-1 ) < 0 -W 1 2 > 0 B 2 3 W 2 3 = -½ (p 2 +p 3 )( 1-2 ) > 0 -W 2 3 < 0 B 1 3 = ½ (p 3 - p 1 )( 2-1 ) > 0 < 0 Physics 207: Lecture 24, Pg 13 Exercise Latent Heat Most people were at least once burned by hot water or steam. Assume that water and steam, initially at 100 C, are cooled down to skin temperature, 37 C, when they come in contact w ith your skin. Assume that the steam condenses extremely fast, and that the specific heat c = 4190 J/ kg K is constant for both liquid water and steam. Under these conditions, which of the following statements is true? (a) Steam burns the skin worse than hot water because the thermal conductivity of steam is much higher than that of liquid water. (b) Steam burns the skin worse than hot water because the latent heat of vaporization is released as well. (c) Hot water burns the skin worse than steam because the thermal conductivity of hot water is much higher than that of steam. (d) Hot water and steam both burn skin about equally badly. Physics 207: Lecture 24, Pg 14 Page 7

8 Energy transfer mechanisms Thermal conduction (or conduction) Convection Thermal Radiation For a material of cross-section area A and length L, spanning a temperature difference T = T H T C, the rate of heat transfer is Q / t = k A T / x where k is the thermal conductivity, which characterizes whether the material is a good conductor of heat or a poor conductor. Physics 207: Lecture 24, Pg 15 Energy transfer mechanisms Thermal conduction (or conduction): Energy transferred by direct contact. e.g.: energy enters the water through the bottom of the pan by thermal conduction. Important: home insulation, etc. Rate of energy transfer ( J / s or W ) Through a slab of area A and thickness x, with opposite faces at different temperatures, T c and T h Q / t = k A (T h - T c ) / x k :Thermal conductivity (J / s m C) Physics 207: Lecture 24, Pg 16 Page 8

9 Thermal Conductivities Aluminum J/s m C J/s m C J/s m C 238 Air Asbestos 0.25 Copper 397 Helium Concrete 1.3 Gold 314 Hydrogen Glass 0.84 Iron 79.5 Nitrogen Ice 1.6 Lead 34.7 Oxygen Water 0.60 Silver 427 Rubber 0.2 Wood 0.10 Physics 207: Lecture 24, Pg 17 Home Exercise Thermal Conduction Two identically shaped bars (one blue and one green) are placed between two different thermal reservoirs. The thermal conductivity coefficient k is twice as large for the blue as the green. You measure the temperature at the joint between the green and blue bars. 100 C T joint 300 C Which of the following is true? (A) T top > T bottom (B) T top = T bottom (C) T top < T bottom (D) need to know k Physics 207: Lecture 24, Pg 18 Page 9

10 Home Exercise Thermal Conduction Two identically shaped bars (one blue and one green) are placed between two different thermal reservoirs. The thermal conductivity coefficient k is twice as large for the blue as the green. 100 C T joint 300 C Top: P green = P blue = Q / t = 2 k A (T high - T j ) / x= k A (T j - T low ) / x 2 (T high - T j ) = (T j - T low ) 3 T j(top) = 2 T high T low By analogy for the bottom: 3 T j(bottom) = 2 T low T high 3 (T j(top) - T j(bottom ) = 3 T high 3 T low > 0 (A) T top > T bottom Physics 207: Lecture 24, Pg 19 Exercise Thermal Conduction Two thermal conductors (possibly inhomogeneous) are butted together and in contact with two thermal reservoirs held at the temperatures shown. Which of the temperature vs. position plots below is most physical? 100 C (A) (B) (C) 300 C Temperature Position Temperature Position Temperature Position Physics 207: Lecture 24, Pg 20 Page 10

