Stellar Structure and Evolution

Size: px
Start display at page:

Download "Stellar Structure and Evolution"

Transcription

1 Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1

2 Stellar evolution overview 01/2014 Stellar Structure p.2

3 Mass ranges Evolution of stars with M = M in the ρ c -T c diagram. Mass ranges are defined by ignition of nuclear burning stages. 01/2014 Stellar Structure p.3

4 ZAMS-structure: convection convective regions in ZAMS-stars as function of mass 01/2014 Stellar Structure p.4

5 HRD of low-mass stars M = M ; from main-sequence to helium ignition; notice brightness of tip of RGB, bump location, and maximum luminosity at upper end of mass range 01/2014 Stellar Structure p.5

6 HRD of intermediate-mass stars M = M ; from main-sequence to end of helium burning 01/2014 Stellar Structure p.6

7 HRD of massive stars M = 40 and 50M from main-sequence to end of helium burning with different assumptions about convection and mass loss 01/2014 Stellar Structure p.7

8 Evolution of low-mass stars 01/2014 Stellar Structure p.8

9 ZAMS-star properties The (zero-age) main sequence is the place of stars in core hydrogen burning with mass being the parameter along it. Radius increases with mass. Zero age = homogeneous composition (idealization) Homology relations: L M 3 µ 4 and R µ ν 4 ν 1 ν+3 M ν+3 pp-chain (for M 1.5M ), R µ 0.15 M 0.5 CNO-cycle R µ 0.6 M 0.8 central values T c M 4 ν+3 P c M 2(ν 5) ν+3 ρ c M 2(ν 3) ν+3 T c ρ Central temperature, but density with mass! 2 ν 3 c 01/2014 Stellar Structure p.9

10 Brown dwarfs stars that can never be stabilized by H-burning estimate: H-burning temperature T c K; from homology (ν 4): M BD < M (T c, /T c ) 2 0.1M numerical result: M BD 0.075M first detection on grounds of 7 Li-presence 01/2014 Stellar Structure p.10

11 Normal low-mass stars M 0.8M still on MS M 0.8M (at age of universe) leave MS (turn-off) found in Globular Clusters and Halo metal-poor stars: relative overabundance of O and other α-elements w.r.t. Fe of [α/fe] M 1.5M (a few Gyr) in disk and open clusters (around solar metallicity) convective envelope below 1.2 M 1 /M 1.4 convective core above 1.1 M 2 /M 1.3 (CNO-burning!) end of MS: transition to thick thin H-shell (always CNO) 01/2014 Stellar Structure p.11

12 Low-mass stars: Evolution MS and lower RGB evolution; influence of composition 01/2014 Stellar Structure p.12

13 Evolution up the Red Giant Branch H-shell develops within former core (X < X(t = 0)) continuously deepening outer convective envelope, reaching into former core first dredge-up brings H-burning products to surface C, N, 7 Li, 12 C/ 13 C 20 approaching H-shell finally pushes back convective envelope 01/2014 Stellar Structure p.13

14 Core evolution on RGB H-shell advances at M c = L X 0 q increasing He-core mass L M 7 c (shell homology) core degenerate isothermal at T c = T sh core contracting; shell and envelope expanding small heating effect due to contracting material from shell high core density plasma-ν-emission T-inversion; hottest point slightly below shell when T max 10 8 K He-ignition 01/2014 Stellar Structure p.14

15 Horizontal Branch after He-flash: same M c same L horizontal T eff determined by total (i.e. envelope) mass distribution due to mass loss, but not understood first HB parameter: composition (metal-poor blue HB) second parameter: unknown; age or helium content? 01/2014 Stellar Structure p.15

16 Past the HB... He-shell burning (2 shells) Asymptotic Giant Branch (see intermediate-mass stars) and/or extinction of H-shell crossing of HRD at constant L white dwarf The solar evolution from ZAMS to WD 01/2014 Stellar Structure p.16

17 Evolution of intermediate-mass stars 01/2014 Stellar Structure p.17

18 General features 2.5 M/M < 8: early evolution differs from M 1.3M stars mass range 1.3 < M/M < 2.5: properties of both groups convective core and radiative envelope on the MS (for M > 1.3M ); electron scattering opacity becoming important hydrogen-burning via CNO-cycle; ǫ ρxz CNO T 18 rapid transition from MS to RGB (so-called Hertzsprung gap in HRD) helium core remains non-degenerate non-violent ignition of He at center double-shell burning phase with degenerate C/O-core 01/2014 Stellar Structure p.18

