Ch. 19: The Kinetic Theory of Gases

Size: px
Start display at page:

Download "Ch. 19: The Kinetic Theory of Gases"

Transcription

1 Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on it. This p is a function of the quantity of gas n (the number of moles) in volume V at (Kelvin) temperature T: p = p (n, V, T) An equation relating p, n, V, and T is called an equation of state. Such relations exist for all materials and phases, not just gases. The simplest such expression is the ideal gas law, p = nrt/v, where R is the (universal) gas constant, 8.31 J/mol K. The derivation of this law assumes that the atoms or molecules of the gas (1) do not interact with one another except for perfectly elastic collisions, and (2) are point particles, i.e. have zero volume. [If two containers of gas have the same volume, temperature and pressure - all three of these variables are easily measured - then they automatically have the same number of particles, regardless of the chemical composition!] The number of particles N of any material is proportional to the number of moles n, N = N A n, where the proportionality constant N A is Avogadro s number, approximately 6.02 x [By definition, one mole is the number of atoms in a 12 gram sample of C-12. The mass of one C-12 atom can be accurately determined using a mass spectrometer. Dividing this atomic mass into 12 grams gives Avogadro s number. In other words, the more precisely one can measure the atom s mass, the more significant figures one has for Avogadro s number.] Ex: Suppose one knows (measures) the temperature, volume, and pressure of a container of gas: How many molecules does it contain?

2 Since n = N/N A, it follows that N = N A pv/rt. Ex: What is the mass of the above sample of gas? If each molecule has mass m, the sample s mass is M sam = mn = mn A pv/rt = MpV/RT = Mn, where M = mn A = molar mass of the material. Note that since mn = Mn, m/m = n/n = 1/N A. Since pv = N(R/N A )T from above, the ideal gas law can also be written as pv = N k T where k = R/N A = Boltzmann s constant = 1.38 x J/K. If the work is given by W = pdv, (which is the only kind of work done by a gas that we will consider), then for an isothermal process (T = constant) W = n RT (dv/v) = n RT ln (V f /V i ).

3 Similarly, if the process is isobaric (p = constant), W = p dv = p(v f - V i ). Finally, for an isochoric process (V = constant), W = 0. The molecules of a gas at any instant are moving with a variety of speeds, and in different directions. The probability of any given molecule having a speed between v and v + dv is given by the Maxwell distribution (1852): P(v)dv = 4 (M/2 RT) 3/2 v 2 exp(-mv 2 /2RT)dv By integrating between 0 and (why?), one can show that the distribution is normalized to unity: P(v)dv = 1. All kinetic properties of the gas can be calculated from this distribution. For example, the average kinetic energy is given by (mv 2 /2)P(v)dv = 3kT/2, which the interested student can confirm using integral 20) in Appendix E. Note that this result is independent of the molecule s mass!

4 From the previous result follows that the root mean square speed, v rms = [ v 2 P(v)dv] 1/2 is equal to [3kT/m] 1/2. Note the trend in rms speeds in Table How does one find the most probable speed v p? The average speed v ave? Since the energy of the atoms that make up a monatomic ideal gas is entirely (translational) kinetic, the internal energy of N such molecules is E int = N(3kT/2) = n(3rt/2). With E int = Q - W (First Law of Thermodynamics) and Q = nc V T for a constant volume process (definition of molar specific heat for constant V; unlike solids, the molar specific heat capacities of gases depend on the process, e.g. constant V or constant p), we have E int = nc V T - 0 = nc V T = [n(3rt/2)] = 3nR T/2 since W = 0 if V = constant. It follows that C V = 3R/2 = constant (= 12.5 J/mol K) Similarly, for a constant pressure process, and so W = p V = nr T, E int = nc p T - nr T = 3nR T/2, C p = 5R/2 (= 20.8 J/mol K). Finally, if we replace 3R/2 -> C V in E int = n(3rt/2), we obtain an expression that holds for any ideal gas, monatomic, diatomic, or polyatomic: E int = nc V T. For a diatomic or polyatomic ideal gas, the value of C V will depend on temperature. Fig shows this dependence for a diatomic gas:

