S6. (a) State what is meant by an ideal gas...

Size: px
Start display at page:

Download "S6. (a) State what is meant by an ideal gas..."

Transcription

1 IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 3 TEST REVIEW S1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation. C. conduction and convection. D. radiation and convection. S3. When a gas in a cylinder is compressed at constant temperature by a piston, the pressure of the gas increases. Consider the following three statements. I. The rate at which the molecules collide with the piston increases. II. The average speed of the molecules increases. III. The molecules collide with each other more often. Which statement(s) correctly explain the increase in pressure? A. I only B. II only C. I and II only D. I and III only S6. (a) State what is meant by an ideal gas (b) The internal volume of a gas cylinder is m 3. An ideal gas is pumped into the cylinder until the pressure becomes 2 MPa at a temperature of 17 C. Determine (i) the number of moles of gas in the cylinder; the number of gas atoms in the cylinder. (c) (i) Using your answers in (b), determine the average volume occupied by one gas atom. Estimate a value for the average separation of the gas atoms. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 1 of 19

2 (Total 9 marks) S9. This question is about modeling the thermal processes involved when a person is running. When running, a person generates thermal energy but maintains approximately constant temperature. (a) Explain what thermal energy and temperature mean. Distinguish between the two concepts (4) The following simple model may be used to estimate the rise in temperature of a runner assuming no thermal energy is lost. A closed container holds 7 kg of water, representing the mass of the runner. The water is heated at a rate of 12 W for 3 minutes. This represents the energy generation in the runner. (b) (i) Show that the thermal energy generated by the heater is J. (c) Calculate the temperature rise of the water, assuming no energy losses from the water. The specific heat capacity of water is 42 J kg 1 K 1. The temperature rise calculated in (b) would be dangerous for the runner. Outline three mechanisms, other than evaporation, by which the container in the model would transfer energy to its surroundings A further process by which energy is lost from the runner is the evaporation of sweat. (d) (i) Describe, in terms of molecular behaviour, why evaporation causes cooling. (6) 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 2 of 19

3 Percentage of generated energy lost by sweating: 5% Specific latent heat of vaporization of sweat: J kg 1 Using the information above, and your answer to (b) (i), estimate the mass of sweat evaporated from the runner. (iii) State and explain two factors that affect the rate of evaporation of sweat from the skin of the runner. (4) (Total 25 marks) S1. This question is about estimating the area of solar panels and the diameter of a wind turbine. It is suggested that a combination of solar power and wind power be used to provide the hot water system in a house. An active solar heater is to provide the energy to heat the water. A wind turbine is to provide the energy to pump the water. Solar heater The following data are available: (a) volume of hot water tank = 1.2 m 3 density of water = kg m 3 initial temperature of the water = 1 C final temperature of the water = 4 C specific heat capacity of water = J kg 1 K 1 average power per unit area from the Sun =.8 kw m 2 time required to heat the water = 2. hours Using the above data, (i) (iii) deduce that J of energy is required to heat the volume of water in the tank from 1 C to 4 C. estimate the minimum area of the solar panel needed to provide J of energy in 2. hours. discuss whether, in this situation, using a solar panel to heat the water is a sensible method. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 3 of 19

4 Wind turbine The following data are available: power of solar heater pump =.4 kw average local wind speed = 6. m s 1 average density of air = 1. kg m 3 (b) (i) Using the above data, estimate the minimum radius of the wind turbine needed to provide the power required to drive the solar heater pump. Discuss whether, in this situation, using a wind turbine to pump the water is a sensible method. (Total 1 marks) S17. The specific latent heat of fusion of a substance is defined as the amount of thermal energy required to change the phase of A. the substance at constant temperature. B. unit mass of the substance to liquid at constant temperature. C. unit mass of the substance at constant temperature. D. the substance to gas at constant temperature. S18. A fixed mass of an ideal gas is heated at constant volume. Which one of the following graphs best shows the variation with Celsius temperature t with pressure p of the gas? A. p B. p t / C t / C C. p D. p t / C t / C 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 4 of 19

