# A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

Size: px
Start display at page:

Download "A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?"

## Transcription

1 Q15 Is it possible for a solid metal ball to float in mercury? A). Yes. B). No. The upward force is the weight of liquid displaced and the downward force is the weight of the ball. If the density of the liquid is greater than that of the ball it will float. 3/7/2011 Physics 214 Fall

2 Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature. If two objects are in contact with one another long enough, the two objects have the same temperature. This is the zeroth law of thermodynamics.

3 The first widely used temperature scale was devised by Gabriel Fahrenheit. Another widely used scale was devised by Anders Celsius. The Celsius degree is larger than the Fahrenheit degree T C 5 9 T 32 F T F 9 5 T C 32 They are both equal at -40.

4 The zero point on the Fahrenheit scale was based on the temperature of a mixture of salt and ice in a saturated salt solution. The zero point on the Celsius scale is the freezing point of water. Both scales go below zero. 0 F = C Is there such a thing as absolute zero?

5 We can then plot the pressure of a gas as a function of the temperature. The curves for different gases or amounts are all straight lines. When these lines are extended backward to zero pressure, they all intersect at the same temperature, C. Since negative pressure has no meaning, this suggests that the temperature can never get lower than C, or 0 K (kelvin). T K T C 273.2

6 3E-01 Liquid Nitrogen Demos liquid nitrogen boils at 77 K ( 196 C; 321 F) freezes at 63 K ( 210 C; 346 F)

7 Can anything ever get colder than 0 K? No. Can absolute zero ever be reached? No. T K T C 273.2

8 Heat and Specific Heat Capacity What happens when objects or fluids at different temperatures come in contact with one another? The colder object gets hotter, and the hotter object gets colder, until they both reach the same temperature. What is it that flows between the objects to account for this? We use the term heat for this quantity.

9 Heat and Specific Heat Capacity One-hundred grams of room-temperature water is more effective than 100 grams of room-temperature steel shot in cooling a hot cup of water. Steel has a lower specific heat capacity than water.

10 The specific heat capacity of a material is the quantity of heat needed to change a unit mass of the material by a unit amount in temperature. For example, to change 1 gram by 1 Celsius degree. It is a property of the material, determined by experiment. The specific heat capacity of water is 1 cal/g C : it takes 1 calorie of heat to raise the temperature of 1 gram of water by 1 C. We can then calculate how much heat must be absorbed by a material to change its temperature by a given amount: Q = mc T where Q = quantity of heat m = mass c = specific heat capacity T = change in temperature

11 When two objects at different temperatures are placed in contact, heat will flow from the object with the higher temperature to the object with the lower temperature. Heat added increases temperature, and heat removed decreases temperature. Heat and temperature are not the same. Temperature is a quantity that tells us which direction the heat will flow.

12 Phase Changes and Latent Heat When an object goes through a change of phase or state, heat is added or removed without changing the temperature. Instead, the state of matter changes: solid to liquid, for example. The amount of heat needed per unit mass to produce a phase change is called the latent heat. The latent heat of fusion of water corresponds to the amount of heat needed to melt one gram of ice. The latent heat of vaporization of water corresponds to the amount of heat needed to turn one gram of water into steam.

13 If the specific heat capacity of ice is 0.5 cal/g C, how much heat would have to be added to 200 g of ice, initially at a temperature of -10 C, to raise the ice to the melting point? a) 1,000 cal b) 2,000 cal c) 4,000 cal d) 0 cal m = 200 g c = 0.5 cal/g C T = -10 C Q = mc T = (200 g)(0.5 cal/g C )(10 C) = 1,000 cal (heat required to raise the temperature)

14 Quiz: If the specific heat capacity of ice is 0.5 cal/g C, how much heat would have to be added to 200 g of ice, initially at a temperature of -10 C, to completely melt the ice? (Latent heat is 80 cal/g) a) 1,000 cal b) 14,000 cal c) 16,000 cal d) 17,000 cal L f = 80 cal/g Q = ml f = (200 g)(80 cal/g) = 16,000 cal (heat required to melt the ice) Total heat required to raise the ice to 0 C and then to melt the ice is: 1,000 cal + 16,000 cal = 17,000 cal = 17 kcal

15 Joule s Experiment and the First Law of Thermodynamics Rumford noticed that cannon barrels became hot during drilling. Joule performed a series of experiments showing that mechanical work could raise the temperature of a system. In one such experiment, a falling mass turns a paddle in an insulated beaker of water, producing an increase in temperature.

