There are five problems on the exam. Do all of the problems. Show your work

Size: px
Start display at page:

Download "There are five problems on the exam. Do all of the problems. Show your work"

Transcription

1 CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = L atm/mole K N A = x R = L bar/mole K 1 L atm = J R = J/mole K 1 atm = bar = x 10 5 N/m 2 1 atm = 760 torr 1. (20 points) Thermodynamic data for several pure chemical substances are given below (at T =298.0 K), and may be of use in doing the following problem. Substance H f (kj/mol) G f (kj/mol) S (J/mol K) C p,m (J/mol K) CuO(s) Cu 2 O(s) O 2 (g) a) What are the values for G rxn, H rxn, and S rxn (at T = K) for the following reaction? 2 Cu 2 O(s) + O 2 (g) 4 CuO(s) b) What is the value of S for CuO(s) at T = 373. K? 2. (16 points) Data for the vapor pressure of a pure liquid at several temperatures are given below. A plot of ln(p) vs 1/T is also given, along with the formula for the line that best fits the data in the plot. T (K) p (torr) T (K) p (torr) Plot of ln(p) vs 1/T 6.2 ln(p) /T (K-1) ln(p) = ( K) T Based on the above information, answer the following questions. a) What is H vap, the enthalpy of vaporization for the liquid? Give your final answer in units of kj/mol. b) What is T vap, the normal boiling point for the liquid? Give your final answer in units of C.

2 3. (18 points) An insulated container initially holds 25.0 g of liquid water (H 2 O, M = g/mol) at a temperature T = 20.0 C. An additional 40.0 g of liquid water at a temperature T = 50.0 C is added to the container, and the water in the container is allowed to come to equilibrium. Note that the constant pressure molar heat capacity of H 2 O( ) is C p,m = 75.3 J/mol K, and is constant for the temperature range of this problem. Find the following. a) The final temperature of the water inside the container. Give your final answer in C. b) The value for S for the process. Give your final answer in units of J/K. 4. (20 points) The vapor pressure of pure water (H 2 O, M = g/mol) at T = 30.0 C is torr. a) When g of a nonvolatile and nonionizing solute is dissolved in g of water, the vapor pressure of the solution, again measured at 30.0 C, is torr lower than the vapor pressure of pure water at the same temperature. What is M, the molecular mass of the solute? b) What would the concentration of a nonvolative solute in water need to be for it to generate an osmotic pressure of torr at T = 30.0 C? 5. (26 points) A phase diagram for two volatile liquids A and B is given below, and may be used to answer the following questions. Note that in this problem p = 1.00atm. a) What are the values for T A (normal boiling point of A) and T B (normal boiling point of B). b) Does the above solution form any azeotropes? If your answer is yes, give the location (temperature and mole fraction) of each azeotrope that forms. c) A closed system contains a solution of A and B at low temperature, with n A = 3.00 moles and n B = 2.00 moles (and so Z A = 0.600). The solution is slowly heated. At what temperature (in C) will the solution first begin to boil. d) We continue heating the solution until we reach a temperature T = 70.0 C. At this point, X A = and Y A = How many moles of A are in the vapor phase at this temperature?

3 Solutions. 1) a) G rxn = [ 4 G f (CuO(s)) ] [ 2 G f (Cu 2 O(s)) + G f (O 2 (g)) ] = [4 ( ) ] [ 2 ( ) + 1 (0.0) ] = kj/mol H rxn = [ 4 H f (CuO(s)) ] [ 2 H f (Cu 2 O(s)) + H f(o 2 (g)) ] = [ 4 ( ) ] [ 2 ( ) + 1 (0.0) ] = kj/mol S rxn = [ 4 S (CuO(s)) ] [ 2 S (Cu 2 O(s)) + S (O 2 (g)) ] = [ 4 (42.63) ] [ 2 (93.14) + 1 (205.14) ] = J/mol K b) S (CuO(s, 373. K)) = S (CuO(s, 298 K)) (C p,m (CuO(s))/T) dt If we assume C p,m is constant over this temperature range, then S (CuO(s, 373. K)) = S (CuO(s, 298 K)) + C p,m (CuO(s)) ln(373/298) = J/mol K + (42.30 J/mol K) ln(373/298) = J/mol K J/mol K = J/mol K 2) a) H vap = - (slope) R = - ( K) ( J/mol K) = kj/mol b) ln(p) = ( K) T T = ( K) (ln(p) At the normal boiling point p = 760. Torr, and so T = ( K) = K = 88.2 C ln(760) ) a) We can think of the process occurring as follows Initial Final 25.0 g H 2 O, T = 20.0 C 65.0 g H 2 O, T = T f 40.0 g H 2 O, T = 50.0 C The container is insulated, and so q = 0. That means the heat gained by the 25.0 g of H 2 O at 20.0 C is equal in magnitude to the heat lost from the 40.0 g of H 2 O at T = 50.0 C. Since the amounts of water are given in grams, it is convenient (but not necessary) to use the specific heat of water (s, units of J/g K) rather than the molar heat capacity. s = (75.3 J/mol K) (1. mol/18.02 g) = 4.18 J/g K Finally, since the size of a degree K and a degree C are the same, we can also say s = 4.18 J/g K = 4.18 J/g C