5 S2. This question is about entropy changes. (a) State what is meant by an increase in entropy of a system (b) (c) State, in terms of entropy, the second law of thermodynamics When a chicken develops inside an egg, the entropy of the egg and its contents decreases. Explain how this observation is consistent with the second law of thermodynamics (Total 5 marks) S22. The distance between the C and 1 C marks on a mercury-in-glass thermometer is 2 cm. When the thermometer bulb is placed in a mixture of ice and salt, the mercury level is 4 cm below the C mark. The temperature of the mixture is A. +2 C. B. +5 C. C. 5 C. D. 2 C. S25. This question is about the change of phase (state) of ice. A quantity of crushed ice is removed from a freezer and placed in a calorimeter. Thermal energy is supplied to the ice at a constant rate. To ensure that all the ice is at the same temperature, it is continually stirred. The temperature of the contents of the calorimeter is recorded every 15 seconds. The graph below shows the variation with time t of the temperature θ of the contents of the calorimeter. (Uncertainties in the measured quantities are not shown.) C (a) t / s On the graph above, mark with an X, the data point on the graph at which all the ice has just melted. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 5 of 19

6 (b) Explain, with reference to the energy of the molecules, the constant temperature region of the graph The mass of the ice is.25 kg and the specific heat capacity of water is 42 J kg 1 K 1. (c) Use these data and data from the graph to (i) deduce that energy is supplied to the ice at the rate of about 53 W. (iii) determine the specific heat capacity of ice. determine the specific latent heat of fusion of ice. (Total 12 marks) S26. This question is about p V diagrams. The graph below shows the variation with volume of the pressure of a fixed mass of gas when it is compressed adiabatically and also when the same sample of gas is compressed isothermally. 7. C pressure / x 1 Pa B (a) volume / x 1 m 3 3 State and explain which line AB or AC represents the isothermal compression. A Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 6 of 19

7 (b) (c) (d) On the graph, shade the area that represents the difference in work done in the adiabatic change and in the isothermal change. Determine the difference in work done, as identified in (b) Use the first law of thermodynamics to explain the change in temperature during the adiabatic compression (Total 9 marks) S27. In one cycle of a heat engine, 3 J of energy is absorbed and 2 J of energy is ejected. The efficiency of the engine is A. B. C. D S28. A gas expands rapidly. The process is approximately A. isobaric. B. isothermal. C. adiabatic. D. isovolumetric. S3. As part of an experiment to determine the latent heat of vaporisation of water, a student boils some water in a beaker using an electric heater as shown below. beaker heater water The student notes two sources of error. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 7 of 19

8 Error 1: thermal energy is lost from the sides of the beaker Error 2: as the water is boiling, water splashes out of the beaker Which of the following gives the correct effect of these two errors on the calculated value for the specific latent heat? Error 1 Error 2 A. Increase Decrease B. Increase No change C. Decrease Increase D. Decrease No change S31. This question is about specific heat capacity and specific latent heat. (a) Define specific heat capacity (b) Explain briefly why the specific heat capacity of different substances such as aluminium and water are not equal in value A quantity of water at temperature θ is placed in a pan and heated at a constant rate until some of the water has turned into steam. The boiling point of the water is 1 C. (c) (i) Using the axes below, draw a sketch-graph to show the variation with time t of the temperature θ of the water. (Note: this is a sketch-graph; you do not need to add any values to the axes.) 1 C C time at which heating starts time at which water starts to boil Describe in terms of energy changes, the molecular behaviour of water and steam during the heating process. t 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 8 of 19