16 Joule s Experiment and the First Law of Thermodynamics Joule s experiments led to Kelvin s statement of the first law of thermodynamics. Both work and heat represent transfers of energy into or out of a system. If energy is added to a system either as work or heat, the internal energy of the system increases accordingly. The increase in the internal energy of a system is equal to the amount of heat added to a system minus the amount of work done by the system. U = Q - W

17 Joule s Experiment and the First Law of Thermodynamics The internal energy of the system is the sum of the kinetic and potential energies of the atoms and molecules making up the system. An increase in internal energy may show up as an increase in temperature, or as a change in phase, or any other increase in the kinetic and/or potential energy of the atoms or molecules making up the system. Internal energy is a property of the system uniquely determined by the state of the system.

18 A hot plate is used to transfer 400 cal of heat to a beaker containing ice and water; 500 J of work are also done on the contents of the beaker by stirring. What is the increase in internal energy of the ice-water mixture? (note: 1 cal = 4.19J) a) 900 J b) 1180 J c) 1680 J d) 2180 J W = -500 J Q = 400 cal = (400 cal)(4.19 J/cal) = 1680 J U = Q - W = 1680 J - (-500 J) = 2180 J

19 A hot plate is used to transfer 400 cal of heat to a beaker containing ice and water; 500 J of work are also done on the contents of the beaker by stirring. How much ice melts in this process? (latent heat: 80 cal/g. 1 cal = 4.19J). a) g b) g c) 6.5 g d) g L f = 80 cal/g = (80 cal/g)(4.19 J/cal) = 335 J/g U = ml f m = U / L f = (2180 J) / (335 J/g) = 6.5 g

### Temperature and Its Measurement

Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

### Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat To understand temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving heat, phase changes and calorimetry.

### Chapter 16. Copyright 2010 Pearson Education, Inc.

Chapter 16 Temperature and Heat Units of Chapter 16 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection,

### Chapter 21: Temperature, Heat and Expansion

Chapter 21: Temperature, Heat and Expansion All matter solid, liquid and gas is made of atoms or molecules, which are continually jiggling. As this jiggling is a movement, all these particles must have

### 0 o K is called absolute zero. Water Freezes: 273 o K Water Boils: 373 o K

Part I Notes Temperature and Heat The terms at the right all mean the same thing. The heat energy of a substance is the sum of the kinetic and potential energies of all of the atoms and molecules in the

### Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

### Chapter 3: Matter and Energy

Chapter 3: Matter and Energy Convert between Fahrenheit, Celsius, and Kelvin temperature scales. Relate energy, temperature change, and heat capacity. The atoms and molecules that compose matter are in

### Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Chapter 10-11 Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian 1) Temperature 2) Expansion of Matter 3) Ideal Gas Law 4) Kinetic Theory of Gases 5) Energy, Heat transfer and

### Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat

SPH3U Thermal Physics electrons and holes in semiconductors An Introductory ourse in Thermodynamics converting energy into work magnetism thin films and surface chemistry thermal radiation (global warming)

### Chapter 14: Temperature and Heat

Chapter 14 Lecture Chapter 14: Temperature and Heat Goals for Chapter 14 To study temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving

### q = m. C p. T q = heat (Joules) m = mass (g) C p = specific heat (J/g.o C) T = change in temp. ( o C) UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES

HEAT ENERGY NOTES UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES SECTION (A): same temp or change? SECTION (B): same temp or change? temp is called the energy difference at same temp = SECTION (C): same temp

### Duncan. Q = m. C p. T. Q = heat (Joules) m = mass (g) C p = specific heat capacity (J/g.o C) T = change in temp. ( o C)

HEAT ENERGY NOTES SECTION (A): phase(s) of matter = SECTION (B): phase(s) of matter = energy difference at same temp = temp is called the SECTION (C): phase(s) of matter = SECTION (D): phase(s) of matter

### Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

### Chapter 12. Temperature and Heat

Chapter 12 Temperature and Heat 12.1 Common Temperature Scales Temperatures are reported in degrees Celsius or degrees Fahrenheit. Kelvin Scale 100 o C or 212 o F T K = T + 273.15 Temperature changes,

### Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

### Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

### This Week. 6/2/2015 Physics 214 Summer

This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

### the energy of motion!

What are the molecules of matter doing all the time?! Heat and Temperature! Notes! All matter is composed of continually jiggling atoms or molecules! The jiggling is! If something is vibrating, what kind

### Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Thermal Energy Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. And remember: heat will always transfer from a warm object to a cold object. HEAT

### Temperature Energy and Heat

CHAPTER 3 Temperature Energy and Heat 3.1 Temperature What is temperature? Why is temperature important in chemistry? How is energy related to temperature? 2 3.1 Temperature Milk fat particles are being

### Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules.

Thermal energy Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Heat is the transfer of thermal energy between substances. Until the

### Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

### PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

PROGRAM OF PHYSICS Lecturer: Dr. DO Xuan Hoi Room A1. 503 E-mail : dxhoi@hcmiu.edu.vn PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS) 02 credits (30 periods) Chapter 1 Fluid Mechanics Chapter 2 Heat, Temperature

### Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 17 To delineate the three different

### Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

### Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

### CHAPTERS 12 and 13 Review Questions

HCC Physics 1305 CHAPTERS 12 and 13 Review Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the four states of matter occurs at the highest

### 3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes

Section 3.3 Phase Changes 3.3 Phase Changes Solid, liquid and gas During a phase change, a substance rearranges the order of its particles (atoms or molecules). Examples of phase change include melting

### PHYSICS 220. Lecture 24. Textbook Sections Lecture 25 Purdue University, Physics 220 1

PHYSICS 220 Lecture 24 Heat Textbook Sections 14.4 14.5 Lecture 25 Purdue University, Physics 220 1 Exam 2 Average: 96.7 out of 150 Std Dev: 30.5 Lecture 25 Purdue University, Physics 220 2 Overview Last

### Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

### Questions Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Questions Chapter 18 Temperature, Heat, and the First Law of Thermodynamics 18-1 What is Physics? 18-2 Temperature 18-3 The Zeroth Law of Thermodynamics 18-4 Measuring Temperature 18-5 The Celsius and

### Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall

Physics 231 Topic 13: Heat Alex Brown Dec 1, 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept test timed (50 min))

### 3. When the external pressure is kpa torr, water will boil at what temperature? a C b C c. 100 C d. 18 C

Chemistry EOC Review 5: Physical Behavior of Matter 1. Which gas is monatomic at STP? a. chlorine b. fluorine c. neon d. nitrogen 2. What Kelvin temperature is equal to 25 C? a. 248 K b. 298 K c. 100 K

### Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

### * Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

### Exercises Temperature (pages ) 1. Define temperature. 2. Explain how a common liquid thermometer works.

Exercises 21.1 Temperature (pages 407 408) 1. Define temperature. 2. Explain how a common liquid thermometer works. Match each number with the corresponding description. Temperature Description 3. 273

### CP CHEMISTRY STUDY GUIDE The Kinetic Theory of Matter (Chapters 10 and 14)

Unit 9 CP CHEMISTRY STUDY GUIDE The Kinetic Theory of Matter (Chapters 10 and 14) Unit Goals ( During this unit I will ) 1. Explain the behavior of matter in terms of the relationships between temperature,

### Unit 5 Thermodynamics

Unit 5 Thermodynamics Unit 13: Heat and Temperature Unit 14: Thermal Expansion /Heat Exchange/ Change of Phase Test: Units 13-14 Thermal Energy The total kinetic and potential energy of all the molecules

### Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

### Sparks CH301. THERMODYNAMICS Quantifying Heat Flow Physical Change. UNIT 4 Day 2

Sparks CH301 THERMODYNAMICS Quantifying Heat Flow Physical Change UNIT 4 Day 2 You can burn 55,000 calories by drinking 6 glasses of ice water. What are we going to learn today? State Functions Review

### Zeroth Law of Thermodynamics

Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

### Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature

Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

### Specific Heat Of Water Answer

We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with specific heat of water

### Thermal Energy. Practice Quiz Solutions

Thermal Energy Practice Quiz Solutions What is thermal energy? What is thermal energy? Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within

### Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion

Chapter 5 Energy and States of Matter Changes of State 5.6 Melting and Freezing 5.7 Boiling and Condensation 1 2 Melting and Freezing A substance is melting while it changes from a solid to a liquid. A