19 Hertzsprung-gap Consequences: 1. after MS, cores of intermediate-mass stars contract on thermal timescale 2. envelope expands (why?) and gets cooler 3. fast crossing of HRD gap 4. envelope convection sets in 5. limited; Hayashi-line of fully convective stars approached 6. further expansion via radius increase at almost constant T eff 01/2014 Stellar Structure p.19

20 Evolution of5m -star 01/2014 Stellar Structure p.20

21 Helium-burning phase Helium ignites under non-degenerate conditions M 3 4M ignition during RGB ascent clump (and shorter RGB!) higher mass (M > 4M ): excursion to higher T eff loop through Cepheid-strip loops depend on detailed structure end of core helium burning: helium-burning shell around C/O core and double-shell phase asymptotic return to RGB: Asymptotic Giant Branch (AGB) second dredge-up event 01/2014 Stellar Structure p.21

22 AGB-phase Double-shell phase reached for M > 0.8M ; intermediate-mass stars are prototype special features: thermal pulses, nucleosynthesis of rare elements (s-process); strong mass-loss for 0.6 < M c /M < 0.9: L/L = (M c 0.495) Thermal pulses runaway events in helium shell duration: few hundred years interpulse time: few thousand years strong luminosity variations in shell variable convective zones dynamical phase possible 01/2014 Stellar Structure p.22

23 Luminosity during TPs Thermal pulses in a 2.5M star over the whole AGB evolution 01/2014 Stellar Structure p.23

24 The post-agb HRD AGB- and post-agb evolution of a 2M star. 01/2014 Stellar Structure p.24

25 Third dredge-up AGB-stars show s-process elements (rare earths) enriched process: thermal neutron captures (no Coulomb-barrier!); s for slow (compared to β-decays) needs large n-flux Two n-sources: 13 C(α,n) 16 O and 22 Ne(α,n) 25 Mg Mechanism: TP: outer convective zone reaches He-rich layers below H-shell during pulse (intershell convection) He-layers enriched in C 01/2014 Stellar Structure p.25

26 Evolution of massive stars 01/2014 Stellar Structure p.26

27 General features ignition of carbon in non-degenerate C/O-core M 8M at M 100M vibrational instability due to ǫ-mechanism (positive feedback from nuclear reaction T-dependence) disruption extended convective cores on MS; overshooting radiation pressure; electron scattering; relatively low ρ (20M : ρ c 6.5) mass loss strong and important (WR-stars: stellar winds uncovering core during MS-phase) nuclear burning stages from H- to Si-burning Fe-cores; γ-disintegration dynamical instability γ ad > 4/3) core collapse supernova 01/2014 Stellar Structure p.27

28 Onion-skin structure of evolved massive stars 01/2014 Stellar Structure p.28

29 HRD of massive stars - I Y = 0.285, Z = 0.02 (Limongi et al. 2000): no mass loss, no overshooting, semiconvection during Heburning 01/2014 Stellar Structure p.29

30 HRD of massive stars - II Y = 0.28, Z = 0.02 (Maeder, 1981): moderate mass loss, no overshooting 01/2014 Stellar Structure p.30

31 HRD of massive stars - III Y = 0.285, Z = 0.02 (de Loore & Doom): parametrized mass loss & overshooting 01/2014 Stellar Structure p.31

32 Mass loss Observational evidence: Wolf-Rayet stars CNO-burning products at surface no red supergiants envelope lost before red blue-to-red ratios mass loss explains spectroscopy Influence: total mass core evolution HRD-evolution Inclusion: parametrized or ab-initio-calculations Interaction with effect of overshooting 01/2014 Stellar Structure p.32

33 Mass loss on MS Stellar mass at end of MS (Mowlavi et al., 1998), mass loss according to de Jager et al. + Kudritzki (solid) or 2x the same (dashed) 01/2014 Stellar Structure p.33

34 Central evolution T c vs. ρ c for massive stars during subsequent nuclear burning stages (Limongi et al.) 01/2014 Stellar Structure p.34

35 Chemical structure at end of evolution 01/2014 Stellar Structure p.35

36 Onset of core collapse After end of Si-burning, no further burning, and core contracts. Then electron caption possible: e +(Z,N) (Z 1,N +1)+ν e This implies a loss of energy and insufficient pressure to halt the contraction. In addition photodisintegration is taking place at the highest temperatures and even more energy is lost. (Liberated protons capture e n+ν e.) Finally, free-fall collapse is started, with τ ff 0.1 s, matter from the outside follows, reaches supersonice speed and a shock develops, which ultimately leads to the explosion. 01/2014 Stellar Structure p.36