11 Energy transfer mechanisms Convection: Energy is transferred by flow of substance 1. Heating a room (air convection) 2. Warming of North Altantic by warm waters from the equatorial regions Natural convection: from differences in density Forced convection: from pump of fan Radiation: Energy is transferred by photons e.g.: infrared lamps Stefan s Law P = σ A e T 4 (power radiated) σ = W/m 2 K 4, T is in Kelvin, and A is the surface area e is a constant called the emissivity Physics 207: Lecture 24, Pg 21 Minimizing Energy Transfer The Thermos bottle, also called a Dewar flask is designed to minimize energy transfer by conduction, convection, and radiation. The standard flask is a double-walled Pyrex glass with silvered walls and the space between the walls is evacuated. acuum Silvered surfaces Hot or cold liquid Physics 207: Lecture 24, Pg 22 Page 11

12 Anti-global warming or the nuclear winter scenario Assume P/A = I = 1340 W/m 2 from the sun is incident on a thick dust cloud above the Earth and this energy is absorbed, equilibrated and then reradiated towards space where the Earth s surface is in thermal equilibrium with cloud. Let e (the emissivity) be unity for all wavelengths of light. What is the Earth s temperature? P = σ A T 4 = σ (4π r 2 ) T 4 = I π r 2 T = [I / (4 x σ )] ¼ σ = W/m 2 K 4 T = 277 K (A little on the chilly side.) Physics 207: Lecture 24, Pg 23 Ch. 18, Macro-micro connection Molecular Speeds and Collisions A real gas consists of a vast number of molecules, each moving randomly and undergoing millions of collisions every second. Despite the apparent chaos, averages, such as the average number of molecules in the speed range 600 to 700 m/s, have precise, predictable values. The micro/macro connection is built on the idea that the macroscopic properties of a system, such as temperature or pressure, are related to the average behavior of the atoms and molecules. Physics 207: Lecture 24, Pg 24 Page 12

13 Molecular Speeds and Collisions A view of a Fermi chopper Physics 207: Lecture 24, Pg 25 Molecular Speeds and Collisions Physics 207: Lecture 24, Pg 26 Page 13

14 Mean Free Path If a molecule has N coll collisions as it travels distance L, the average distance between collisions, which is called the mean free path (lowercase Greek lambda), is Physics 207: Lecture 24, Pg 27 Macro-micro connection Assumptions for ideal gas: # of molecules N is large They obey Newton s laws Short-range interactions with elastic collisions Elastic collisions with walls (an impulse..pressure) What we call temperature T is a direct measure of the average translational kinetic energy What we call pressure p is a direct measure of the number density of molecules, and how fast they are moving (v rms ) v 2 T = ε 3 rms k B p = = 2 3 avg N ε 2 ( v ) avg avg = 3k BT m Physics 207: Lecture 24, Pg 28 Page 14

15 Lecture 24 Assignment HW10, Due Wednesday (9:00 AM) Tuesday review Reading assignment through all of Chapter 18 Physics 207: Lecture 24, Pg 29 Page 15

### Chapter 17. Work, Heat, and the First Law of Thermodynamics Topics: Chapter Goal: Conservation of Energy Work in Ideal-Gas Processes

Chapter 17. Work, Heat, and the First Law of Thermodynamics This false-color thermal image (an infrared photo) shows where heat energy is escaping from a house. In this chapter we investigate the connection

### Phase Changes and Latent Heat

Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

### Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

### Energy in Thermal Processes. Heat and Internal Energy

Energy in Thermal Processes Heat and Internal Energy Internal energy U: associated with the microscopic components of a system: kinetic and potential energies. The larger the number of internal degrees

### A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

### Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

### General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

### Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

### Conduction is the transfer of heat by the direct contact of particles of matter.

Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

### Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

### A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

### CHAPTER 3 TEST REVIEW

IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

### Three special ideal gas processes: one of, W or Q is 0

Lecture 12 1st Law for isochoric, isothermal and adiabatic process Temperature change: specific heat Phase change: heat of transformation Calorimetry: calculating heat exchanges Specific heats of gases

### Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation.