5 Taking of both sides of the previous expression gives E int = nc V T, which holds for any ideal gas and any process provided only that C V is constant during the process. Table 19-3 lists the maximum possible values of C V (and C p = C V + R) for monatomic, diatomic, and polyatomic ideal gases for temperatures too low to excite oscillatory degrees of freedom. Finally, for any ideal gas undergoing an adiabatic process, where pv = constant, = C p /C V. The derivation of this result is given on p. 527, and is interesting reading.

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

More information

Chapter 14 Kinetic Theory

Chapter 14 Kinetic Theory Chapter 14 Kinetic Theory Kinetic Theory of Gases A remarkable triumph of molecular theory was showing that the macroscopic properties of an ideal gas are related to the molecular properties. This is the

More information

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases Physics week 7 Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases 3.1.1. Experimental Laws and the Equation of State 3.1.. Molecular Model of an Ideal Gas 3.. Mean Free Path 3.3. The Boltzmann Distribution

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and. The Adiabatic Process Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Molar Specific Heat of Ideal Gases

Molar Specific Heat of Ideal Gases Molar Specific Heat of Ideal Gases Since Q depends on process, C dq/dt also depends on process. Define a) molar specific heat at constant volume: C V (1/n) dq/dt for constant V process. b) molar specific

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x Lecture 7: Kinetic Theory of Gases, Part 2 Last lecture, we began to explore the behavior of an ideal gas in terms of the molecules in it We found that the pressure of the gas was: P = N 2 mv x,i! = mn

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1 NY Times /5/03 slide Thermodynamics and Gases Last Time specific heats phase transitions Heat and Work st law of thermodynamics heat transfer conduction convection radiation Today Kinetic Theory of Gases

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Part I: Basic Concepts of Thermodynamics Lecture 3: Heat and Work Kinetic Theory of Gases Ideal Gases 3-1 HEAT AND WORK Here we look in some detail at how heat and work are exchanged between a system and

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 32: Heat and Work II Slide 32-1 Recap: the first law of thermodynamics Two ways to raise temperature: Thermally: flow of heat Energy

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.

1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74. 1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 10 3 kg/mol. 7.50 10 4 arsenic atoms have a total mass

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt).

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). Thermal Physics 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). 2) Statistical Mechanics: Uses models (can be more complicated)

More information

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B 4C_PLC http://www.cabrillo.edu/~jmccullough/physics4c/files/4c_plc/4c_plc.htm Page 1 of 8 /6/201 1. The heat capacity at constant volume and the heat capacity at constant pressure have different values

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions Web Resource: Ideal Gas Simulation Kinetic Theory of Gases Physics Enhancement Programme Dr. M.H. CHAN, HKBU Link: http://highered.mheducation.com/olcweb/cgi/pluginpop.cgi?it=swf::00%5::00%5::/sites/dl/free/003654666/7354/ideal_na.swf::ideal%0gas%0law%0simulation

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

For more info visit

For more info visit Kinetic Theory of Matter:- (a) Solids:- It is the type of matter which has got fixed shape and volume. The force of attraction between any two molecules of a solid is very large. (b) Liquids:- It is the

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

ABCD42BEF F2 F8 5 4D6589 CC8 9

ABCD42BEF F2 F8 5 4D6589 CC8 9 ABCD BEF F F D CC Vetri Velan GSI, Physics 7B Midterm 1: Problem 3 3. a) Since the collisions with the walls are all elastic, for each given wall, only one component of the velocity matters. Consider

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 9 The First Law of Thermodynamics Topics for Chapter 9 I. First Law of Thermodynamics Internal energy, concept of state variables Difference between Work and Heat II. Examine various types of thermodynamic