9 (5) Thermal energy is supplied to the water in the pan for 1 minutes at a constant rate of 4 W. The thermal capacity of the pan is negligible. (d) (i) Deduce that the total energy supplied in 1 minutes is J. (iii) Using the data below, estimate the mass of water turned into steam as a result of this heating process. initial mass of water =.3 kg initial temperature of the water θ = 2 C specific heat capacity of water = J kg 1 K 1 specific latent heat of vaporization of water = Jkg 1 Suggest one reason why this mass is an estimate. (Total 14 marks) S35. During an experiment, a solid is heated from 285 K to 298 K. Which one of the following gives the rise in temperature, in deg C, and the final temperature, in C, of the solid? Rise in temperature in deg C Final temperature in C A B C D S39. The diagram shows the pressure/volume (p/v) diagram for one cycle PQRS of an engine. p Q R S P In which sections of the cycle is work done on the engine? V 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 9 of 19

10 A. SP only B. PQ only C. SP and PQ only D. RS and SP only S4. The Kelvin temperature of an ideal gas is a measure of the A. average speed of the molecules. B. average momentum of the molecules. C. average kinetic energy of the molecules. D. average potential energy of the molecules. S41. The specific latent heat of vaporization of a substance is defined as the amount of thermal energy required to A. change a liquid to vapour at constant pressure. B. change a liquid to vapour at constant temperature. C. change unit mass of liquid to vapour at constant pressure. D. change unit mass of liquid to vapour at constant temperature. S42. A gas is contained in a cylinder fitted with a piston as shown below. gas piston When the gas is compressed rapidly by the piston its temperature rises because the molecules of the gas A. are squeezed closer together. B. collide with each other more frequently. C. collide with the walls of the container more frequently. D. gain energy from the moving piston. S43. This question is about thermal physics. (a) Explain why, when a liquid evaporates, the liquid cools unless thermal energy is supplied to it (b) (c) State two factors that cause an increase in the rate of evaporation of a liquid Some data for ice and for water are given below. Specific heat capacity of ice = J kg 1 K 1 Specific heat capacity of water = J kg 1 K 1 Specific latent heat of fusion of ice = J kg 1 A mass of 35 g of water at a temperature of 25 C is placed in a refrigerator that extracts thermal energy from the water at a rate of 86 W. Calculate the time taken for the water to become ice at 5. C Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 1 of 19

11 S45. This question is about ideal gases and specific heat capacity. (a) (i) State, in terms of kinetic theory, what is meant by an ideal gas. Explain why the internal energy of an ideal gas is kinetic energy only. (4) (Total 9 marks) A fixed mass of an ideal gas has a volume of 87 cm 3 at a pressure of Pa and a temperature of 2. C. The gas is heated at constant pressure to a temperature of 21. C. (b) (i) Calculate the change in volume of the gas. Determine the external work done during this process. (c) (i) Define specific heat capacity. (iii) Explain what happens to the molecules of an ideal gas when the temperature of the gas is increased at constant volume. Apply the first law of thermodynamics to show that, if the temperature of a gas is raised at constant pressure, the specific heat capacity of the gas is different from that when the temperature is raised at constant volume. (Total 17 marks) S48. Container X below has volume V and holds n moles of an ideal gas at kelvin temperature T. Container Y has volume 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 11 of 19

12 2V and holds 3n moles of an ideal gas also at kelvin temperature T. volume V temperature T n moles pressure P X volume V temperature T 3n moles pressure P Y container X container Y The pressure of the gas in X is P X and in Y is P Y. PX The ratio is P A B C. 5. D. 6. Y S49. This question is about an ideal gas. An ideal gas is contained in a cylinder fitted with a frictionless piston, as shown below. gas surface area A cylinder pressure p The piston has surface area A. A constant external pressure p acts on the piston. (a) Deduce that, for an increase in volume V of the gas, the external work done W is given by (b) W = p V The energy supplied to the gas for this increase in volume is found to be greater than p V. State and explain any change in the gas S5. Which one of the following is a correct statement of the second law of thermodynamics? 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 12 of 19 (Total 5 marks)