Phys101 Lectures 33, 34 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation. Ref: 14-1,2,3,4,6,7,8. Page 1 Heat as Energy Transfer We often

### Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

### Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

### SPH3U1 Lesson 03 Energy

THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

Academic Year 2016-2017 First Term Science Revision sheets PHYSICS ( Answer key ) Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions:

### A) 3.1 m/s B) 9.9 m/s C) 14 m/s D) 17 m/s E) 31 m/s

1. A large tank, open at the top, is filled with water to a depth of 15 m. A spout located 10.0 m above the bottom of the tank is then opened as shown in the drawing. With what speed will water emerge

### Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat

Physics 111 Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Dec. 7, 2009 Kinetic Theory Pressure is the result of collisions between gas molecules and walls of container.

### Thermal Conductivity, k

Homework # 85 Specific Heats at 20 C and 1 atm (Constant Pressure) Substance Specific Heat, c Substance Specific Heat, c kcal/kg C J/kg C kcal/kg C J/kg C Solids Aluminum 0.22 900 Brass 0.090 377 Copper

### PHYSICS 149: Lecture 26

PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation

### Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

### Academic Year First Term. Science Revision sheets PHYSICS

Academic Year 2016-2017 First Term Science Revision sheets PHYSICS Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions: 1. What term

### Chapter Practice Test Grosser

Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

### CHAPTER - 12 THERMODYNAMICS

CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

### Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

### Chapter 13 Temperature, Heat Transfer, and the First Law of Thermodynamics

Chapter 13 Temperature, Heat Transfer, and the First Law of Thermodynamics Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic

### Process Nature of Process

AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

### Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

### Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Temperature and Thermal Equilibrium Linear Expansion

### Chapter 17 Temperature and heat

Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

### CHEMISTRY: Chapter 10 Prep-Test

CHEMISTRY: Chapter 10 Prep-Test Matching Match each item with the correct statement below. a. calorimeter d. temperature b. calorie e. specific heat c. joule f. heat 1. quantity of heat needed to raise

### Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Thermal Energy Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. And remember: heat will always transfer from a warm object to a cold object. HEAT

### Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

### Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work

Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work HW: Conceptual: 9, 11, 15, 23, 27, 28, 29 Problems: 8, 11, 18, 2023, 30, 32, 38, 43, 46, 51, 69 Heat Energy

### We call the characteristic of a system that determines how much its temperature will change heat capacity.

3/3 Measuring Heat If all we do is add heat to a system its temperature will rise. How much the temperature rises depends on the system. We call the characteristic of a system that determines how much

### The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

### Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

### Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK

Question The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Answer: The relation between kelvin scale and

### Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

### KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel.

Chapter Thirteen KINETIC THEORY MCQ I 13.1 A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500m s 1

### Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

### Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

### Thermodynamics 2013/2014, lecturer: Martin Zápotocký

Thermodynamics 2013/2014, lecturer: Martin Zápotocký 2 lectures: 1. Thermodynamic processes, heat and work, calorimetry, 1 st and 2 nd law of thermodynamics 2. Entropy, thermodynamic potentials, nonequilibrium

### Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity

Name: Block: Date: IP 614 Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity All these questions are real MCAS questions! 1. In a copper wire, a temperature increase is the result of which

### What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

### Chapter 10 Test Form B

Chapter 10 Test Form A 1. B 2. A 3. A 4. B 5. D 6. B 7. B 8. A 9. A 10. A 11. B 12. D 13. A 14. C 15. No, heat and cold do not flow between objects. Energy transferred between objects changes the temperature

### Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Exercises 22.1 Conduction (pages 431 432) 1. Define conduction. 2. What is a conductor? 3. are the best conductors. 4. In conduction, between particles transfer thermal energy. 5. Is the following sentence

### 10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables.

Chapter 16. A Macroscopic Description of Matter Macroscopic systems are characterized as being either solid, liquid, or gas. These are called the phases of matter, and in this chapter we ll be interested