37 The upper mass limit radiative acceleration g rad = 1 ρ dp rad dr = a 3ρ T3dT dr Using the radiative flux equation we reformulate this as g rad = κf rad c = κl r 4πr 2 c A star can no longer be in hydrostatic equilibrium, once g rad > g, and this is the case for the Eddington luminosity L Edd = 4πcGM κ or L Edd L = κ for electron scattering opacity (X = 0.700). The Eddington limit is reached for about 200M M M = M M 01/2014 Stellar Structure p.37

38 T G i o 01/2014 Stellar Structure p.38

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

dp dr = GM c = κl 4πcr 2

dp dr = GM c = κl 4πcr 2 RED GIANTS There is a large variety of stellar models which have a distinct core envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic

More information

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13.

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13. 6.1 THE STUCTUE OF MAIN-SEQUENCE STAS (ZG: 16.2; CO 10.6, 13.1) main-sequence phase: hydrogen core burning phase zero-age main sequence (ZAMS): homogeneous composition Scaling relations for main-sequence

More information

MAURIZIO SALARIS AGB STARS STRUCTURE 2 nd dredge up only for masses above ~4 M Early AGB Thermal pulses M=2.0M Z=0.02 Weiss & Ferguson (2009) HOT BOTTOM BURNING The minimum mass for HBB decreases with

More information

An Overview of Stellar Evolution

An Overview of Stellar Evolution Stellar Objects: An Overview of Stellar Evolution 1 An Overview of Stellar Evolution 1 the Main Sequence Zero-age Main Sequence stars (ZAMS) are those stars who arrived at the MS recently. Practically,

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Chapter 19: The Evolution of Stars

Chapter 19: The Evolution of Stars Chapter 19: The Evolution of Stars Why do stars evolve? (change from one state to another) Energy Generation fusion requires fuel, fuel is depleted [fig 19.2] at higher temperatures, other nuclear process

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN SUMMARY M> 2 SOL AR MASSES H-rich He-rich SUMMARY M> 2 SOL AR MASSES 1) evolution on thermal timescale from ~C to E: very fast : ~105-6 yr ``Hertzspung gap in H-R

More information

Sunday, May 1, AGB Stars and Massive Star Evolution

Sunday, May 1, AGB Stars and Massive Star Evolution AGB Stars and Massive Star Evolution Iben The Helium Flash (< 2 Msun) The central core becomes dense enough, that degeneracy pressure dominates over thermal pressure. Still, the core radiates energy and

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Outline I. Overview. Equations of Stellar structure and Evolution. Pre Main sequence evolution. Main sequence evolution. Post-Main sequence evolution

Outline I. Overview. Equations of Stellar structure and Evolution. Pre Main sequence evolution. Main sequence evolution. Post-Main sequence evolution 1 Outline I Overview Equations of Stellar structure and Evolution Pre Main sequence evolution Main sequence evolution Post-Main sequence evolution AGB evolution White dwarfs Super-AGB stars Massive stars

More information

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic

Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic Chapter 9 Red Giant Evolution Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic equilibrium. While the star is on the main sequence

More information

15 Post-main sequence stellar evolution

15 Post-main sequence stellar evolution 15 Post-main sequence stellar evolution After the MS, the core becomes structured in concentric shells in which H, He, C/O, etc., burn at various times. This happens together with readjustments involving

More information

Evolution Beyond the Red Giants

Evolution Beyond the Red Giants Evolution Beyond the Red Giants Interior Changes Sub-giant star 1 Post-Helium Burning What happens when there is a new core of non-burning C and O? 1. The core must contract, which increases the pressure

More information

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik)

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) 7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) In the previous chapters we have seen that the timescale of stellar evolution is set by the (slow) rate of consumption

More information

The Evolution of Low Mass Stars

The Evolution of Low Mass Stars The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

Why Do Stars Leave the Main Sequence? Running out of fuel

Why Do Stars Leave the Main Sequence? Running out of fuel Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1 Lecture 1: Introduction Literature: Onno Pols chapter 1, Prialnik chapter 1!" Goals of the Course! Understand the global characteristics of stars! Relate relevant microphysics to the global stellar characteristics!