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics ecture Series Reference: Chap 0 Halliday & Resnick Fundamental of Physics 6 th edition Kinetic Theory of Gases Microscopic Thermodynamics Applied Sciences Education Research Group (ASERG)

More information

Internal Energy (example)

Internal Energy (example) Internal Energy (example) A bucket of water KEs: translational: rotational: vibrational: PEs: within molecules: between molecules: @ rest on the table molecular bonds dipole-dipole interactions Internal

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases. Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, 2008. Kinetic theory of gases. http://eml.ou.edu/physics/module/thermal/ketcher/idg4.avi Physics 121. April

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

The Kinetic-Molecular Theory of Gases

The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory of Gases kinetic-molecular theory of gases Originated with Ludwig Boltzman and James Clerk Maxwell in the 19th century Explains gas behavior on the basis of the motion of individual

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 5 GASES Properties of Gases Pressure History and Application of the Gas Laws Partial Pressure Stoichiometry of

More information

3. Basic Concepts of Thermodynamics Part 2

3. Basic Concepts of Thermodynamics Part 2 3. Basic Concepts of Thermodynamics Part 2 Temperature and Heat If you take a can of cola from the refrigerator and leave it on the kitchen table, its temperature will rise-rapidly at first but then more

More information

KINETICE THEROY OF GASES

KINETICE THEROY OF GASES INTRODUCTION: Kinetic theory of gases relates the macroscopic properties of gases (like pressure, temperature, volume... etc) to the microscopic properties of the gas molecules (like speed, momentum, kinetic

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Kinetic Model of Gases

Kinetic Model of Gases Kinetic Model of Gases Section 1.3 of Atkins, 6th Ed, 24.1 of Atkins, 7th Ed. 21.1 of Atkins, 8th Ed., and 20.1 of Atkins, 9th Ed. Basic Assumptions Molecular Speeds RMS Speed Maxwell Distribution of Speeds

More information

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013 Physics 160 Thermodynamics and Statistical Physics: Lecture 2 Dr. Rengachary Parthasarathy Jan 28, 2013 Chapter 1: Energy in Thermal Physics Due Date Section 1.1 1.1 2/3 Section 1.2: 1.12, 1.14, 1.16,

More information

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses 14 The IDEAL GAS LAW and KINETIC THEORY 14.1 Molecular Mass, The Mole, and Avogadro s Number Atomic Masses The SI Unit of mass: An atomic mass unit is de ned as a unit of mass equal to 1/12 of the mass

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES LECTURE 8 KINETIC THEORY OF GASES Text Sections 0.4, 0.5, 0.6, 0.7 Sample Problems 0.4 Suggested Questions Suggested Problems Summary None 45P, 55P Molecular model for pressure Root mean square (RMS) speed

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

Kinetic Theory. Reading: Chapter 19. Ideal Gases. Ideal gas law:

Kinetic Theory. Reading: Chapter 19. Ideal Gases. Ideal gas law: Reading: Chapter 19 Ideal Gases Ideal gas law: Kinetic Theory p nrt, where p pressure olume n number of moles of gas R 831 J mol -1 K -1 is the gas constant T absolute temperature All gases behae like

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

Turning up the heat: thermal expansion

Turning up the heat: thermal expansion Lecture 3 Turning up the heat: Kinetic molecular theory & thermal expansion Gas in an oven: at the hot of materials science Here, the size of helium atoms relative to their spacing is shown to scale under

More information

Thermodynamics of an Ideal Gas

Thermodynamics of an Ideal Gas Thermodynamics of an Ideal Gas A State Function Does not depend on how the system arrived at its present state; only on the characteristics of the present state. Volume, Pressure, Temperature, ΔE, ΔH State

More information

Final Review Solutions

Final Review Solutions Final Review Solutions Jared Pagett November 30, 206 Gassed. Rapid Fire. We assume several things when maing the ideal gas approximation. With inetic molecular theory, we model gas molecules as point particles

More information

Kinetic theory of the ideal gas

Kinetic theory of the ideal gas Appendix H Kinetic theory of the ideal gas This Appendix contains sketchy notes, summarizing the main results of elementary kinetic theory. The students who are not familiar with these topics should refer

More information

Physics 141. Lecture 24.