### A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

1. ne atmosphere is equivalent to A) 1.00 g ml 1 B) 22,400 ml ) 273 K D) 760. mmhg E) 298 K 2. A cylinder contains 2.50 L of air at a pressure of 5.00 atmospheres. At what volume, will the air exert a

### Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Section 1 Temperature and Thermal Equilibrium Preview Objectives Defining Temperature Thermal Equilibrium Thermal Expansion Measuring Temperature Section 1 Temperature and Thermal Equilibrium Objectives

### Name... Class... Date... Specific heat capacity and specific latent heat

Specific heat capacity and specific latent heat Specification references: P3.2.2 Temperature changes in a system and specific heat capacity P3.2.3 Changes of heat and specific latent heat Aims This is

### What are the states of Matter?

What are the states of Matter? Solid Lowest energy/heat Molecules barely moving Definite, uniform shape Example: ice States of Matter Liquid Medium energy/heat Molecules slowly moving Shape of container

### , is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B

4C_PLC http://www.cabrillo.edu/~jmccullough/physics4c/files/4c_plc/4c_plc.htm Page 1 of 8 /6/201 1. The heat capacity at constant volume and the heat capacity at constant pressure have different values

### PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

### Chapter 1 Heating Processes

Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

### 2012 Thermodynamics Division C

Team: Team Number: Team Member Names: 1. 2. Instructions: Answer all questions on the test paper. If you need more room, you may attach extra paper. The test is worth a total of 50 points. Show all work

### Thermodynamics - Heat Transfer June 04, 2013

THERMODYNAMICS - Heat and Heat Transfer: Heat (Q) is a form of Energy that is transferred between an object and another object or its surrounding environment due to a difference in Temperature. Heat is

### Unit 14. States of Matter & Thermochemistry

Unit 14 Flashback: States of Matter & Thermochemistry Characteristic Solids Liquids Gases Shape Volume Density Fluidity Compressibility Picture Phase Diagram Shows the relationship between solid, liquid,

### UNIT 1 - FORCE TEMPERATURE IN THERMAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS

NAME PERIOD UNIT 1 - FORCE TEMPERATURE IN THERMAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. TX PP. 64-76 /46 2. WS READING GUIDE CONCEPT APPLICATION /21 3. MS MATH PRACTICE (Heat formula) /20

### Chapter 14 Temperature and Heat

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

### Thermal Energy. solid. liquid. gas

Heat (Chapter 10) What is heat? What is the relationship between quantity of heat and temperature? What happens to a body (solid, liquid, gas) when thermal energy is added or removed? Thermal Energy Solid:

### Ch 100: Fundamentals for Chemistry

Ch 100: Fundamentals for Chemistry Chapter 4: Properties of Matter Lecture Notes Physical & Chemical Properties Physical Properties are the characteristics of matter that can be changed without changing

### Archimedes Principle

Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

### Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Temperature and Thermal Equilibrium Linear Expansion

### 1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1)

1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation. C. conduction and convection. D. radiation and convection. 2. The specific latent heat of vaporization

### Lecture 22. Temperature and Heat

Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

### Tells us the average translational kinetic energy of the particles

Temperature and Heat What is temperature? Kinetic Energy What is heat? Thermal Expansion Specific Heat Latent Heat and phase changes Unit 03, Slide 1 Temperature Tells us the average translational kinetic

### Vanden Bout/LaBrake. THERMODYNAMICS Quantifying Heat Flow Physical Change. Important Information EXAM 3 WRAPPER POSTED LATER TODAY OPEN 1 WEEK

UNIT4DAY2-LaB Page 1 UNIT4DAY2-LaB Monday, November 12, 2012 10:00 PM Vanden Bout/LaBrake CH301 THERMODYNAMICS Quantifying Heat Flow Physical Change UNIT 4 Day 2 Important Information LM28 & 29 DUE Th

### S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

### Homework - Lecture 11.

Homework - Lecture 11. Name: Topic: Heat Capacity and Specific Heat Type: Numerical 1. Two liquids, A and B, are mixed together, and the resulting temperature is 22 C. If liquid A has mass m and was initially

Heat:- Heat is the agent which produces in us the sensation of warmth and makes bodies hot. It is form of energy. The part of thermal energy which flows from one body to the other due to temperature difference

