Linear Theory of Stellar Pulsation

Size: px
Start display at page:

Download "Linear Theory of Stellar Pulsation"

Transcription

1 Linear Theory of Stellar Pulsation Mir Emad Aghili Department of Physics and Astronomy, University of Mississippi, University, MS, Introduction The first pulsating star to be discovered was omicron Ceti, in constellation Cetus. This star was discovered in 638 by Johannes Holwarda when he realized that this star changes its brightness drastically in a period of months. This star later was named Mira which means wonderful. Since then, many pulsating stars has been discovered. Most of the stars in some stages of their life go out of hydrostatic equilibrium and start to pulsate, i.e. they either change their size radial pulsation), change their shape non-radial pulsation) or both of them at the same time. Pulsation affects the surface temperature of the star and therefore the luminosity. The pulsation can give information about inner structure of a star, some bounds on the radius etc. If the change in the luminosity is regular and the same way for the stars of the same type, it can be used as a standard candle. An example of such objects are Cepheid stars. A relation between brightness and period of Cepheids was established by Henrietta Swan Leavitt []. Based on this relation one can use the stars pulsation period to obtain the absolute magnitude and therefore the distance to the star. This method can be calibrated by using parallax 2 of some nearby Cepheids. Cepheids are the most common pulsating stars. Their period is between to 5 days. W Virginis stars are essentially the same as Cepheids but with metal deficiency. RR-Lyrae stars have nearly the same luminosity with periods between to 24 hours and they can be used as standard candles as well. The δ-scuti stars are the ones with very short period of a few hours. All of aforementioned types of pulsating stars on H-R diagram are located on a long strip that is called the instability strip fig). Another group of pulsating stars are β-cepheids which are early B stars, they are very hot they are outside the instability strip but the mechanism causing the pulsation is the same. On the right hand side of the H-R diagram are the pulsating stars with periods between to 7 days. These type of stars are called long period variables LPV) including Mira variable stars and semi regular pulsating stars [3]. The aim of this paper is to give an introduction to the mechanism deriving the pulsations and the simplest theoretical models behind them. In section 2, there will be a discussion on the linear radial pulsation of the stars and in section 3 there will be a general discussion of the results and the applications. 2 Radial Pulsation Understanding of stellar pulsation has been a challenge for a long time. For some types of pulsating stars this issue is more or less understood and for some there still exists some confusion. The simplest mathematical model for pulsation is to naively think that the star mass is concentrated at the center and the surface of a star is a thin shell with a mass m much smaller than the total mass M of the star at radius R, and the volume between the center and the shell is filled with a massless gas, which provides the maghili@go.olemiss.edu An object in astrophysics that has a known luminosity and can be used for distance measurement. 2 Paralax is the displacement of an object with respect to background stars due to change of position of the observer perspective). This quantity can be used to determine the distance to the object d[pcs] = /π[arc sec], where π is parallax.

2 Figure : Position of different types of pulsating stars on H-R diagram. credit: J.P. Cox, courtesy of Institute of physics. pressure to support the sell from falling. The force exerted on the shell as it is displaced from equilibrium is m r = 4πr 2 p GMm r 2. ) If one assumes that the star is surrounded with vacuum, we are able to assume an adiabatic equation of state p/ρ Γ = const. which after linearization 3 procedure simplifies to δ r = 3Γ 4) GM δr. 2) R3 This is a simple harmonic motion with frequency ω = 3Γ 4) GM/R 3. Although the result is in good agreement with that of Cepheids and discovery of Leavitt, it does not explain the physical reason behind the pulsation of the star. The first proposal for pulsation mechanism was introduced by Eddington [4, 5]. He predicted that pulsation is caused by a sort of valve mechanism. The heat that is trapped under a layer increases pressure which in turn pushes the top layers and after expansion it cools down and contracts. This mechanism needs at least a large enough layer to be opaque. As we go towards the center of a star, opacity decreases due to dependence 4 on density ρ and temperature T by κ ρ/t 7/2. Although density and temperature are both increasing functions as we move inward, the dependence on temperature is with much higher power. The decrease in opacity does not support the valve mechanism. It was later found that solution to this ambiguity is the partial ionization zones, such as 3 Linearization of an equation, is to find the solution to the equation when the variables are infinitesimally changed from a known solution, this way one can safely consider only up to first order in A A + δa) deviation which is called a linearized equation. 4 Opacity is a measure for the amount of energy from radiation that is being absorbed and can not find its way out. In general, there are different processes that contribute to the opacity, and each one depends on temperature and density in a different way. Some of those processes are Thompson electron scattering, free-free absorption, bound-free absorption and bound-bound absorption. For intermediate distances from the core of the star Thompson scattering is negligible and the opacity is governed by free-free and bound-free opacity, which depend on temperature and density as stated in the text. 2

