Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2.

Size: px
Start display at page:

Download "Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2."

Transcription

1 CHM 5423 Atmospheric Chemistry Problem Set 1 Due date: Thursday, September 10 th. Do the following problems. Show your work. Data for Titan, a moon of Saturn, is given below, and may be used to answer problems 1 and 2. M = 1.35 x kg r = km P s = 1.45 bar T s = 95. K T ex = 150. K (mass of Titan) (radius of Titan) (surface pressure of Titan) (surface temperature of Titan) (temperature of exophere of Titan) Because of the presence of liquid methane (CH 4) at the surface of Titan, the percentage of methane in the atmosphere varies from %, in a manner similar to the variation of water in the atmosphere of the Earth. Virtually all of the atmosphere of Titan is molecular nitrogen (N 2), with a small percentage (0.10 %) of molecular hydrogen (H 2) and trace amounts of other gases. 1) Using the above information, find the amount of molecular hydrogen (H 2) present in the atmosphere of Titan at surface level. Give your answer in: a) Partial pressure of H 2 (in units of bar) b) Number density of hydrogen molecules (in units of molecules/cm 3 ) c) Density of hydrogen (in units of g/l) 2) The following question concerns the escape of molecules from the atmosphere of Titan. a) Find v esc and v rms for the following molecules: H 2, CH 4, and N 2. Use T = 150. K (the current average temperature in the exosphere of Titan) in your calculations. b) Using your answers in a, find the value for the ratio v esc/v rms for H 2, CH 4, and N 2. Based on the results, explain why the atmosphere of Titan contains relatively little H 2, but a lot of N 2. 3) One indirect piece of evidence indicating that free molecular oxygen was uncommon in the early atmosphere of the Earth is the presence of pyrites (metal sulfides) in mineral samples that have been dated several billion years old. Such compounds are thermodynamically unstable in the presence of oxygen. More recent mineral samples have iron oxides present, but usually do not contain iron pyrite. a) Using the information below, find the equilibrium constant for the process 2 FeS 2(s) + O 2(g) 2 FeO(s) + 4 S(s) (3.1) b) Based on your answer in a, estimate the partial pressure of O 2(g) in the atmosphere at which iron pyrite (FeS 2) becomes thermodynamically unstable relative to iron II oxide (FeO). What does this imply about the content of oxygen in the early atmosphere of the Earth? (Note that there are other factors involved, including the rate of reaction 3.1 and the temperature dependence of the equilibrium constant, but the argument based on the thermodynamics of the reaction remains valid). Substance H (kj/mol) G (kj/mol) S (J/mol K) FeO(s) FeS 2(s) O 2(g) S(s)

2 4) At what altitude (in km) is the pressure of the Earth's atmosphere equal to the surface pressure on Mars ( bar)? Use H = 7.4 km for the scale height for Earth. 5) Simple calculations can often tell us interesting information about planetary atmospheres. a) Based on the information in the Chapter 1 handout, find the total mass of the atmosphere of Earth and Venus. Compare the result obtained for the Earth to the value given in the Chapter 1 notes. (HINT: The force exerted by a mass m in the gravitational field of a planet is F = mg s, where m is mass and G s is the gravitational constant for the planet. Force is also related to pressure by the relationship p = F/A, where A is area.) b) Use your result from a and the information on atmospheric composition to find the total mass of argon in the atmosphere of the Earth and Venus. Comment on your results. 6) For an adiabatic expansion of an ideal gas, it may be shown that (T i/t f) = (p i/p f) -1 (6.1) where = C p/c v is the ratio of the constant pressure heat capacity to the constant volume heat capacity of the gas. Eq 6.1 assumes that over the temperature range of the expansion is constant. a) According to the barometric equation p z = p 0 exp(-z/h) (6.2) where p z is atmospheric pressure at altitude z and p 0 is atmospheric pressure at some reference altitude (taken to be sea level for the Earth). By combining eq 6.1 and 6.2 find an expression for T z, the temperature for an air parcel initially at sea level and temperature T 0 after it rises to an altitude z, and assuming that it expands adiabatically as it rises. Give your expression in terms of p 0, T 0,, H, z, and/or other constants. (HINT: Let T 0 and p 0 be the temperature and pressure of the air at sea level, where z = 0. Then T f and p f are equivalent to T z and p z, the temperature and pressure at altitude z.) b) Using the following values for the terms in your expression for T z, find the value for T z - T 0 for the case z = 1.0 km. Note that this value for T z - T 0 corresponds approximately to the adiabatic lapse rate for dry air in the Earth's atmosphere. = 1.40 H = 7.4 km T 0 = 288. K p 0 = 1.00 atm