### SPECIFIC HEAT OF WATER LAB 11-2

CONCEPT Heat of Fusion Changes of state (phase changes) involve the conversion or transition of matter from one of the common states (solid, liquid or gas) to another. Examples include fusion or melting

### Start Part 2. Tro's "Introductory Chemistry", Chapter 3

Start Part 2 1 Separation of Mixtures Separate mixtures based on different physical properties of the components. Physical change. Different Physical Property Boiling point State of matter (solid/liquid/gas)

### Quarter 1 Unit 2 Review Sheets Elements, Compounds, & Mixtures 1. Describe each substance below as either a pure substance or a mixture

2012-2013 Name_ Quarter 1 Unit 2 Review Sheets Elements, Compounds, & Mixtures 1. Describe each substance below as either a pure substance or a mixture H 2 O Pure (compound) Na Pure (element) C 6 H 12

### SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

### HEAT HISTORY. D. Whitehall

1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

### Page 10 of 15. ExamlIl,FOS

ExamllI, FOS Page 9 of 15 37. The first law of thermodynamics a. is a restatement of the law of conservation of energy which includes heat as a form of energy b. requires that internal energy can be completely

### CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

### Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!!

Thermal Energy Heat and Temperature are not the same!! Cold is the absence of heat, not an energy Same concept as light/dark Cold can t come in, heat flows out Heat flows from High Temp Low Temp Temp vs.

### What Do You Think? Investigate GOALS. Part A: Freezing Water

Activity 5 Freezing Water GOALS In this activity you will: Determine the freezing point of water. Show graphically what happens to the temperature as water is cooled to freezing and while it is freezing.

### Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

Supplemental Activities Module: Thermodynamics Section: Second Law of Thermodynamics Key Spontaneity ACTIVITY 1 The purpose of this activity is to practice your understanding of the concept of spontaneous

### Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection, and Radiation 16-1

### Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

### Thermal Properties Of Matter

Thermal Properties Of Matter 3.2.2 Explain why different substances have different specific heat capacities. Heat two same size objects of different materials for the same amount of time they will not

### CHEM What is Energy? Terminology: E = KE + PE. Thermodynamics. Thermodynamics

Thermodynamics 2 Thermodynamics The study of energy changes accompanying physical and chemical processes. From the laws of thermodynamics, one can: 1. Predict the results of chemical reactions 2. Ascertain

### Physics 101: Lecture 25 Heat

Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.1-14.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»

### Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

### Thermodynamics. Temperature, Heat, Work Heat Engines

Thermodynamics Temperature, Heat, Work Heat Engines Introduction In mechanics we deal with quantities such as mass, position, velocity, acceleration, energy, momentum, etc. Question: What happens to the

### Heat. It tells us the ways that we can change the thermal energy of a system:

Heat Recall what the First Law of Thermodynamics says: It tells us the ways that we can change the thermal energy of a system: 1.) Work Environment does work on system: W > 0, and thermal energy increases

### Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

### Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

### Handout 10: Heat and heat transfer. Heat capacity

1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

### Physical Science Chapter 5 Cont2. Temperature & Heat

Physical Science Chapter 5 Cont2 Temperature & Heat What are we going to study? Temperature Heat Specific Heat and Latent Heat Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics

### Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

### 2,000-gram mass of water compared to a 1,000-gram mass.

11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

### High temperature He is hot

Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

### Physics 4C Chapter 18: Temperature, Heat, and the First Law of Thermodynamics

Physics 4C Chapter 18: Temperature, Heat, and the First Law of Thermodynamics Anyone who has never made a mistake has never tried anything new. Albert Einstein Experience is the name that everyone gives

### Name: Regents Chemistry: Mr. Palermo. Student Version. Notes: Unit 6A Heat

Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 6A Heat Name: KEY IDEAS Heat is a transfer of energy (usually thermal energy) from a body of higher temperature to a body of lower temperature.

### Maximum score 16*6.25=100 points Average 50.8% Correct answers:

Midterm Exam 2 Maximum score 16*6.25=100 points Average 50.8% Correct answers: 40% 47% 40 16% 49% Count 20 0 0 20 40 60 80 100 score 54% 37% 70% 60% 22% 78% 78% 65% 40% 45% 33% 48% This problem only 16%