3 partially ionized Hydrogen or Helium or in the case of β-cepheids the partially ionized Iron layer. In these layers the opacity does not decrease, because the energy that is given to these layers will be used to ionize the elements more and therefore these layers will not let the heat out. This mechanism is good enough assumption for description of Cepheid type variable stars dynamics. Next step is to formulize the problem of pulsation and theoretically derive the pulsation frequency and overtones. A star with densityρ, temperature T, hydrogen mass portion X, equation of state pρ, T, X) and nuclear energy production rate per unit mass ɛρ, T, X) in equilibrium should satisfy static equations. For the simplest case of spherically symmetric stars which is true for the many cases) we have dp dr = Gmρ r 2 Hydrostatic Equilibrium 3) dm dr = 4πr2 ρ Conservation of Mass 4) dt dr = 3ρ κ 6σT 3 F rad Radiative Flux 5) d r 2 F rad + F conv ) ) = r 2 ρɛ dr Thermal Equilibrium 6) F conv = F conv ρ, T, X, g; ), = p dt, T dp Convective Flux 7) where κ is the Rossland mean opacity, σ is the Stefan-Boltzmann constant and g is the the gravitational acceleration. The boundary between radiation dominated and convection dominated zones of a star is determined by the degree of adiabaticity of the star at that zone. The quantity that is used to determine the adiabaticity is ad = 2 5. If rad < ad at some radius r, then the layer will be radiative and the convective flux F conv vanishes, on the other hand if rad > ad convection starts and F conv >. The functionality of F conv depends on the convection theory that is being used. Another point that should be mentioned here is that the viscosity is neglected in these equations. When a star undergoes pulsation, it goes out of equilibrium state and therefore we should modify the static equilibrium equations. For adiabatic pulsations up to linear order in deviation from equilibrium we have δ r = 4Gm r 2 4πr 2 δp ) δp = Rλp 4ζ xr x p g ζ + δp ) 8) p δρ ζ = 3 ζ r 9) ρ r δl = 4ζ δκ + 4 δt + ) δt L κ T d ln T ) r dr T ) ) δp δρ = Γ + ρ Γ 3 ) δ ɛ L ), ) t p t ρ p where ζ = δr r is the relative change in distance, R is the star radius at equilibrium, x = r /R is the relative distance, λ p = dr d ln p = p ρg is the pressure height, L is the luminosity and Γ 3 = + d ln T/d ln ρ) ad. We can use the conservation of mass equation dm = 4πrρ 2 dr to write all the derivatives in terms of mass. We have chosen the mass to be independent variable because if we choose the correct frame of reference we can always have the mass of the layer to be conserved however, this is not true for the radius [2]. After doing some manipulations one can combine all of the equations of motion to write one single equation... r ζ = 4πr 2 ζ d dm [3Γ, 4) p ] + 2πrΓ 2, p ζ +6π 2 r 2 r 3 Γ, p ρ ζ ) 4πr 2 where Γ = d ln p/d ln ρ) ad. For small adiabatic oscillations, one can use [ ρ Γ 3, ) δ ɛ L )], 2) δp δρ = Γ, 3) p ρ 3