### Ch 6 Gases 6 GASES. Property of gases. pressure = force/area

6 GASES Gases are one of the three states of matter, and while this state is indispensable for chemistry's study of matter, this chapter mainly considers the relationships between volume, temperature and

### Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126

Chapter 5: Thermochemistry Problems: 5.1-5.95, 5.97-98, 5.100, 5.106, 5.108, 5.118-5.119, 5.121, 5.126 Energy: Basic Concepts and Definitions energy: capacity to do work or to produce heat thermodynamics:

### Chapter 11. Energy in Thermal Processes

Chapter 11 Energy in Thermal Processes Vocabulary, 3 Kinds of Energy Internal Energy U = Energy of microscopic motion and intermolucular forces Work W = -F x = -P V is work done by compression (next chapter)

### 19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

### Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 : Study of physical systems involving the transfer of something called Heat. Physics 201 p. 2/3 : Study of

### Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

### !U = Q " P!V. Q = mc!t. Vocabulary, 3 Kinds of Energy. Chapter 11. Energy in Thermal Processes. Example Temperature and Specific Heat

Vocabulary, 3 Kinds of Energy Chapter 11 Energy in Thermal Processes Internal Energy U = Energy of microscopic motion and intermolucular forces Work W = -F!x = -P!V is work done by compression (next chapter)

### Lecture Outlines Chapter 16. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 16 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

### 1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles.

1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles. The mean square speed of the gas molecules A remains constant. B increases by a factor of 2.

### Part II First Law of Thermodynamics

Part II First Law of Thermodynamics Introduction The first law deals with macroscopic properties, work, energy, enthalpy, etc. One of the most fundamental laws of nature is the conservation of energy principle.

### 3. Basic Concepts of Thermodynamics Part 2

3. Basic Concepts of Thermodynamics Part 2 Temperature and Heat If you take a can of cola from the refrigerator and leave it on the kitchen table, its temperature will rise-rapidly at first but then more

### IB Topic 3: Thermal Physics Summer Assignment

IB Topic 3: Thermal Physics Summer Assignment How to complete this assignment: 1. The entire assignment is not meant to take more than 8 hours. 2. Download all documents from Blackboard, since there are

### Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

### PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. In an experiment to measure the temperature of the flame of a Bunsen burner, a lump of copper of mass 0.12 kg is heated in the flame for several minutes. The copper is then

### Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!!

Thermal Energy Heat and Temperature are not the same!! Cold is the absence of heat, not an energy Same concept as light/dark Cold can t come in, heat flows out Heat flows from High Temp Low Temp Temp vs.

### Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work

Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work Heat Energy is a flow of energy from hotter to colder because of a difference in temperature. Objects do not

### Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

### CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

### Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

### 1. Make the following conversions: a. 0 ºC to kelvins ( K) c. 273 ºC to kelvins ( K)

Chapter 4 Heat Practice Problems (answers are in brackets) Name: Temperature Conversions: C = ( F 32) 5 9 F = ( 9 ) C + 32 5 K = C + 273.15 1. Make the following conversions: a. 0 ºC to kelvins (273.15

### Name: Applied Physics II Exam 2 Winter Multiple Choice ( 8 Points Each ):

Name: e-mail: Applied Physics II Exam 2 Winter 2006-2007 Multiple Choice ( 8 Points Each ): 1. A cowboy fires a silver bullet ( specific heat c = 234 J / kg O C ) with a muzzle speed of 200 m/s into a

### Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

### Ch. 11 States of matter

Ch. 11 States of matter States of Matter Solid Definite volume Definite shape Liquid Definite volume Indefinite shape (conforms to container) Gas Indefinite volume (fills any container) Indefinite shape

### Solutions. The cabin heat is lost by conduction through the walls. dq/dt = -KA/L ΔT = -A/R ΔT = -200 m 2 / 1.0 m 2 C /W 40 C = W

