ABCD42BEF F2 F8 5 4D6589 CC8 9

Size: px
Start display at page:

Download "ABCD42BEF F2 F8 5 4D6589 CC8 9"

Transcription

1 ABCD BEF F F D CC

2

3

4

5

6

7

8

9

10 Vetri Velan GSI, Physics 7B Midterm 1: Problem 3 3. a) Since the collisions with the walls are all elastic, for each given wall, only one component of the velocity matters. Consider the left wall of the box. Collisions with it will only change the x-component of the velocity, while the y-component will be invariant. Thus: t = x = 2l v x v x This is the same for all walls so: t = 2l v x = 2l v y Rubric: 2 pts for using t = x v 2 pts for using the correct velocity (i.e. only v x or v y ) 2 pts for using the correct x = 2l 2 pts for correct answer b) Per particle, F = dp dt p t = 2mv x t For the entire system, F = mv2 x l F tot = N mv2 x l = mv2 y l = N mv2 y l Rubric: 2 pts for realizing F = dp/dt 1 pt for approximating this by F = p t 2 pts for using correct p and t (if they got previous question wrong but used same t that is fine) 1 pt for multiplying by N c) There is an issue with this question. The temperature definition is given by T = mv2 k B but this is per degree of freedom of velocity. So the equation is better written as T = mv2 x k B. However, based on the absolute velocity (which is defined in Part A), it is actually T = mv2 2k B. Thus students answers will be off by a factor of 2 depending on which definition they use. I will proceed with the 1

11 solution using the correct equation. T = mv2 x k B = F totl Nk B Nk B T = Fl = F l l2 P A = Nk B T where P is like an effective pressure, except that it is F/l instead of F/A, and A is the area of the box. If the students had used the wrong equipartition theorem (as given in the exam), they would get: 2P A = Nk B T Rubric: 3 pts for converting T equation into equation of F,l, etc. (if they got previous question wrong but used the correct math and logic here, that is fine) 1 pt for correct v = v x or = 2v x 1 pt for realizing it is 2D (not using volume or pressure, because those are not the appropriate quantities) 1 pt for correct answer No points deducted for getting equipartition wrong by a factor of 2 (see above) 2

12 Problem 4 (a) V 1 = V 0 (1+β T) so that (r 1 ) 3 = (r 0 ) 3 (1+β T). Expanding to first order, we have +2 points for volume expansion equation +2 points for radius cubed formula or +5 points for just right answer r 1 = r 0 (1+β T/3) (1) (b) We assume that the gas is compressed adiabatically so that PV γ 0 = P 1V γ 1, where γ = 5/3, and we obtain ( ) γ ( V0 R 3 r 3 ) γ 0 P 1 = P = P V 1 R 3 r1 3 (2) +2 points for adiabatic relationship +2 points for correct volumes +1 for correct answer (c) Using the above relation between pressure and volume, one finds that T 0 V γ 1 0 = T 1 V γ 1 1 so that +3 points for adiabatic relationship +2 points for using the same volumes as part (b) ( ) γ 1 ( V0 R 3 r 3 ) γ 1 0 T 1 = T 0 = T 0 V 1 R 3 r1 3 (3) (d) Assuming that the particles move in three dimensions, we have v rms = 3kT1 m (4) If the particles move radially, they only have one degree of freedom, so m v r = kt and we have v r = kt1 m (5) + 3 for correct expression of v rms +2 for correct expression of v r 1

13 Problem 5-Solutions (a) Find P2 and V2 (3points total) During process A, the volume of the gas is held constant therefore: V 2 = V 1 (2points) Also, the problem states that point 2 is at four time the initial pressure of the gas so: P 2 = 4P 1 (1points) Find P3 and V3 (7 points total) From the adiabatic process B we know that substituting for P2 and V2 as we found above: From the isothermal process C we know that P 3 V γ 3 = P 2V γ 2 P 3 V γ 3 = 4P 1V1 γ eqn1 P 3 V 3 = P 1 V 1 eqn2 therefore from eqn1 and eqn2 we can conclude: V γ 1 3 = 4V1 γ 1, V 3 = 4 1/γ 1 V 1 where γ = d+2 d = 7 5 (1point) for a diatomic gas so V 3 = 32V 1 (3points) Finally, P3 can be found from eqn2 to be: P 3 = P 1V 1 32V 1 = P 1 32 (3points) (b) We know that process A is isovolumetric (W A = 0), process B is adiabatic (Q B = 0)and process C is isothermal ( E C = 0): 1