4 in momentum equation equation 8) and the oscillation equations become r ζ = ζ4πr 2 d dm [3Γ, 4) p ] + ) 6π 2 Γ, p ρ r 6 ξ. 4) r A simplified equation is called homologous motion, which means motion when ζ is independent of mass m. In such a motion dp dm = Gm/4πr4 and therefore r ζ = 3Γ, 4) Gm r 2 ζ = 3Γ, 4) 4r G ρζ, 5) 3 where ρ is the average density of the star. The solution to this equation simple harmonic motion with frequency ω = 4πGm 3Γ, 4)) /r, in agreement with primitive model that was discussed previously. This result gives stable pulsation if Γ > 4/3 and we will have instability, including both relaxation or blowing up solutions for Γ < 4/3. For a more general case a standing wave solution to this equation requires that ζr, t) = αr) exp iωt), which changes the partial differential equation to an ordinary differential equation d Γ pr 4 dα ) [ + α ω 2 ρr 4 + r 3 d ] dr dr dr {3Γ 4) p} =, 6) where subscript is dropped for simplicity. This equation is known as Linear Adiabatic Wave Equation LAWE). Like any other physical equation, we need to provide the boundary conditions to the equations to find a unique solution. This equation is of second order, therefore two boundary conditions are required. With the spherical symmetry we require the star to have δr = at the center and on the surface we can choose different types of boundary conditions. We can require δp = at the surface of the star or set a quantity such as p/ρ that is proportional to δt equal to zero. We should not also forget that when we expand the first term in equation 6), the coefficient of dζ dr is singular at the center of the star, therefore we need to require dζ dr r= =. Atmosphere of the stars are isothermal at at higher layers [6] and therefore for such an isothermal atmosphere it is easy to see that p, ρ exp x/λ p ), where x is the height measured from a reference point. By change of variable x = r R, where R is the reference point and keeping in mind that R/λ p in the atmosphere of real stars, we can drop the smaller terms and find d 2 α dx 2 dα λ p dx + ω2 νs 2 =, 7) where ν s = Γ p/ρ is the adiabatic speed of sound. With basic knowledge of calculus we can see that α = A exp ) 2 ) 2 ω + + B exp ) 2 ) 2 ω. 8) 2λ p 2λ p ν s 2λ p 2λ p ν s To discuss the solutions we need to consider two cases. In the first case, we consider 2λ p > ω ν s, in which the solutions are real. In this case looking at the kinetic energy of the sound wave for two solutions to the equation 8) shows us that lim x K A = and lim x K B =, which means the second one is not physical and therefore we should have A =. For the second case we have 2λ p < ω ν s which is pure imaginary and represents ingoing and outgoing waves. We can physically have only outgoing waves so in this case we again have A =. The outgoing wave solution can not represent a standing wave which means the standing wave is only possible for the first case. A more detailed model includes more sophisticated variational methods to calculate eigenvalues pulsation frequencies) and eigen functions how the wave propagates through the star). 3 Conclusion Derivation of equations of pulsation for the star is very complicated. For simplicity this equations are usually linearized, but a price should be paid for this simplicity. The first consequence of this simplification is that 4

5 the amplitude of the oscillations can not be determined and therefore it is not possible to get an estimation for the size of the star. The second consequence is that we are not able to derive non-radial pulsations that are frequent for asymptotic giant branch stars. In many of this equations, the equation of the state is assumed to be adiabatic, which is true for the most of the parts in star but not everywhere. Overall the results are reliable up to a small percentage for many Cepheid like stars but not true for more complicated cases such as AGB stars with extended atmospheres and shock waves traveling through them coming from nonlinear effects in hydrodynamics. Also in the present case, the convection is neglected, which could make the equation very complicated and chaotic and it usually depends on the choice of convection theory. References [] H. S. Leavitt, E. C. Pickering, Periods of 25 Variable Stars in the Small Magellanic Cloud, Harvard College Observatory Circular. 73:, 92). [2] J. P. Cox, Theory of Stellar Pulsation, Princeton University Press, 98) [3] B. W. Carroll, D. A. Ostlie, An Introduction to Modern Astrophysics, second edition, Pearson- Addison Wesley, 27) [4] A. S. Eddington, M.N.R.A.S, 72, 2, 98) [5] A. S. Eddington, M.N.R.A.S, 72, 77, 98) [6] J. P. Cox and R. T. Guili, Principles of Stellar Structure, N.Y. Gordon and Breach, 968) 5

Stellar Astrophysics: Stellar Pulsation

Stellar Astrophysics: Stellar Pulsation Stellar Astrophysics: Stellar Pulsation Pulsating Stars The first pulsating star observation documented was by the German pastor David Fabricius in 1596 in the constellation Cetus The star o Ceti, later

More information

Stellar Astrophysics: Pulsating Stars. Stellar Pulsation

Stellar Astrophysics: Pulsating Stars. Stellar Pulsation Stellar Astrophysics: Stellar Pulsation Pulsating Stars The first pulsating star observation documented was by the German pastor David Fabricius in 1596 in the constellation Cetus The star o Ceti, later

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Lecture 7.1: Pulsating Stars

Lecture 7.1: Pulsating Stars Lecture 7.1: Pulsating Stars Literature: KWW chapter 41!" 1 a) Classes of pulsating stars Many stars Intrinsically variable Subset: regular pulsation Type Period (d) RR Lyrae 0.3-0.9 Cepheids 1-50 W Virginis

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days.