13 A. When the state of a system changes its entropy increases. B. When the state of a system changes its entropy decreases. C. The total entropy of the universe is increasing with time. D. The total entropy of the universe is decreasing with time. S51. Expansion of a gas An ideal gas at an initial pressure of Pa is expanded isothermally from a volume of 3. m 3 to a volume of 5. m 3. (a) Calculate the final pressure of the gas (b) On the axes below draw a sketch graph to show the variation with volume V of the pressure p during this expansion. 5 p / 1 Pa (c) / m 3 Use the sketch graph in (b) to (i) estimate the work done by the gas during this process; explain why less work would be done if the gas were to expand adiabatically from the same initial state to the same final volume. (Total 7 marks) S54. Which of the following correctly shows the changes, if any, in the potential energy and in the kinetic energy of the molecules of a solid as it melts? 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 13 of 19

14 Potential energy Kinetic energy A. Decreases Increases B. Increases Stays the same C. Stays the same Decreases D. Stays the same Stays the same S57. This question is about thermodynamic processes. (a) State what is meant by the concept of internal energy of an ideal gas (b) The diagram below shows the variation with volume of the pressure of a fixed mass of an ideal gas. B pressure A C volume The change from B to C is an isothermal change at 546 K. At point A, the pressure of the gas is 1.1 the volume of the gas is 22. m 3 and the temperature of the gas is 273 K. (i) State the temperature of the gas at point C; Calculate the volume of the gas at point C. (c) For the change from B to C, J of thermal energy is transferred to the gas. (i) State the work done in the change from A to B. Determine the work done during the change C to A. 1 5 Pa, 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 14 of 19

15 (iii) (iv) Explain whether the work in is done by the gas or on the gas. Determine the work done by the gas during one cycle ABCA. (Total 11 marks) S6. A fixed quantity of an ideal gas is compressed at constant temperature. The best explanation for the increase in pressure is that the molecules A. are moving faster. B. are colliding more frequently with the container walls. C. exert greater forces on each other. D. are colliding more frequently with each other. S61. This question is about temperature and internal energy. Two solid copper spheres, having different radii, undergo the same temperature change. A student states that the change in internal energy of the two objects would be the same. Briefly discuss this statement (Total 3 marks) S64. An ideal gas expands isothermally, doing 25 J of external work in the process. The thermal energy absorbed by the gas in this process is A. zero. B. less than 25 J. C. equal to 25 J. D. more than 25 J. S65. A well-insulated container is divided into two equal volumes by a wall. In one half there is an ideal gas and the other is a vacuum as shown below. gas vacuum gas The wall is now removed. Which one of the following correctly gives the changes, if any, that take place in the internal energy and entropy of the gas? Internal energy Entropy A. stays the same stays the same B. stays the same increases C. decreases stays the same 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 15 of 19

16 D. decreases increases S66. The molar mass of water is 18 g. The approximate number of water molecules in a glass of water is A B C D S68. An ideal gas is kept in a container of fixed volume at a temperature of 3 C and a pressure of 6. atm. The gas is heated at constant volume to a temperature of 33 C. pressure 6. atm temperature 3 C gas new pressure temperature 33 C gas The new pressure of the gas is about A..6 atm. B. 3. atm. C. 12 atm. D. 66 atm. S7. The entropy of a system is a measure of the system s A. disorder. B. mean energy. C. temperature. D. total energy. S72. The specific latent heat of fusion of a substance is the quantity of thermal energy required to convert, at constant temperature, A. a solid to a liquid. B. unit mass of solid to liquid. C. a liquid to a solid. D. unit mass of liquid to solid. S73. A sample of an ideal gas is contained in a cylinder. The volume of the gas is suddenly decreased. A student makes the following statements to explain the change in pressure of the gas. I. The average kinetic energy of the gas atoms increases. II. The atoms of the gas hit the walls of the cylinder more frequently. III. There are more atoms that are able to collide with the walls of the cylinder. Which of these statements is true? A. I and II only B. I and III only C. II and III only D. I, II and III S74. This question is about a heat engine. A quantity of an ideal gas is used as the working substance of a heat engine. The cycle of operation of the engine is shown in the p-v diagram below. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 16 of 19