14 E Q W Process A E A Q A 0 Process B E B 0 W B Process C 0 Q C W C Using the first law of thermodynamics ( E = Q W) for process A: Q A = E A Also, we know that E t otal for the cycle should be 0, therefore E B = E A Also, using the first law of thermodynamics for process B: W B = E B = E A So all we need is E A to solve for Q A, E B, W B : E A = d 2 nr(t 2 T 1 ) from the ideal gas law we can find the relation between T 1 and T 2 : P 1 V 1 T 1 = P 2V 2 T 2 = 4P 1V1 T 2 T 2 = 4T 1 E A = d 2 nr(3t 1) where d = 5 2 for a diatomic gas so E A = 15 2 nrt 1, Q A = 15 2 nrt 1, E B = 15 2 nrt 1, W B = 15 2 nrt 1 For process C, we don t know Q C but we can calculate W C W C = V3 =32V 1 V 2 =V 1 PdV Since P is not constant, we can write it in terms of T using the ideal gas law: W C = nrt 1 V2 =V 1 V 3 =32V 1 1 V dv = 1RT 1ln32 Finally, using the first law of thermodynamics for process C: W C = Q C = RT 1 ln32 E Q W 15 Process A 2 nrt nrt 1 0 Process B 15 2 nrt nrt 1 Process C 0 RT 1 ln32 RT 1 ln32 1 point for each E,W and Q (9 total), and 1 point for d =

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x Lecture 7: Kinetic Theory of Gases, Part 2 Last lecture, we began to explore the behavior of an ideal gas in terms of the molecules in it We found that the pressure of the gas was: P = N 2 mv x,i! = mn

More information

Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

More information

Chapter 14 Kinetic Theory

Chapter 14 Kinetic Theory Chapter 14 Kinetic Theory Kinetic Theory of Gases A remarkable triumph of molecular theory was showing that the macroscopic properties of an ideal gas are related to the molecular properties. This is the

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

ABCD42BEF F2 F8 5 4D65F8 CC8 9

ABCD42BEF F2 F8 5 4D65F8 CC8 9 ABCD BEF F F D F CC Physics 7B Fall 2015 Midterm 1 Solutions Problem 1 Let R h be the radius of the hole. R h = 2 3 Rα R h = 2 3 R+ R h = 2 3 R(1+α ) (4 points) In order for the marble to fit through the

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases Physics week 7 Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases 3.1.1. Experimental Laws and the Equation of State 3.1.. Molecular Model of an Ideal Gas 3.. Mean Free Path 3.3. The Boltzmann Distribution

More information

Physics 7B Midterm 1 Problem 1 Solution

Physics 7B Midterm 1 Problem 1 Solution Physics 7B Midterm Problem Solution Matthew Quenneville September 29, 206 (a) Suppose some amount of heat, Q, is added to the gas, while the volume is held constant. This is equivalent to adding some amount

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Problem 4 (a) This process is irreversible because it does not occur though a set of equilibrium states. (b) The heat released by the meteor is Q = mc T. To calculate the entropy of an irreversible process

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Modern Physics September 7 and 12, 2016 1 Intro In this section, we will relate macroscopic properties of gases (like Pressure, Temperature) to the behavior of the microscopic components

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and. The Adiabatic Process Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

Molar Specific Heat of Ideal Gases

Molar Specific Heat of Ideal Gases Molar Specific Heat of Ideal Gases Since Q depends on process, C dq/dt also depends on process. Define a) molar specific heat at constant volume: C V (1/n) dq/dt for constant V process. b) molar specific

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions Web Resource: Ideal Gas Simulation Kinetic Theory of Gases Physics Enhancement Programme Dr. M.H. CHAN, HKBU Link: http://highered.mheducation.com/olcweb/cgi/pluginpop.cgi?it=swf::00%5::00%5::/sites/dl/free/003654666/7354/ideal_na.swf::ideal%0gas%0law%0simulation

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities Phys 160 Thermodynamics and Statistical Physics Lecture 4 Isothermal and Adiabatic Work Heat Capacities Heat and Work Much of thermodynamics deals with three closely - related concepts; temperature, energy,

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Part I: Basic Concepts of Thermodynamics Lecture 3: Heat and Work Kinetic Theory of Gases Ideal Gases 3-1 HEAT AND WORK Here we look in some detail at how heat and work are exchanged between a system and

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Physics 141. Lecture 24.