3 Solutions 1) a) p(h 2) = (0.001) (1.45 bar) = bar ( = 145. Pa) b) pv = nrt, and so (n/v) = p/rt Multiplying by N A (Avogadro s number) gives nn A/V = N/V = pn A/RT So N = ( bar) (6.022 x molecule/mol) 1. L = 1.11 x molecule/cm 3 V ( L bar/mol K) (95. K) cm 3 c) D = 1.11 x molecule cm 3 1 mol 2.02 g 10 6 g = 3.71 x 10-4 g/l cm 3 1. L x molecule mol g 2) a+b) H 2, M = 2.02 g/mol CH 4, M = g/mol N 2, M = g/mol = 371. g/l v esc = (2M pg/r p) 1/2 = [2 (1.35 x kg) (6.67 x N. m 2 /kg 2 ) / x 10 3 m)] 1/2 = m/s v rms = (3RT/M) 1/2 R = J/mol. K T = 320. K f = v esc/v rms gas v rms (m/s) v esc/v rms H CH N The value of v esc/v rms for H 2 is large enough that H 2 in the atmosphere of Titan quickly escapes into space. Any hydrogen found there is likely of recent origin (perhaps formed photochemically or from venting of underground sources of H 2). The value of v esc/v rms for N 2 is small enough that most of the N 2 originally present in the atmosphere of Titan is likely still there. The value of v esc/v rms for CH 4 is such that some of the methane originally present is likely still in the atmosphere. The presence of liquid methane at the surface of Titan would also slow the escape of methane from the atmosphere. Volcanos are also believed to inject new methane into the atmosphere. 3) a) ln K = - G rxn/rt G rxn = [2 G f(feo(s)) + 4 G f(s(s))] - [2 G f(fes 2(s)) + G f(o 2(g))] [ 2( kj/mol) ] - [ 2( kj/mol) ] = kj/mol ln K = ( J/mol) = K = e = 2.5 x (8.314 J/mol K)(298. K) b) Since everything in the reaction other than O 2 is a solid K = 1/p(O 2) p(o 2) = 1/K = 1/2.5 x = 4. x bar

4 This applies at the temperature of the thermochemical data (298. K). While the value of K might change with temperature, and there is no information on the kinetics of the reaction, thermodynamically FeO(s) is far more stable than FeS 2(s), and would be expected to form if there was any significant partial pressure of O 2(g) in the atmosphere. 4) p z = p 0 exp(-z/h) and so (p z/p 0) = exp(-z/h) ln(p z/p 0) = - z/h z = - H ln(p z/p 0) = H ln(p 0/p z) For p z = bar, p 0 = bar z = (7.4 km) ln(1.0/0.0060) = 38. km 5) a) F = mg s where m = mass G s = surface gravity of planet But p = F/A where p = pressure A = area So pa = mg s m = pa/g s Now A for a sphere is A = 4 r 2, and so m = 4 r p 2 p/g s For Earth m = 4 (6380. x 10 3 m) 2 (1.0 x 10 5 N/m 2 ) = 5.23 x kg (vs 5.14 x kg in Table 1.1) (9.78 m/s 2 ) For Venus m = 4 (6050. x 10 3 m) 2 (92. x 10 5 N/m 2 ) = 4.77 x kg (8.87 m/s 2 ) b) The mass of argon in a planetary atmosphere is m(ar) = fraction of Ar (by number) M(Ar) m(atmosphere) M ave where Mave is the average molecular mass of the atmosphere. Note we need the second factor above because we usually give composition by percent (or parts per million) by number, not by mass. M(Ar) = g/mol M ave(earth) = g/mol (Table 1.1, Chapter 1) M ave(venus) = g/mol (using 96.5 % CO 2, 3.5 % N 2) So mass argon for Earth = (0.0093) (39.95/28.96)(5.23 x kg) = 6.71 x kg So mass argon for Venus = (70. x 10-6 ) (39.95/43.45)(4.77 x kg) = 3.07 x kg So the Earth and Venus have roughly equal masses of argon. Since argon is not expected to escape from either atmosphere, that suggests the argon that is present has a similar origin.

5 6) T i = T 0 T f = T z p i = p 0 p f = p z = p 0 exp(-z/h) And so (T 0/T i) = (p 0/p z) -1 Invert (T z/t 0) = (p z/p 0) -1 = (e -z/h ) -1 T z = T 0 (e -z/h ) -1 or T z = T 0 (e -z/h ) -1/ For z = 1.0 km T 0 = 288. K H = 7.4 km = 1.40 T z = (288. K) (e -1.0/7.4 ) 0.4/1.4 = K T = K K = K So the adiabatic lapse rate for dry air at sea level is approximately 11 K/km.