17 5 p / 1 Pa 12. A B C V / 1 m The temperature of the gas at A is 3 K. (a) Calculate the temperature, at B, of the gas (b) During the change A B the change in internal energy of the gas is 7.2 kj. Determine the amount of thermal energy transferred (c) State why, for the change B C, the change in the internal energy of the gas is numerically the same as that in (b) (d) The work done on the gas in the change C A is 2.6 kj. Calculate (i) the net work done in one cycle the efficiency. (Total 1 marks) S75. The graph shows the variation with pressure p of the volume V of a sample of gas. 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 17 of 19

18 V V 2 Y V X Z 1 p p 1 2 The work done during the change of state from X to Y is A. zero B. p 1 (V 2 V 1 ) C. p 2 V 2 p 1 V 1 D. 1 ( p 2 2 p1)( V2 V1 ) S77. Which of the following will not affect the rate of evaporation of a liquid? A. The temperature of the liquid B. The surface area of the liquid C. The mass of the liquid D. Convection currents of air above the liquid surface S78. The graph below shows the variation with absolute temperature T of the pressure p of one mole of an ideal gas having a volume V. R is the molar gas constant. p p T Which of the following is the best interpretation of the intercept on the temperature axis and the gradient of the graph? A. B. C. D. Intercept on temperature axis / K Gradient of graph R V R V V R V R 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 18 of 19

19 S79. For any natural process, the second law of thermodynamics states that the total entropy of the universe A. always decreases. B. usually decreases but may increase. C. always increases. D. usually increases but may decrease. S8. A gas is contained in a cylinder fitted with a piston as shown below. When the gas is compressed rapidly by the piston its temperature rises because the molecules of the gas A. are squeezed closer together. B. collide with each other more frequently. C. collide with the walls of the container more frequently. D. gain energy from the moving piston. S82. The diagram shows the pressure / volume (p/v) diagram for one cycle PQRS of an engine. In which sections of the cycle is work done on the engine? A. SP only B. PQ only C. SP and PQ only D. RS and SP only 212 Test Review~Study Guide.Doc Updated: 17-Feb-12 Page 19 of 19

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1)

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1) 1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation. C. conduction and convection. D. radiation and convection. 2. The specific latent heat of vaporization

More information

Topic 3 &10 Review Thermodynamics

Topic 3 &10 Review Thermodynamics Name: Date: Topic 3 &10 Review Thermodynamics 1. The kelvin temperature of an object is a measure of A. the total energy of the molecules of the object. B. the total kinetic energy of the molecules of

More information

1. This question is about modelling the thermal processes involved when a person is running.

1. This question is about modelling the thermal processes involved when a person is running. 1. This question is about modelling the thermal processes involved when a person is running. When running, a person generates thermal energy but maintains approximately constant temperature. (a) Explain

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

3.1and 3.2 Thermal. Rise in temperature in deg C Final temperature in C A B C D

3.1and 3.2 Thermal. Rise in temperature in deg C Final temperature in C A B C D Name: Date: 3.1and 3.2 Thermal 1. During an experiment, a solid is heated from 285 K to 298 K. Which one of the following gives the rise in temperature, in deg C, and the final temperature, in C, of the

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation. 1 A kettle is rated as 2.3 kw. A mass of 750 g of water at 20 C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes,

More information

Compiled and rearranged by Sajit Chandra Shakya

Compiled and rearranged by Sajit Chandra Shakya 1 (a) (i) The kinetic theory of gases leads to the equation m = kt. (b) Explain the significance of the quantity m... the equation to suggest what is meant by the absolute zero of temperature...