Department of Physics University of California, Berkeley Physics 7b Section 2 Spring semester 2007 Mid-term examination 1 Tuesday Feb. 20, 6:00 8:00 PM Solutions 1) (15 points) A cabin in the sierra mountains

### Heat gained by soda = Heat lost by watermelon Qsoda = Qwatermelon

PHYS1114 SAMPLE EXAM 5 SOLUTIONS Spring 2013 Professor Kenny L. Tapp 1. Dermatologists often remove small precancerous skin lesions by freezing them quickly with liquid nitrogen, which has a temperature

### Unit Two Worksheet Matter and Energy WS PS U2

Unit Two Worksheet Matter and Energy WS PS U2 Name Period Section 4.1 Matching. Match the definition with the term that best correlates to it. 1. Chemical potential energy 2. Elastic potential energy 3.

### People s Physics book 3e

The Big Ideas Heat is a form of energy transfer. It can change the kinetic energy of a substance. For example, the average molecular kinetic energy of gas molecules is related to temperature. A heat engine

### HEAT HISTORY. D. Whitehall

1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

### SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

### Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

*STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

### HW #1: 1.42, 1.52, 1.54, 1.64, 1.66, 1.70, 1.76, 1.78, 1.80, 1.82, 1.84, 1.86, 1.92, 1.94, 1.98, 1.106, 1.110, 1.116

Chemistry 121 Lecture 5: Measuring Temperature; Energy and Heat; Specific Heat and the Heating Curve for Water Sections 1.13, 8.15 in McMurry, Ballantine, et. al. 7 th edition HW #1: 1.42, 1.52, 1.54,

### What are the states of Matter?

What are the states of Matter? Solid Lowest energy/heat Molecules barely moving Definite, uniform shape Example: ice States of Matter Liquid Medium energy/heat Molecules slowly moving Shape of container

### Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

### Temperature and Heat 4.1. Temperature depends on particle movement Energy flows from warmer to cooler objects. 4.3

Temperature and Heat NEW the BIG idea Heat is a flow of energy due to temperature differences. 4.1 Temperature depends on particle movement. 4.2 Energy flows from warmer to cooler objects. 4.3 The transfer

### Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

### 4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

### Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

### States of Matter. We can explain the properties that we observe in the various states of matter with these postulates.

States of Matter Kinetic Molecular Theory When discussing the properties of matter, it is not enough just to classify them. We must also create a model that helps to explain the properties that we see.

### Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5.

Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

### Thermal Physics. Temperature, Thermal Equilibrium and Thermometers. Slide 1 / 163 Slide 2 / 163. Slide 3 / 163. Slide 4 / 163.

Slide 1 / 163 Slide 2 / 163 Thermal Physics www.njctl.org Slide 3 / 163 Thermal Physics Temperature, Thermal quilibrium and Thermometers Thermal xpansion Heat and Temperature hange Thermal quilibrium :

### Chapter 5: Thermochemistry

Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

### Date: May 8, Obj: Collect data and develop a mathematical equation. Copy: Thermochemistry is the study of heat and chemical reactions.

Do Now Date: May 8, 2017 Obj: Collect data and develop a mathematical equation. Copy: Thermochemistry is the study of heat and chemical reactions. Monday, May 8, 2017 Today: Warm-Up Content: Introduction

### kinetic molecular theory thermal energy.

Thermal Physics 1 Thermal Energy The kinetic molecular theory is based on the assumption that matter is made up of tiny particles that are always in motion. In a hot object the particles are moving faster

### Liquids and Solids: The Molecular Kinetic Theory II. Unit 5

Liquids and Solids: The Molecular Kinetic Theory II Unit 5 Energy Definition Energy is the ability to do work. The ability to make something happen. Different Kinds of Energy: Heat (Thermal) Energy energy

### Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

### Calorimetry - Specific Heat and Latent Heat

Chapter 3 Calorimetry - Specific Heat and Latent Heat Name: Lab Partner: Section: 3.1 Purpose The purpose of this experiment is to study the relationship between heat and temperature. Calorimetry will