"Mathematics is a language in which one cannot express unprecise or nebulous thoughts." - Henri Poincaire

Mathematics is a language in which one cannot express unprecise or nebulous thoughts. - Henri Poincaire CHM 3400 Problem Set 1 Due date: Tuesday, September 2 nd Do all of the following problems. Show your work. (NOTE: Conversion factors between different pressure units are given in Table 0.1 of Atkins. Values

More information

CHAPTER 1 GENERAL PROPERTIES OF THE ATMOSPHERE OF THE EARTH AND OTHER PLANETS

CHAPTER 1 GENERAL PROPERTIES OF THE ATMOSPHERE OF THE EARTH AND OTHER PLANETS CHAPTER 1 GENERAL PROPERTIES OF THE ATMOSPHERE OF THE EARTH AND OTHER PLANETS To understand the effects of pollutants on the Earth's atmosphere we must first understand the chemical and physical processes

More information

There are eight problems on the exam. Do all of the problems. Show your work

There are eight problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry Final Exam April 23, 2012 There are eight problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

CHAPTER 9 AVOGADRO S NUMBER

CHAPTER 9 AVOGADRO S NUMBER CHAPTER 9 AVOGADRO S NUMBER Just like we count in dozens, gross or ream, we count atoms in groups because of their minute sizes. Like in finding the number of atoms in12.01g of C, Experiments have shown

More information

Gases and Kinetic Molecular Theory

Gases and Kinetic Molecular Theory 1 Gases and Kinetic Molecular Theory 1 CHAPTER GOALS 1. Comparison of Solids, Liquids, and Gases. Composition of the Atmosphere and Some Common Properties of Gases 3. Pressure 4. Boyle s Law: The Volume-Pressure

More information

Terrestrial World Atmospheres

Terrestrial World Atmospheres 1 Terrestrial World Atmospheres Some terrestrial worlds have atmospheres. Others don't. Venus and Mars have thick/thin atmospheres respectively made mostly of Carbon Dioxide. Earth is the oddball with

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year)

AT 620 Notes. These notes were prepared by Prof. Steven A. Rutledge. (and adapted slightly for the Fall 2009 course, and again slightly for this year) AT 620 Notes These notes were prepared by Prof. Steven A. Rutledge (and adapted slightly for the Fall 2009 course, and again slightly for this year) You may access Prof. Cotton s notes, password cloud9

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC C PROBLEMS 1) This problem is a straightforward application of the combined gas law. In this case, the temperature remains the same, so we can eliminate it from the

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001 Chemistry 12, Exam III, Form A, April 4, 2001 In all questions involving gases, assume that the ideal-gas laws hold, unless the question specifically refers to the non-ideal behavior. 1. It takes 21.3

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics Atmospheric Composition What is the composition of the Earth s atmosphere? Gaseous Constituents of the Earth s atmosphere (dry air) Constituent Molecular Weight Fractional Concentration

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

There are six problems on the exam. Do all of the problems. Show your work

There are six problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry First Hour Exam There are six problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314 L. bar/mole.

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION 1 CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION The objective of atmospheric chemistry is to understand the factors that control the concentrations of chemical species in the atmosphere. In this book

More information

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or Chapter 10 Chemical Quantities or 1 2 How you measure how much? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters. We count pieces in MOLES.

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt R = 0.08206 L atm/mol K 1

More information

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Videos 1. Crash course Partial pressures:   YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: Videos 1. Crash course Partial pressures: https://youtu.be/jbqtqcunyza?list=pl8dpuualjxtphzz YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: https://youtu.be/tlrzafu_9kg?list=pl8dpuualjxtph zzyuwy6fyeax9mqq8ogr

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics R. Wordsworth February 12, 2015 1 Objectives Derive hydrostatic equation Derive dry and moist adiabats Understand how the theory relates to observed properties of real atmospheres

More information

TEST 1 APCH 211 (2012) Review, Solutions & Feedback

TEST 1 APCH 211 (2012) Review, Solutions & Feedback TEST 1 APCH 11 (01) Review, Solutions & Feedback Question 1 What is the concentration of nitrogen in the atmosphere (0 C and 1 atm) in g/l? N in the atmosphere ~ 78% Gas concentration unit s means that

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94 CHAPTER 5GASES 1,,8,9,11,1,14,17,19,0,,4,6,8,0,,8,40,4,45,46,51,5,55,57,6,6,80,8,88,94 5.1 a) The volume of the liquid remains constant, but the volume of the gas increases to the volume of the larger

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

PTYS 214 Spring Announcements. Next midterm 3/1!