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M)

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

More information

CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR

CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR CLASSIFIED 2 PRESSURE THERMAL PHYSICS MR. HUSSAM SAMIR 1. The diagram shows a simple mercury barometer. If atmospheric pressure increases, what happens to level X and to level Y? 2. Four flower vases have

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 Fig. 1.1 shows the arrangement of atoms in a solid block. Fig. 1.1 (a) End X of the block is heated. Energy is conducted to end Y, which becomes warm. (i) Explain how heat is

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

Tick the box next to those resources for which the Sun is also the source of energy.

Tick the box next to those resources for which the Sun is also the source of energy. 1 (a) The source of solar energy is the Sun. Tick the box next to those resources for which the Sun is also the source of energy. coal geothermal hydroelectric nuclear wind [2] (b) Fig. 4.1 shows a solar

More information

CIE Physics IGCSE. Topic 2: Thermal Physics

CIE Physics IGCSE. Topic 2: Thermal Physics CIE Physics IGCSE Topic 2: Thermal Physics Summary Notes Simple kinetic molecular model of matter Molecular model Solids Molecules close together in regular pattern Strong intermolecular forces of attraction

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark)

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

HEAT- I Part - A C D A B. Te m p. Heat input

HEAT- I Part - A C D A B. Te m p. Heat input e m p HE- I Part -. solid material is supplied with heat at a constant rate. he temperature of the material is changing with heat input as shown in the graph. Study the graph carefully and answer the following

More information

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1) CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

PURE PHYSICS THERMAL PHYSICS (PART I)

PURE PHYSICS THERMAL PHYSICS (PART I) PURE PHYSICS THERMAL PHYSICS (PART I) 1 The kinetic theory of matter states that all matters are made up of or, which are in and motion. forces hold the atoms or molecules together. The nature of these

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. ( Heat, Temperature ) is a form of energy that flows from a hot body to a cold body. 2. The SI unit for ( heat, temperature) is Joule,

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

Topic 19b. Thermal Properties of Matter

Topic 19b. Thermal Properties of Matter Topic 19b The infra-red image of a head shows the distribution of heat. Different colours indicate different temperatures. Which do you think are the warmest regions? Thermal Properties of Matter contents

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Thermal Conductivity, k

Thermal Conductivity, k Homework # 85 Specific Heats at 20 C and 1 atm (Constant Pressure) Substance Specific Heat, c Substance Specific Heat, c kcal/kg C J/kg C kcal/kg C J/kg C Solids Aluminum 0.22 900 Brass 0.090 377 Copper

More information

Chapter 11 Ideal gases

Chapter 11 Ideal gases OCR (A) specifications: 5.4.10c,d,e,i,j,k Chapter 11 Ideal gases Worksheet Worked examples Practical: Determining absolute zero of temperature from the pressure law End-of-chapter test Marking scheme:

More information

Academic Year 2016-2017 First Term Science Revision sheets PHYSICS ( Answer key ) Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions:

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Name... Class... Date... Specific heat capacity and specific latent heat

Name... Class... Date... Specific heat capacity and specific latent heat Specific heat capacity and specific latent heat Specification references: P3.2.2 Temperature changes in a system and specific heat capacity P3.2.3 Changes of heat and specific latent heat Aims This is

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

IB Topic 3: Thermal Physics Summer Assignment

IB Topic 3: Thermal Physics Summer Assignment IB Topic 3: Thermal Physics Summer Assignment How to complete this assignment: 1. The entire assignment is not meant to take more than 8 hours. 2. Download all documents from Blackboard, since there are

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

Comparing the actual value and the experimental value on heat. By conservation of energy

Comparing the actual value and the experimental value on heat. By conservation of energy Topic: Heat 1. Temperature and thermometers a. Temperature: - measure degree of hotness. -measure the average kinetic energy of molecules in random motions. b. Fixed points: -Lower fixed point: temperature

More information

Academic Year First Term. Science Revision sheets PHYSICS

Academic Year First Term. Science Revision sheets PHYSICS Academic Year 2016-2017 First Term Science Revision sheets PHYSICS Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions: 1. What term

More information

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0.