Physics 141. Lecture 24. Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 32: Heat and Work II Slide 32-1 Recap: the first law of thermodynamics Two ways to raise temperature: Thermally: flow of heat Energy

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am No Books or Notes allowed Calculator without access to formulas allowed. The quiz has two parts. The

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz Physics 141. Lecture 24. 0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol http://www.physics.emory.edu/~weeks/squishy/brownianmotionlab.html Frank L. H. Wolfs Department

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 9 The First Law of Thermodynamics Topics for Chapter 9 I. First Law of Thermodynamics Internal energy, concept of state variables Difference between Work and Heat II. Examine various types of thermodynamic

More information

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases. Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, 2008. Kinetic theory of gases. http://eml.ou.edu/physics/module/thermal/ketcher/idg4.avi Physics 121. April

More information

Dr. Gundersen Phy 206 Test 2 March 6, 2013

Dr. Gundersen Phy 206 Test 2 March 6, 2013 Signature: Idnumber: Name: You must do all four questions. There are a total of 100 points. Each problem is worth 25 points and you have to do ALL problems. A formula sheet is provided on the LAST page

More information

Announcements 13 Nov 2014

Announcements 13 Nov 2014 Announcements 13 Nov 2014 1. Prayer 2. Exam 3 starts on Tues Nov 25 a. Covers Ch 9-12, HW 18-24 b. Late fee on Wed after Thanksgiving, 3 pm c. Closes on Thursday after Thanksgiving, 3 pm d. Jerika review

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 27, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law

More information

Physics 213 Spring 2009 Midterm exam. Review Lecture

Physics 213 Spring 2009 Midterm exam. Review Lecture Physics 213 Spring 2009 Midterm exam Review Lecture The next two questions pertain to the following situation. A container of air (primarily nitrogen and oxygen molecules) is initially at 300 K and atmospheric

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

11/22/2010. Mid term results. Thermal physics

11/22/2010. Mid term results. Thermal physics Mid term results Thermal physics 1 Zeroth law of thermodynamics If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

More information

First Law of Thermo.

First Law of Thermo. Quiz 8, MONDAY Please send me an email ASAP if you are away Monday, Nov. 25. You can take the quiz on Friday Nov 22, during your usual time. (You ll have to miss the Friday lecture). First Law of Thermo.

More information

Internal Energy (example)

Internal Energy (example) Internal Energy (example) A bucket of water KEs: translational: rotational: vibrational: PEs: within molecules: between molecules: @ rest on the table molecular bonds dipole-dipole interactions Internal

More information

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins Expansion Work General Expression for Work Free Expansion Expansion Against Constant Pressure Reversible Expansion

More information

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel.

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel. Chapter Thirteen KINETIC THEORY MCQ I 13.1 A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500m s 1

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT. 40a Final Exam, Fall 2006 Data: P 0 0 5 Pa, R = 8.34 0 3 J/kmol K = N A k, N A = 6.02 0 26 particles/kilomole, T C = T K 273.5. du = TdS PdV + i µ i dn i, U = TS PV + i µ i N i Defs: 2 β ( ) V V T ( )

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Lecture 2 - Thursday, May 11 th, 3pm-6pm

Lecture 2 - Thursday, May 11 th, 3pm-6pm PHYSICS 8A Final Exam Spring 2017 - C. Bordel Lecture 2 - Thursday, May 11 th, 3pm-6pm Student name: Student ID #: Discussion section #: Name of your GSI: Day/time of your DS: Physics Instructions In the

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names:

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names: Problem 1 (2.5 points) 1 2 3 4 Match the above shown players of the best baseball team in the world with the following names: A. Derek Jeter B. Mariano Rivera C. Johnny Damon D. Jorge Posada 1234 = a.

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Final Review Solutions

Final Review Solutions Final Review Solutions Jared Pagett November 30, 206 Gassed. Rapid Fire. We assume several things when maing the ideal gas approximation. With inetic molecular theory, we model gas molecules as point particles

More information

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday.

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday. Stuff ---Tonight: Lecture 3 July 0 ---Assignment 1 has been posted. Work from gravitational forces: h F gravity dx = h 0 0 mgh mg dx Where m (kg) and g is gravitational constant 9.8 m/s ---Presentation

More information

Physics 4230 Set 2 Solutions Fall 1998

Physics 4230 Set 2 Solutions Fall 1998 Fermi 2.1) Basic 1st Law of Thermodynamics: Calculate the energy variation of a system which performs 3.4x10 8 ergs of work and absorbs 32 calories of heat. So, the bottom line in this problem is whether

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

For more info visit

For more info visit Kinetic Theory of Matter:- (a) Solids:- It is the type of matter which has got fixed shape and volume. The force of attraction between any two molecules of a solid is very large. (b) Liquids:- It is the

More information

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1 NY Times /5/03 slide Thermodynamics and Gases Last Time specific heats phase transitions Heat and Work st law of thermodynamics heat transfer conduction convection radiation Today Kinetic Theory of Gases