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days. 5 Pulsations Most AGB stars are variable stars, due to the fact that they pulsate. The periods are long, from 10 to 1000s of days, and they are therefore called Long Period Variables, or LPVs. These long

More information

Equations of Stellar Structure

Equations of Stellar Structure Equations of Stellar Structure Stellar structure and evolution can be calculated via a series of differential equations involving mass, pressure, temperature, and density. For simplicity, we will assume

More information

Stellar Pulsations and Variability

Stellar Pulsations and Variability Chapter 15 Stellar Pulsations and Variability One commonplace of modern astronomy that would have been highly perplexing for ancient astronomers is that many stars vary their light output by detectable

More information

Energy transport: convection

Energy transport: convection Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions for classic stellar atmospheres: geometry, hydrostatic equilibrium, conservation of momentum-mass-energy,

More information

Evolution Beyond the Red Giants

Evolution Beyond the Red Giants Evolution Beyond the Red Giants Interior Changes Sub-giant star 1 Post-Helium Burning What happens when there is a new core of non-burning C and O? 1. The core must contract, which increases the pressure

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

9.1 Introduction. 9.2 Static Models STELLAR MODELS

9.1 Introduction. 9.2 Static Models STELLAR MODELS M. Pettini: Structure and Evolution of Stars Lecture 9 STELLAR MODELS 9.1 Introduction Stars are complex physical systems, but not too complex to be modelled numerically and, with some simplifying assumptions,

More information

dp dr = GM c = κl 4πcr 2

dp dr = GM c = κl 4πcr 2 RED GIANTS There is a large variety of stellar models which have a distinct core envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic

More information

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics? Stellar Objects: Introduction 1 Introduction Why should we care about star astrophysics? stars are a major constituent of the visible universe understanding how stars work is probably the earliest major

More information

4 Oscillations of stars: asteroseismology

4 Oscillations of stars: asteroseismology 4 Oscillations of stars: asteroseismology The HR diagram below shows a whole variety of different classes of variable or pulsating/oscillating stars. The study of these various classes constitutes the

More information

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc/MSci Examination Day 28th April 2015 18:30 21:00 SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 9 Energy Production and Scaling Laws Equations of Stellar Structure Hydrostatic Equilibrium : dp Mass Continuity : dm(r) dr (r) dr =4πr 2 ρ(r)

More information

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc Examination Day 15th May 2014 14:30 17:00 ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

2. Equations of Stellar Structure

2. Equations of Stellar Structure 2. Equations of Stellar Structure We already discussed that the structure of stars is basically governed by three simple laws, namely hyostatic equilibrium, energy transport and energy generation. In this

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Stellar Winds: Mechanisms and Dynamics

Stellar Winds: Mechanisms and Dynamics Astrofysikalisk dynamik, VT 010 Stellar Winds: Mechanisms and Dynamics Lecture Notes Susanne Höfner Department of Physics and Astronomy Uppsala University 1 Most stars have a stellar wind, i.e. and outflow

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Ay123 Set 1 solutions

Ay123 Set 1 solutions Ay13 Set 1 solutions Mia de los Reyes October 18 1. The scale of the Sun a Using the angular radius of the Sun and the radiant flux received at the top of the Earth s atmosphere, calculate the effective

More information

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation,

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation, Astronomy 715 Final Exam Solutions Question 1 (i). The equation of hydrostatic equilibrium is dp dr GM r r 2 ρ. (1) This corresponds to the scaling P M R ρ, (2) R2 where P and rho represent the central

More information

AST Homework V - Solutions

AST Homework V - Solutions AST 341 - Homework V - Solutions TA: Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook November, 010 1 (1 point) Derive the homologous form of the luminosity equation

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Sunday, May 1, AGB Stars and Massive Star Evolution