Physics 141. Lecture 24. Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

More information

Chapter 19 Kinetic Theory of Gases

Chapter 19 Kinetic Theory of Gases Chapter 9 Kinetic heory of Gases A gas consists of atoms or molecules which collide with the walls of the container and exert a pressure, P. he gas has temperature and occupies a olume V. Kinetic theory

More information

Chapter 14 Thermal Physics: A Microscopic View

Chapter 14 Thermal Physics: A Microscopic View Chapter 14 Thermal Physics: Microscopic View The main focus of this chapter is the application of some of the basic principles we learned earlier to thermal physics. This will give us some important insights

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

Thermodynamics Molecular Model of a Gas Molar Heat Capacities

Thermodynamics Molecular Model of a Gas Molar Heat Capacities Thermodynamics Molecular Model of a Gas Molar Heat Capacities Lana Sheridan De Anza College May 3, 2018 Last time modeling an ideal gas at the microscopic level rms speed of molecules equipartition of

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 19 To represent

More information

Concepts of Thermodynamics

Concepts of Thermodynamics Thermodynamics Industrial Revolution 1700-1800 Science of Thermodynamics Concepts of Thermodynamics Heavy Duty Work Horses Heat Engine Chapter 1 Relationship of Heat and Temperature to Energy and Work

More information

The Kinetic-Molecular Theory of Gases

The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory of Gases kinetic-molecular theory of gases Originated with Ludwig Boltzman and James Clerk Maxwell in the 19th century Explains gas behavior on the basis of the motion of individual

More information

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Module-05 Lecture-02 Kinetic Theory of Gases - Part 02 (Refer Slide Time: 00:32) So, after doing the angular

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

6) BTW: Your TA has Exam3. It should have been returned to you on Nov 16 (Mon) at Recitation if you

6) BTW: Your TA has Exam3. It should have been returned to you on Nov 16 (Mon) at Recitation if you Chap. 15: pv = nrt Mole and Avogadro s number. Equations of state. Kinetic theory of an ideal gas. Heat capacities. First Law of Thermodynamics. Thermodynamic processes. Properties of an ideal gas. 1 3

More information

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1 558 CHAPTER 0 THE KINETIC THEORY OF GASES CHAPTER 0 Answer to Checkoint Questions. all but c. (a) all tie; (b) 3,, 3. gas A 4. 5 (greatest change in T ), then tie of,, 3, and 4 5.,, 3 (Q 3 0, Q goes into

More information

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

Physics 53. Thermal Physics 1. Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital.

Physics 53. Thermal Physics 1. Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital. Physics 53 Thermal Physics 1 Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital. Arthur Koestler Overview In the following sections we will treat macroscopic systems

More information

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law: Physics 231 Lecture 30 Main points of today s lecture: Ideal gas law: PV = nrt = Nk BT 2 N 1 2 N 3 3 V 2 3 V 2 2 P = m v = KE ; KE KE = kbt Phases of Matter Slide 12-16 Ideal Gas: properties Approximate

More information

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3. 5.6 Dalton s Law of Partial Pressures Dalton s Law of Partial Pressure; The total pressure of a gas is the sum of all its parts. P total = P 1 + P + P 3 + P n Pressures are directly related to moles: n

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases chapter 1 The Kinetic Theory of Gases 1.1 Molecular Model of an Ideal Gas 1. Molar Specific Heat of an Ideal Gas 1.3 Adiabatic Processes for an Ideal Gas 1.4 The Equipartition of Energy 1.5 Distribution

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information