More information

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass Stellar Evolution ASTR 2110 Sarazin HR Diagram vs. Mass Trip to Conference Away on conference in the Netherlands next week. Molly Finn, TA, will be our guest lecturer Stellar Evolution ASTR 2110 Sarazin

More information

Chapter 17: Stellar Evolution

Chapter 17: Stellar Evolution Astr 2310 Thurs. Mar. 30, 2017 Today s Topics Chapter 17: Stellar Evolution Birth of Stars and Pre Main Sequence Evolution Evolution on and off the Main Sequence Solar Mass Stars Massive Stars Low Mass

More information

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

More information

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10/17/2012 Stellar Evolution Lecture 14 NGC 7635: The Bubble Nebula (APOD) Prelim Results 9 8 7 6 5 4 3 2 1 0 Mean = 75.7 Stdev = 14.7 1 Energy

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Rubidium, zirconium, and lithium production in massive AGB stars

Rubidium, zirconium, and lithium production in massive AGB stars Rubidium, zirconium, and lithium production in massive AGB stars Sterrekundig Instituut, University of Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands E-mail: m.a.vanraai@students.uu.nl M. Lugaro

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution of low and intermediate mass stars

Stellar Evolution of low and intermediate mass stars PRECISION SPECTROSCOPY 2016 Stellar Evolution and Nucleosynthesis Stellar Evolution of low and intermediate mass stars Alejandra Romero Universidade Federal do Rio Grande do Sul Porto Alegre, Setember

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

The life of a low-mass star. Astronomy 111

The life of a low-mass star. Astronomy 111 Lecture 16: The life of a low-mass star Astronomy 111 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

AGB stars as laboratories for nuclear physics

AGB stars as laboratories for nuclear physics AGB stars as laboratories for nuclear physics John Lattanzio with Amanda Karakas 1, Lisa Elliott, Simon Campbell, Maria Lugaro 2, Carolyn Doherty Centre for Stellar and Planetary Astrophysics, Monash University,Australia

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

PAPER 58 STRUCTURE AND EVOLUTION OF STARS

PAPER 58 STRUCTURE AND EVOLUTION OF STARS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 58 STRUCTURE AND EVOLUTION OF STARS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution Late Stages of Stellar Evolution The star enters the Asymptotic Giant Branch with an active helium shell burning and an almost dormant hydrogen shell Again the stars size and luminosity increase, leading

More information

Homologous Stellar Models and Polytropes

Homologous Stellar Models and Polytropes Homologous Stellar Models and Polytropes Main Sequence Stars Stellar Evolution Tracks and Hertzsprung-Russell Diagram Star Formation and Pre-Main Sequence Contraction Main Sequence Star Characteristics

More information

Chapter 8: Simple Stellar Populations

Chapter 8: Simple Stellar Populations Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Astronomy II (ASTR1020) Exam 3 Test No. 3D

Astronomy II (ASTR1020) Exam 3 Test No. 3D Astronomy II (ASTR1020) Exam 3 Test No. 3D 23 October 2001 The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don t forget to write your name and the Test

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Introduction to nucleosynthesis in asymptotic giant branch stars

Introduction to nucleosynthesis in asymptotic giant branch stars Introduction to nucleosynthesis in asymptotic giant branch stars Amanda Karakas 1 and John Lattanzio 2 1) Research School of Astronomy & Astrophysics Mt. Stromlo Observatory 2) School of Mathematical Sciences,

More information

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

More information

Selected Topics in Nuclear Astrophysics

Selected Topics in Nuclear Astrophysics Selected Topics in Nuclear Astrophysics Edward Brown Overview I. A brief primer on stellar physics II. Neutron stars and nuclear physics III. Observing neutron stars in the wild Basics of stellar physics

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Evolution and nucleosynthesis of AGB stars

Evolution and nucleosynthesis of AGB stars Evolution and nucleosynthesis of AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars; evolution prior to the AGB

More information

Evolution of High Mass Stars

Evolution of High Mass Stars Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star.

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star. Chapter 14 Stellar Evolution I I. Introduction Stars evolve in the sense that they pass through different stages of a stellar life cycle that is measured in billions of years. The longer the amount of

More information

Evolution of Galaxies: Review of Stellar Evolution

Evolution of Galaxies: Review of Stellar Evolution Evolution of Galaxies: Review of Stellar Evolution J.Köppen joachim.koppen@astro.unistra.fr http://astro.u-strasbg.fr/~koppen/jkhome.html Star = self-gravitating ball of gas powered by thermonuclear fusion

More information

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Key Ideas HR Diagrams of Star Clusters Ages from the Main Sequence Turn-off Open Clusters Young clusters of ~1000 stars Blue Main-Sequence

More information

LECTURE 15 Jerome Fang -

LECTURE 15 Jerome Fang - LECTURE 15 Jerome Fang - Making heavy elements in low-mass stars: the s-process (review) White dwarfs: diamonds in the sky Evolution of high-mass stars (M > 8 M ); post-helium burning fusion processes

More information

Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star. Chapters 20 and 21 Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