Sunday, May 1, AGB Stars and Massive Star Evolution AGB Stars and Massive Star Evolution Iben The Helium Flash (< 2 Msun) The central core becomes dense enough, that degeneracy pressure dominates over thermal pressure. Still, the core radiates energy and

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Convection. If luminosity is transported by radiation, then it must obey

Convection. If luminosity is transported by radiation, then it must obey Convection If luminosity is transported by radiation, then it must obey L r = 16πacr 2 T 3 3ρκ R In a steady state, the energy transported per time at radius r must be equal to the energy generation rate

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2 Stellar Properties Relativity and Astrophysics Lecture 15 Terry Herter Outline Spectroscopic Parallax Masses of Stars Periodic Variable Stars RR Lyrae Variables Cepheids Variables Period-Luminosity Relation

More information

Model Atmospheres. Model Atmosphere Assumptions

Model Atmospheres. Model Atmosphere Assumptions Model Atmospheres Problem: Construct a numerical model of the atmosphere to estimate (a) Variation of physical variables (T, P) with depth (b) Emergent spectrum in continuum and lines Compare calculated

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

Astronomy II (ASTR1020) Exam 3 Test No. 3D

Astronomy II (ASTR1020) Exam 3 Test No. 3D Astronomy II (ASTR1020) Exam 3 Test No. 3D 23 October 2001 The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don t forget to write your name and the Test

More information

The structure and evolution of stars. Introduction and recap

The structure and evolution of stars. Introduction and recap The structure and evolution of stars Lecture 3: The equations of stellar structure 1 Introduction and recap For our stars which are isolated, static, and spherically symmetric there are four basic equations

More information

Astronomy. Stellar Evolution

Astronomy. Stellar Evolution Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Stellar Evolution Main Sequence star changes during nuclear fusion What happens when the fuel runs out Old stars and second

More information

Evolution of Stars Population III: Population II: Population I:

Evolution of Stars Population III: Population II: Population I: Evolution of Stars 1. Formed from gas/dust cloud collapse from gravity 2. Fuse H to He on the Main Sequence. Then evolve off Main-sequence as they burn He and successive elements. 3. When nuclear fusion

More information

PAPER 68 ACCRETION DISCS

PAPER 68 ACCRETION DISCS MATHEMATICAL TRIPOS Part III Tuesday, 2 June, 2009 9:00 am to 11:00 am PAPER 68 ACCRETION DISCS There are THREE questions in total Full marks can be obtained by completing TWO questions The questions carry

More information

t KH = GM2 RL Pressure Supported Core for a Massive Star Consider a dense core supported by pressure. This core must satisfy the equation:

t KH = GM2 RL Pressure Supported Core for a Massive Star Consider a dense core supported by pressure. This core must satisfy the equation: 1 The Kelvin-Helmholtz Time The Kelvin-Helmhotz time, or t KH, is simply the cooling time for a pressure supported (i.e. in hydrostatic equilibrium), optically thick object. In other words, a pre-main

More information

Astrophysics Assignment; Kramers Opacity Law

Astrophysics Assignment; Kramers Opacity Law Astrophysics Assignment; Kramers Opacity Law Alenka Bajec August 26, 2005 CONTENTS Contents Transport of Energy 2. Radiative Transport of Energy................................. 2.. Basic Estimates......................................

More information

Physics 556 Stellar Astrophysics Prof. James Buckley

Physics 556 Stellar Astrophysics Prof. James Buckley hysics 556 Stellar Astrophysics rof. James Buckley Lecture 8 Convection and the Lane Emden Equations for Stellar Structure Reading/Homework Assignment Read sections 2.5 to 2.9 in Rose over spring break!

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information

3. Stellar radial pulsation and stability

3. Stellar radial pulsation and stability 3. Stellar radial pulsation and stability m V δ Cephei T eff spectral type v rad R = Z vdt stellar disk from ΔR 1 1.55 LD Angular diam. (mas) 1.50 1.45 1.40 res. (mas) 1.35 0.04 0.02 0.00 0.02 0.04 0.0

More information

Chapter 19: The Evolution of Stars

Chapter 19: The Evolution of Stars Chapter 19: The Evolution of Stars Why do stars evolve? (change from one state to another) Energy Generation fusion requires fuel, fuel is depleted [fig 19.2] at higher temperatures, other nuclear process

More information

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass Stellar Evolution ASTR 2110 Sarazin HR Diagram vs. Mass Trip to Conference Away on conference in the Netherlands next week. Molly Finn, TA, will be our guest lecturer Stellar Evolution ASTR 2110 Sarazin

More information

Stellar Atmospheres. University of Denver, Department of Physics and Astronomy. Physics 2052 Stellar Physics, Winter 2008.