4 We now proceed to do the problem. q = 0 = (25.0) s (T f ) + (40.0) s (T f ) (we have left out the units for convenience) We can divide both sides of this equation by s, to get 0 = (25.0) (T f ) + (40.0) (T f ) 0 = 25.0 T f T f = 65.0 T f T f = = C 65.0 b) Divide the process into two steps step 1 - heat the 25.0 g of water from 20.0 C to C step 2 - cool the 40.0 g of water from 50.0 C to C We can use the result from problem problem 1b, which also involved a constant pressure change of temperature for a substance with a constant value for heat capacity. So S 1 = (25.0 g) (4.18 J/g K) ln( K/ K) = J/K S 2 = (40.0 g) (4.18 J/g K) ln( K/ K) = J/K S = S 1 + S 2 = J/K + ( J/K) = 0.30 J/K 4) a) M = m/n. Since we know m, we need to find n (the number of moles of solute). For vapor pressure lowering we may say p = X B p A * where X B is the mole fraction of solute particles and p A * is the vapor pressure of the pure solvent. X B = p = torr = p A * torr But X B = n B n B (n A + n B ) n A So But n B = X B n A n A = g 1 mol = mol g n B = ( )(11.10 mol) = mol M B = g = 84. g/mol mol

5 b) For osmotic pressure, = [B]RT So [B] = = ( torr)(1 atm/760 torr) = 1.68 x 10-3 mol/l RT ( L atm/mol K)(303.2 K) 5) a) T A * = 60.0 C T B * = 81.5 C b) There are no azeotropes present c) For Z A = 0.600, boiling begins at T = 64.0 C d) From the lever rule n = Y A - Z A = ( ) = n g Z A - X A ( ) And so n = n g But n + n g = (0.425 n g ) + n g = n g = n total = 5.00 mol n g = 5.00 mol = 3.51 mol And so the number of moles of A in the vapor phase is n A,g = Y A n g = (0.724)(3.51 mol) = 2.54 mol

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

There are eight problems on the exam. Do all of the problems. Show your work

There are eight problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry Final Exam April 23, 2012 There are eight problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Chapter 12 Intermolecular Forces of Attraction

Chapter 12 Intermolecular Forces of Attraction Chapter 12 Intermolecular Forces of Attraction Intermolecular Forces Attractive or Repulsive Forces between molecules. Molecule - - - - - - Molecule Intramolecular Forces bonding forces within the molecule.

More information

ph = pk a + log 10{[base]/[acid]}

ph = pk a + log 10{[base]/[acid]} FRONT PAGE FORMULA SHEET - TEAR OFF N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper)

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper) CHEM 5200 - Exam 2 - October 11, 2018 INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors: R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 L-atm = 101

More information

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases.

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases. Physical Chemistry - Problem Drill 06: Phase Equilibrium No. 1 of 10 1. The Gibbs Phase Rule is F = C P + 2, how many degrees of freedom does a system have that has two independent components and two phases?

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

Temperature C. Heat Added (Joules)

Temperature C. Heat Added (Joules) Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance.

More information

There are six problems on the exam. Do all of the problems. Show your work

There are six problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry First Hour Exam There are six problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314 L. bar/mole.