More information

Stellar structure and evolution

Stellar structure and evolution Stellar structure and evolution Ulrike Heiter Uppsala University July 2012, Nordic-Baltic Summer School Outline 1. The lives of stars Overview of stellar evolution 2. Physics of stellar evolution Stellar

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle Sponsored by the Chemistry and Physics Societies of the Open University S381 The Energetic Universe Block 2 Nucleosynthesis and Stellar Remnants Paul Ruffle Visiting Research Fellow Astrophysics Research

More information

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Stars + Galaxies: Back of the Envelope Properties. David Spergel Stars + Galaxies: Back of the Envelope Properties David Spergel Free-fall time (1) r = GM r 2 (2) r t = GM 2 r 2 (3) t free fall r3 GM 1 Gρ Free-fall time for neutron star is milliseconds (characteristic

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23 Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered

More information

Chapter 6: Stellar Evolution (part 1)

Chapter 6: Stellar Evolution (part 1) Chapter 6: Stellar Evolution (part 1) With the understanding of the basic physical processes in stars, we now proceed to study their evolution. In particular, we will focus on discussing how such processes

More information

Life of a High-Mass Stars

Life of a High-Mass Stars Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

STELLAR POPULATIONS. Erasmus Mundus Padova - Italy

STELLAR POPULATIONS. Erasmus Mundus Padova - Italy STELLAR POPULATIONS Erasmus Mundus Padova - Italy 2010-2011 Prof. Antonio Bianchini Dipartimento di Astronomia Università di Padova antonio.bianchini@unipd.it THE HR DIAGRAM - 5b Notes about stellar evolution

More information

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation,

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation, Astronomy 715 Final Exam Solutions Question 1 (i). The equation of hydrostatic equilibrium is dp dr GM r r 2 ρ. (1) This corresponds to the scaling P M R ρ, (2) R2 where P and rho represent the central

More information

Stellar Midlife. A. Main Sequence Lifetimes. (1b) Lifetime of Sun. Stellar Evolution Part II. A. Main Sequence Lifetimes. B. Giants and Supergiants

Stellar Midlife. A. Main Sequence Lifetimes. (1b) Lifetime of Sun. Stellar Evolution Part II. A. Main Sequence Lifetimes. B. Giants and Supergiants Stellar Evolution Part II 1 Stellar Midlife 2 Stellar Midlife A. Main Sequence Lifetimes B. Giants and Supergiants C. Variables (Cepheids) Dr. Bill Pezzaglia Updated Oct 9, 2006 A. Main Sequence Lifetimes

More information

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars. Dr Ken Rice. Discovering Astronomy G High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Stars: Their Life and Afterlife

Stars: Their Life and Afterlife The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses I. Preliminaries The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries I. Preliminaries Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available.

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available. Astronomy 210 Outline This Class (Lecture 31): Stars: Spectra and the H-R Diagram Next Class: Life and Death of the Sun Solar Observing & HW9 due April 15 th Stardial 2 is available. The Mosquito dilemma

More information

ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

The Giant Branches. Stellar evolution of RGB and AGB stars. Importance, features, uncertainties

The Giant Branches. Stellar evolution of RGB and AGB stars. Importance, features, uncertainties The Giant Branches Stellar evolution of RGB and AGB stars Importance, features, uncertainties Achim Weiss (Max-Planck-Institut für Astrophysik, Garching) M5 (Rosenberg et al. 2000) Giant Branches MACHO

More information

LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS.

LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS. LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS http://apod.nasa.gov/apod/astropix.html White Dwarfs Low mass stars are unable to reach high enough temperatures to ignite elements

More information

Instructor: Juhan Frank. Identify the correct answers by placing a check between the brackets ë ë.

Instructor: Juhan Frank. Identify the correct answers by placing a check between the brackets ë ë. Name:... ASTRONOMY 1102 í 1 Instructor: Juhan Frank Third Test ífall 1999í Friday November 12 Part I í Multiple Choice questions è3 ptsèquestion; total = 60 ptsè Identify the correct answers by placing

More information

PHYS 1401: Descriptive Astronomy Notes: Chapter 12

PHYS 1401: Descriptive Astronomy Notes: Chapter 12 CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

More information

A more detailed look at the opacities for enriched carbon and oxygen mixtures

A more detailed look at the opacities for enriched carbon and oxygen mixtures Mon. Not. R. Astron. Soc. 348, 201 206 (2004) A more detailed look at the opacities for enriched carbon and oxygen mixtures J. J. Eldridge and C. A. Tout Institute of Astronomy, Madingly Road, Cambridge

More information