Stellar Atmospheres. University of Denver, Department of Physics and Astronomy. Physics 2052 Stellar Physics, Winter 2008. Stellar Atmospheres University of Denver, Department of Physics and Astronomy Physics 2052 Stellar Physics, Winter 2008 By Kathy Geise Introduction A star does not have a solid surface, so the definition

More information

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG Stellar structure and evolution Pierre Hily-Blant 2017-18 April 25, 2018 IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 10 Protostars and Pre-Main-Sequence Stars 10.1. Introduction 10 Protostars

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

ASTR STELLAR PULSATION COMPONENT. Peter Wood Research School of Astronomy & Astrophysics

ASTR STELLAR PULSATION COMPONENT. Peter Wood Research School of Astronomy & Astrophysics ASTR 3007 - STELLAR PULSATION COMPONENT Peter Wood Research School of Astronomy & Astrophysics TOPICS COVERED Main types of variable stars Linear adiabatic pulsation theory => periods of pulsation Linear

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Stellar Winds. Star. v w

Stellar Winds. Star. v w Stellar Winds Star v w Stellar Winds Geoffrey V. Bicknell 1 Characteristics of stellar winds Solar wind Velocity at earth s orbit: Density: Temperature: Speed of sound: v 400 km/s n 10 7 m 3 c s T 10 5

More information

dp dr = ρgm r 2 (1) dm dt dr = 3

dp dr = ρgm r 2 (1) dm dt dr = 3 Week 5: Simple equilibrium configurations for stars Follows on closely from chapter 5 of Prialnik. Having understood gas, radiation and nuclear physics at the level necessary to have an understanding of

More information

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time:

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time: Page 1 of 18 The Norwegian University of Science and Technology Department of Physics Contact person Name: Robert Hibbins Tel: 93551, mobile: 94 82 08 34 Examination, course FY2450 Astrophysics Wednesday

More information

PAPER 58 STRUCTURE AND EVOLUTION OF STARS

PAPER 58 STRUCTURE AND EVOLUTION OF STARS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 58 STRUCTURE AND EVOLUTION OF STARS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

mc 2, (8.1) = R Sch 2R

mc 2, (8.1) = R Sch 2R Chapter 8 Spherical Accretion Accretion may be defined as the gravitational attraction of material onto a compact object. The compact object may be a black hole with a Schwarzschild radius R = 2GM /c 2

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Protostars 1. Early growth and collapse. First core and main accretion phase

Protostars 1. Early growth and collapse. First core and main accretion phase Protostars 1. First core and main accretion phase Stahler & Palla: Chapter 11.1 & 8.4.1 & Appendices F & G Early growth and collapse In a magnetized cloud undergoing contraction, the density gradually

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

More information

Convection and Other Instabilities. Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10

Convection and Other Instabilities. Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10 Convection and Other Instabilities Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10 What is convection? A highly efficient way of transporting energy in the stellar interior Highly idealized schematic.

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr.

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr. Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Stars Cengage Learning 2016 Topics for Today s Class HR Diagram Variable Stars Intrinsic Variables Cepheids

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10 Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 10 Reading/Homework Assignment Makeup class tomorrow morning at 9:00AM Read sections 2.5 to 2.9 in Rose over spring break! Stellar Structure

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

Cepheid Stars as standard candles for distance measurements

Cepheid Stars as standard candles for distance measurements Cepheid Stars as standard candles for distance measurements Philipp Engelmann (Jena) Cepheids are an essential tool for distance measurements in our galactic neighbourhood. This report provides a general

More information

EVOLUTION OF STARS: A DETAILED PICTURE

EVOLUTION OF STARS: A DETAILED PICTURE EVOLUTION OF STARS: A DETAILED PICTURE PRE-MAIN SEQUENCE PHASE CH 9: 9.1 All questions 9.1, 9.2, 9.3, 9.4 at the end of this chapter are advised PRE-PROTOSTELLAR PHASE SELF -GRAVITATIONAL COLL APSE p 6