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

PES 2130 Exam 1/page 1. PES Physics 3 Exam 1. Name: SOLUTIONS Score: / 100

PES 2130 Exam 1/page 1. PES Physics 3 Exam 1. Name: SOLUTIONS Score: / 100 PES 2130 Exam 1/page 1 PES 2130 - Physics 3 Exam 1 Name: SOLUTIONS Score: / 100 Instructions Time allowed or this is exam is 1 hours 15 minutes 10 written problems For written problems: Write all answers

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

More information

Concepts of Thermodynamics

Concepts of Thermodynamics Thermodynamics Industrial Revolution 1700-1800 Science of Thermodynamics Concepts of Thermodynamics Heavy Duty Work Horses Heat Engine Chapter 1 Relationship of Heat and Temperature to Energy and Work

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases chapter 1 The Kinetic Theory of Gases 1.1 Molecular Model of an Ideal Gas 1. Molar Specific Heat of an Ideal Gas 1.3 Adiabatic Processes for an Ideal Gas 1.4 The Equipartition of Energy 1.5 Distribution

More information

Gases. T boil, K. 11 gaseous elements. Rare gases. He, Ne, Ar, Kr, Xe, Rn Diatomic gaseous elements H 2, N 2, O 2, F 2, Cl 2

Gases. T boil, K. 11 gaseous elements. Rare gases. He, Ne, Ar, Kr, Xe, Rn Diatomic gaseous elements H 2, N 2, O 2, F 2, Cl 2 Gases Gas T boil, K Rare gases 11 gaseous elements He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomic gaseous elements Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120

More information

Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

More information

Monday, October 21, 13. Copyright 2009 Pearson Education, Inc.

Monday, October 21, 13. Copyright 2009 Pearson Education, Inc. Lecture 4 1st Law of Thermodynamics (sections 19-4 to 19-9) 19-4 Calorimetry 19-5 Latent Heat 19-6 The 1st Law of Thermodynamics 19-7 Gas: Calculating the Work 19-8 Molar Specific Heats 19-9 Adiabatic

More information

nrv P = P 1 (V2 2 V1 2 ) = nrt ( ) 1 T2 T 1 W = nr(t 2 T 1 ) U = d 2 nr T. Since a diatomic gas has 5 degrees of freedom, we find for our case that

nrv P = P 1 (V2 2 V1 2 ) = nrt ( ) 1 T2 T 1 W = nr(t 2 T 1 ) U = d 2 nr T. Since a diatomic gas has 5 degrees of freedom, we find for our case that Problem Figure. P-V diagram for the thermodynamics process described in Problem. a) To draw this on a P-V diagram we use the ideal gas law to obtain, T V = P nrv P = P V. V The process thus appears as

More information

CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES

CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES Goals for Our Second Review Your first exam is in about 1 week! Recap the ideal gas law Kinetic Molecular Theory 3 important relationships

More information

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt).

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). Thermal Physics 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). 2) Statistical Mechanics: Uses models (can be more complicated)

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1 Classical Physics I PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics Lecture 36 1 Recap: (Ir)reversible( Processes Reversible processes are processes that occur under quasi-equilibrium conditions:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2003 Solutions to Problem Set #5

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2003 Solutions to Problem Set #5 MASSACUSES INSIUE OF ECNOLOGY Physics Department 8.044 Statistical Physics I Spring erm 003 Solutions to Problem Set #5 Problem 1: Equation of State for a Ferromagnet a) We are looking for the magnetization

More information

a) The process is isobaric, or it occurs at constant pressure. We know this because the pressure is supplied entirely by the weight of the piston:

a) The process is isobaric, or it occurs at constant pressure. We know this because the pressure is supplied entirely by the weight of the piston: 1 Problem 1 a) The process is isobaric, or it occurs at constant pressure. We know this because the pressure is supplied entirely by the weight of the piston: P f = P i = mga b) From the ideal gas law,

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

PRACTICE FINAL EXAM SOLUTIONS

PRACTICE FINAL EXAM SOLUTIONS University of California, Berkeley Physics 8A Spring 2007 (Professors Yury Kolomensky and Terry Buehler) Final Review / Practice Final Exam by Brian Shotwell (shotwell@berkeley.edu) PRACTICE FINAL EXAM

More information

MidTerm. Phys224 Spring 2008 Dr. P. Hanlet

MidTerm. Phys224 Spring 2008 Dr. P. Hanlet MidTerm Name: Show your work!!! If I can read it, I will give you partial credit!!! Correct answers without work will NOT get full credit. Concept 5 points) 1. In terms of the First Law of Thermodynamics

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information