PTYS 214 Spring Announcements. Next midterm 3/1! PTYS 214 Spring 2018 Announcements Next midterm 3/1! 1 Previously Solar flux decreases as radiation spreads out away from the Sun Planets are exposed to some small amount of the total solar radiation A

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity.

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity. Institute of Applied Physics University of Bern Outline A planetary atmosphere consists of different gases hold to the planet by gravity The laws of thermodynamics hold structure as vertical coordinate

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

AP Chemistry Unit 5 - Gases

AP Chemistry Unit 5 - Gases Common Gases at Room Temperature AP Chemistry Unit 5 - Gases Know these! HCN toxic slight odor of almonds HS toxic odor of rotten eggs CO toxic odorless CO odorless CH4 methane odorless, flammable CH4

More information

Chapter 10 Liquids and Solids

Chapter 10 Liquids and Solids The Three States (Phases) of Matter Chapter 10 Liquids and Solids The Phase Changes of Water Changes of State Evaporation and Condensation Enthalpy (Heat) of Vaporization, H vap The energy needed to vaporize

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37 o C? a) 26 atm b) 4.1 atm c) 19,600 atm d) 84 atm

5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37 o C? a) 26 atm b) 4.1 atm c) 19,600 atm d) 84 atm Test bank chapter (5) Choose the most correct answer 1. A sample of oxygen occupies 47.2 liters under a pressure of 1240 torr at 25 o C. What volume would it occupy at 25 o C if the pressure were decreased

More information

1 Two Speeds that Determine Retention of an Atmosphere

1 Two Speeds that Determine Retention of an Atmosphere General Astronomy (29:61) Fall 2012 Lecture 26 Notes, November 2, 2012 1 Two Speeds that Determine Retention of an Atmosphere We can use some of the physics we learned earlier in the semester. In fact,

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

Oxidation ReductionReactions. Hanson Activity 4 4 2/13/2013. What is the oxidation number the pure element S 8? Conclusion of ch 4

Oxidation ReductionReactions. Hanson Activity 4 4 2/13/2013. What is the oxidation number the pure element S 8? Conclusion of ch 4 Oxidation ReductionReactions Conclusion of ch 4 Hanson Activity 4 4 Discuss Key Questions 1 4 of Activity 4 4, page 68, with your partner for five minutes. The clicker quiz will commence at 8:50 AM sharp

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J.

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J. FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J. Schwarcz Name: Associate Examiner: A. Fenster INSTRUCTIONS 1. Enter your

More information

What is a Mole? An Animal or What?

What is a Mole? An Animal or What? Unit 7: (Chapter 9) Chemical Quantities What is a Mole? An Animal or What? Section 9.1 The Mole: A Measurement of Matter Describe how Avogadro s number is related to a mole of any substance. Calculate

More information

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP Ch. 10 Gases and the Ideal Gas Law(s) Chem 210 Jasperse Ch. 10 Handouts 1 10.1 The Atmosphere 1. Earth surrounded by gas 2. Major components: Nitrogen 78% Oxygen 21% Miscellaneous: All

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases Chapter 10 part 1: Ideal Gases Read: BLB 10.1 5 HW: BLB 10.2,19a,b, 23, 26, 30, 39, 41, 45, 49 Sup 10:1 6 Know: What is pressure? Gases Which elements exist as gases at ordinary temperature and pressure?

More information

Class XI Chapter 5 States of Matter Chemistry

Class XI Chapter 5 States of Matter Chemistry Question 5.1: What will be the minimum pressure required to compress 500 dm 3 of air at 1 bar to 200 dm 3 at 30 C? Initial pressure, p 1 = 1 bar Initial volume, V 1 = 500 dm 3 Final volume, V 2 = 200 dm

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature.