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Introduction to the Sun

Introduction to the Sun Lecture 15 Introduction to the Sun Jiong Qiu, MSU Physics Department Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum and line emissions;

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age HW PREVIEW read 9.4-end Questions 9.9(HW#4), 9(HW#4) 9.14(HW#5), 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age Chap 11 The death of high h mass stars Contraction of Giant

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Part 4 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Ordinary Differential Equations p. 1/23 Two-point Boundary Value Problems NRiC 17. BCs specified at two

More information

Seminar: Measurement of Stellar Parameters with Asteroseismology

Seminar: Measurement of Stellar Parameters with Asteroseismology Seminar: Measurement of Stellar Parameters with Asteroseismology Author: Gal Kranjc Kušlan Mentor: dr. Andrej Prša Ljubljana, December 2017 Abstract In this seminar I introduce asteroseismology, which

More information

Observations of Pulsating Stars

Observations of Pulsating Stars Observations of Pulsating Stars Noel Richardson April 15, 2008 1 Introduction Pulsating stars are stars that show some sort of instability, often which can be called vibration or oscillation just as easily

More information

Exercise: A Toy Model for Dust-driven Winds

Exercise: A Toy Model for Dust-driven Winds Astrofysikalisk dynamik, VT 00 Exercise: A Toy Model for Dust-driven Winds Susanne Höfner Department of Physics and Astronomy, Uppsala University Cool luminous giants stars, in particular pulsating AGB

More information

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum Stellar Spectra ASTR 2120 Sarazin Solar Spectrum Solar Prominence Sep. 14, 1999 Solar Activity Due to rotation, convection, and magnetic field (Section 7.2 review) Charged Particles in Magnetic Fields

More information

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg Stellar Interiors. Hydrostatic Equilibrium 2. Mass continuity 3. Equation of State. The pressure integral 4. Stellar Energy Sources. Where does it come from? 5. Intro to Nuclear Reactions. Fission 2. Fusion

More information

Assignment 4 Solutions [Revision : 1.4]

Assignment 4 Solutions [Revision : 1.4] Assignment 4 Solutions [Revision : 1.4] Q9.7 We typically see a optical distance τ 2/3 through an opaque medium. Using τ = κρs, for constant κ = 0.03 m 2 kg 1 and ρ = 1.2 kgm 3, gives a physical distance

More information

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Jiří Kubát Astronomický ústav AV ČR Ondřejov Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. Outline 1.

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun Stellar Interiors ASTR 2110 Sarazin Interior of Sun Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring

More information

Pulsation in RR Lyrae stars

Pulsation in RR Lyrae stars University of Portsmouth Final year project Pulsation in RR Lyrae stars Composer: Jonathan Harrie Supervisor: Michael McCabe Abstract The fact that RR Lyrae are known to serve as good standard candles

More information

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

More information

PHY-105: Nuclear Reactions in Stars (continued)

PHY-105: Nuclear Reactions in Stars (continued) PHY-105: Nuclear Reactions in Stars (continued) Recall from last lecture that the nuclear energy generation rate for the PP reactions (that main reaction chains that convert hyogen to helium in stars similar

More information

Modeling stellar pulsations (mostly correctly)

Modeling stellar pulsations (mostly correctly) Modeling stellar pulsations (mostly correctly) László Molnár Konkoly Observatory, MTA CSFK, Budapest Motivations Stellar pulsations: related to stellar structure Goal: reproduce periods and amplitudes

More information

Today in Astronomy 142

Today in Astronomy 142 Normal stars: the main sequence Relationships among luminosity, mass and effective temperature Stellar evolution Changes on the main sequence Shell hydrogen fusion and subgiants Today in Astronomy 142

More information

As was pointed out earlier, mass loss dominates the stellar evolution on the AGB Nuclear fusion 10 8 M yr 1

As was pointed out earlier, mass loss dominates the stellar evolution on the AGB Nuclear fusion 10 8 M yr 1 6 Mass Loss As was pointed out earlier, mass loss dominates the stellar evolution on the AGB Nuclear fusion 10 8 M yr 1 Mass loss > 10 7 M yr 1 Historically it took a long time to appreciate the full magnitude

More information