P6 Molecules and matter. Student Book answers. P6.1 Density. Question Answer Marks Guidance. 1 a m 3 (= 0.80 m 0.60 m 0. P6. Density a 0.024 m 3 (= 0.80 m 0.60 m 0.05 m) b = 2500 kg/m 3 2 a 36 g 48 g = 88 g 2 b =. g/cm 3 3 a i 0.000 40 m 3 (= 0.0 m 0.080 m 0.05 m) 3 a ii = 9 000 kg/m 3 3 b v = = 7.9 0 8 m 3 thickness t =

More information

Questions Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Questions Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Questions Chapter 18 Temperature, Heat, and the First Law of Thermodynamics 18-1 What is Physics? 18-2 Temperature 18-3 The Zeroth Law of Thermodynamics 18-4 Measuring Temperature 18-5 The Celsius and

More information

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W NAME : F.3C ( ) Marks: /50 Form 3 Physics Assessment on Heat Time allowed: 45 minutes Section A (34 marks) 1. An indoor swimming pool containing 2.5 x 10 6 kg of water uses 40 identical heaters to maintain

More information

CHAPTER 15 The Laws of Thermodynamics. Units

CHAPTER 15 The Laws of Thermodynamics. Units CHAPTER 15 The Laws of Thermodynamics Units The First Law of Thermodynamics Thermodynamic Processes and the First Law Human Metabolism and the First Law The Second Law of Thermodynamics Introduction Heat

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Temperature 2014 Question 7 (a) [Ordinary Level] The temperature of an object can be measured using a thermometer which is based on a suitable

More information

Lead of mass 0.75 kg is heated from 21 C to its melting point and continues to be heated until it has all melted.

Lead of mass 0.75 kg is heated from 21 C to its melting point and continues to be heated until it has all melted. Q1.(a) Lead has a specific heat capacity of 130 J kg 1 K 1. Explain what is meant by this statement. (1) (b) Lead of mass 0.75 kg is heated from 21 C to its melting point and continues to be heated until

More information

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred.

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred. Exam questions: HEAT Specific heat capacity of copper = 390 J kg 1 K 1 ; Specific heat capacity of water = 4200 J kg 1 K 1 s.h.c. of aluminium = 910 J kg -1 K -1 ; Specific latent heat of fusion of ice

More information

Module - 1: Thermodynamics

Module - 1: Thermodynamics Thermodynamics: Module - : Thermodynamics Thermodynamics (Greek: thermos = heat and dynamic = change) is the study of the conversion of energy between heat and other forms, mechanical in particular. All

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

4.3.1 Changes of state and the particle model Density of materials. ρ = m. Content. Key opportunities for skills development

4.3.1 Changes of state and the particle model Density of materials. ρ = m. Content. Key opportunities for skills development 4.3 Particle model of matter The particle model is widely used to predict the behaviour of solids, liquids and gases and this has many applications in everyday life. It helps us to explain a wide range

More information

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012 Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. In an experiment to measure the temperature of the flame of a Bunsen burner, a lump of copper of mass 0.12 kg is heated in the flame for several minutes. The copper is then

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged?

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged? Physics 101 Tuesday 11/22/11 Class 26" Chapter 17.2, 17.5, 17.6, 18.1, 18.2" Kinetic Theory" Latent Heat" Phase changes" 1 st law of thermodynamics" " Which one is not the assumption in kinetic theory

More information

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes 10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes I. THE FIRST LAW OF THERMODYNAMICS A. SYSTEMS AND SURROUNDING B. PV DIAGRAMS AND WORK DONE V -1 Source: Physics for the IB Diploma Study

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments:

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments: New Document Name: Class: Date: Time: 83 minutes Marks: 82 marks Comments: Q. Solid, liquid and gas are three different states of matter. (a) Describe the difference between the solid and gas states, in