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature. CHEM/TOX 336 Winter 2004 Lecture 2 Review Atmospheric Chemistry Gas Chemistry Review The Gaseous State: our atmosphere consists of gases Confined only by gravity force of gas on a unit area is due to the

More information

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways: Chapter 10 Notes CHAPTER 10 10.1 The Mole: A Measurement of Matter Matter is measured in one of three ways: Chemical Quantities Mole SI unit that measures the amount of a substance A mole of a substance

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Chapter 5. Mole Concept. Table of Contents

Chapter 5. Mole Concept. Table of Contents Mole Concept Table of Contents 1. Mole 2. Avagadro s Number 3. Molar Mass 4. Molar Volume of Gases 5. The Mole Concept Calculations 6. Several Types of Problems Mole Concept Warm up List common units used

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Chapter 11. Molecular Composition of Gases

Chapter 11. Molecular Composition of Gases Chapter 11 Molecular Composition of Gases PART 1 Volume-Mass Relationships of Gases Avogadro s Law Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Recall

More information

Chemical Thermodynamics : Georg Duesberg

Chemical Thermodynamics : Georg Duesberg The Properties of Gases Kinetic gas theory Maxwell Boltzman distribution, Collisions Real (non-ideal) gases fugacity, Joule Thomson effect Mixtures of gases Entropy, Chemical Potential Liquid Solutions

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Ring of Fire Boundaries of plates traced by Earthquakes and Volcanos Plate Motions Measurements of

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

f N 2 O* + M N 2 O + M

f N 2 O* + M N 2 O + M CHM 5423 Atmospheric Chemistry Problem Set 2 Due date: Thursday, February 7 th. Do the following problems. Show your work. 1) Before the development of lasers, atomic mercury lamps were a common source

More information

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201 General Chemistry and Laboratory I Unit #3 Take Home Test Due April 8, 2019 Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201

More information

AST111 PROBLEM SET 6 SOLUTIONS

AST111 PROBLEM SET 6 SOLUTIONS AST111 PROBLEM SET 6 SOLUTIONS Homework problems 1. Ideal gases in pressure balance Consider a parcel of molecular hydrogen at a temperature of 100 K in proximity to a parcel of ionized hydrogen at a temperature

More information

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations:

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations: CHM 3400 Problem Set 5 Due date: Tuesday, October 7 th Do all of the following problems. Show your work. "The first essential in chemistry is that you should perform practical work and conduct experiments,

More information

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Chapter 10 Problems Problems

More information

T(K) k(cm 3 /molecule s) 7.37 x x x x x 10-12

T(K) k(cm 3 /molecule s) 7.37 x x x x x 10-12 CHM 5423 Atmospheric Chemistry Problem Set 3 Due date: Tuesday, February 19 th. The first hour exam is on Thursday, February 21 st. It will cover material from the first four handouts for the class. Do

More information

Proportions in Chemical Compounds

Proportions in Chemical Compounds Chapter 6 Proportions in Chemical Compounds Section 6.1 Chemical Proportions and Percentage Composition Solutions for Practice Problems Student Edition page 260 1. Practice Problem (page 260) Calculate

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

ENVI.2030L - The Solar System

ENVI.2030L - The Solar System I. Physical characteristics of the solar system NAME ENVI.2030L - The Solar System The solar system consists of the sun and 9 planets. Table 2 lists a number of the properties and characteristics of the

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions

CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions Easier problems 1) Calculate the maximum wavelength of radiation required to promote dissociation of a) a dinitrogen molecule (127nm) b) a

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems For Review 7. a. At constant temperature, the average kinetic energy of the He gas sample will equal the average kinetic energy of the Cl 2 gas sample. In order for the average kinetic energies to be the

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter Chapter 10 Chemical Quantities 101 The Mole: A Measurement of Matter 102 Mole-Mass and Mole- 103 Percent Composition and Chemical Formulas 1 http://wwwbrightstormcom/science/chem istry/chemical-reactions/molar-mass/

More information

Tutorial 1 (not important for 2015)

Tutorial 1 (not important for 2015) Tutorial 1 (not important for 2015) 1 st Law of thermodynamics and other basic concepts Do No. 5 (05-03-2015) 1. One mole of an ideal gas is allowed to expand against a piston which supports 41 atm pressures.

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe CHEMISTRY XL-14A GASES August 6, 2011 Robert Iafe Chemistry in the News 2 Polymer nicotine trap is composed of a porphyrin derivative (black), in which amide pincers (green) are attached to the zinc (violet)

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Some Basic Concepts of Chemistry

Some Basic Concepts of Chemistry 0 Some Basic Concepts of Chemistry Chapter 0: Some Basic Concept of Chemistry Mass of solute 000. Molarity (M) Molar mass volume(ml).4 000 40 500 0. mol L 3. (A) g atom of nitrogen 8 g (B) 6.03 0 3 atoms

More information

CHEMISTRY 102A Spring 2012 Hour Exam II. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102A Spring 2012 Hour Exam II. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: . My answers for this Chemistry 0 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E. A sample of LSD (D-lysergic acid diethylamide, C 4 H 30

More information