More information

1. How much heat was needed to raise the bullet to its final temperature?

1. How much heat was needed to raise the bullet to its final temperature? Name: Date: Use the following to answer question 1: A 0.0500-kg lead bullet of volume 5.00 10 6 m 3 at 20.0 C hits a block that is made of an ideal thermal insulator and comes to rest at its center. At

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS KEY CONCEPTS : [ *rating as per the significance of concept] 1. Particle nature of Matter *** 2. States of Matter **** 3. Interchange in states of Matter

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Handout 10: Heat and heat transfer. Heat capacity

Handout 10: Heat and heat transfer. Heat capacity 1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

More information

5. Temperature and Heat

5. Temperature and Heat Leaving Cert Physics Long Questions 2017-2002 5. Temperature and Heat Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Contents Temperature:

More information

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell 1. ne atmosphere is equivalent to A) 1.00 g ml 1 B) 22,400 ml ) 273 K D) 760. mmhg E) 298 K 2. A cylinder contains 2.50 L of air at a pressure of 5.00 atmospheres. At what volume, will the air exert a

More information

MATTER IN OUR SURROUNDINGS

MATTER IN OUR SURROUNDINGS CLASS 9 MATTER IN OUR SURROUNDINGS Matter: Anything That occupies space and has mass. Matter is made up of particles. Particles of matter are very small or tiny. Characteristics of particles of matter

More information

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system:

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system: There are two ways to change the internal energy of a system: Thermodynamics Work 1. By flow of heat, q Heat is the transfer of thermal energy between and the surroundings 2. By doing work, w Work can

More information

CHAPTER-11 NCERT SOLUTIONS

CHAPTER-11 NCERT SOLUTIONS CHAPTER-11 NCERT SOLUTIONS Question 11.1: The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Kelvin and

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105.

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105. Slide 1 / 105 Slide 2 / 105 Topics to be covered Thermal Physics Temperature and Thermal quilibrium Gas Laws Internal nergy Heat Work Laws of Thermodynamics Heat ngines Slide 3 / 105 Thermodynamics System

More information

O-LEVELS REQUIREMENT. Name: Class: Date: THERMAL PROPETIES OF MATTER

O-LEVELS REQUIREMENT. Name: Class: Date: THERMAL PROPETIES OF MATTER Name: Class: Date: Unit 11 THERMAL PROPETIES OF MATTER 82465685 calvinkongphysics@yahoo.com NOTES O-LEVELS REQUIREMENT Candidates should be able to: 1. describe a rise in temperature of a body in terms

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

Chapter 10, Thermal Physics

Chapter 10, Thermal Physics CHAPTER 10 1. If it is given that 546 K equals 273 C, then it follows that 400 K equals: a. 127 C b. 150 C c. 473 C d. 1 200 C 2. A steel wire, 150 m long at 10 C, has a coefficient of linear expansion

More information

HEAT HISTORY. D. Whitehall

HEAT HISTORY. D. Whitehall 1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

More information

Chapter 10 Test Form B

Chapter 10 Test Form B Chapter 10 Test Form A 1. B 2. A 3. A 4. B 5. D 6. B 7. B 8. A 9. A 10. A 11. B 12. D 13. A 14. C 15. No, heat and cold do not flow between objects. Energy transferred between objects changes the temperature

More information

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES The particle model of a gas A gas has no fixed shape or volume, but always spreads out to fill any container. There are

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 5 - Thermal Properties of Matter Thermal Expansion You need to know thermal expansions for solids, liquids, and gases, and their applications. Thermal

More information

AP Physics Thermodynamics Wrapup

AP Physics Thermodynamics Wrapup AP Physics hermodynamics Wrapup Here are your basic equations for thermodynamics. here s a bunch of them. l l 0 Q ml Q his is the equation for the change in length of an object as a function of temperature.

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information