More information

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations:

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations: CHM 3400 Problem Set 5 Due date: Tuesday, October 7 th Do all of the following problems. Show your work. "The first essential in chemistry is that you should perform practical work and conduct experiments,

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

FRONT PAGE FORMULA SHEET - TEAR OFF

FRONT PAGE FORMULA SHEET - TEAR OFF FRONT PAGE FORMULA SHEET - TEAR OFF N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013

More information

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012 Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

More information

REVIEW EXAM 1 CHAP 11 &12

REVIEW EXAM 1 CHAP 11 &12 REVIEW EXAM 1 CHAP 11 &12 1.In a 0.1 molar solution of NaCl in water, which one of the following will be closest to 0.1? A) The mole fraction of NaCl. B) The mass fraction of NaCl. C) The mass percent

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

ph = pk a + log 10 {[base]/[acid]}

ph = pk a + log 10 {[base]/[acid]} FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt R = 0.08206 L atm/mol K 1

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Heating and Cooling Curves

Heating and Cooling Curves Heating and Cooling Curves $ Under normal circumstances, particles will undergo more than one type of change when heated or cooled $ During a phase change, the temperature will not change $ Parts of the

More information

Chem 105/107 Exam #3 Fall 2012

Chem 105/107 Exam #3 Fall 2012 November 12 th, 2012 Name: CLID: Score: Chem 105/107 Exam #3 Fall 2012 There are 17 multiple choices that are worth 3 points each. There are 4 problems and 1 bonus problem. Try to answer the questions,

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Marc R. Roussel February 12, 2019 Marc R. Roussel Temperature dependence of equilibrium February 12, 2019 1 / 15 Temperature

More information

ANSWERS CIRCLE CORRECT SECTION

ANSWERS CIRCLE CORRECT SECTION CHEMISTRY 162 - EXAM I June 08, 2009 Name: SIGN: RU ID Number Choose the one best answer for each question and write the letter preceding it in the appropriate space on this answer sheet. Only the answer

More information

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted 1. The predominant intermolecular attractive force in solid sodium is: (A) metallic (B) ionic

More information

CHEMISTRY 110 EXAM 3 Nov. 11, 2013 ORM A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" 1. The cylinder shown below is filled with enough N 2 gas at 25 o C to reach a

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

Major Concepts Calorimetry (from last time)

Major Concepts Calorimetry (from last time) Major Concepts Calorimetry (from last time) Heat capacity Molar heat capacity (per mole) Specific heat capacity (per mass) Standard state enthalpies: Hº Physical Changes Chemical Changes Hess's Law Balancing

More information

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj) CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC D PROBLEMS 1) For all problems involving energy, you may give your answer in either joules or kilojoules, unless the problem specifies a unit. (In general, though,

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

8.6 The Thermodynamic Standard State

8.6 The Thermodynamic Standard State 8.6 The Thermodynamic Standard State The value of H reported for a reaction depends on the number of moles of reactants...or how much matter is contained in the system C 3 H 8 (g) + 5O 2 (g) > 3CO 2 (g)

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

N h (6.02x10 )(6.63x10 )

N h (6.02x10 )(6.63x10 ) CHEM 5200 - Final Exam - December 13, 2018 INFORMATION PAGES (Use for reference and for scratch paper) Constants and Conversion Factors: R = 8.31 J/mol-K = 8.31 kpa-l/mol-k = 0.00831 kj/mol-k 1 L-atm =

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

ph = pk a + log 10{[base]/[acid]}

ph = pk a + log 10{[base]/[acid]} FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Exam 1. Name: Recitation Section Lenny.: 6:30 7:30 (circle one): Greg.: 6:30 7:30 Student Number: Nic.: 6:30 7:30

Exam 1. Name: Recitation Section Lenny.: 6:30 7:30 (circle one): Greg.: 6:30 7:30 Student Number: Nic.: 6:30 7:30 Exam 1 Name: Recitation Section Lenny.: 6:30 7:30 (circle one): Greg.: 6:30 7:30 Student Number: Nic.: 6:30 7:30 Please show your work and either circle your answers or put your answers in the boxes provided.

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

Name: First three letters of last name

Name: First three letters of last name Name: First three letters of last name Chemistry 342 Third Exam April 22, 2005 2:00 PM in C6 Lecture Center Write all work you want graded in the spaces provided. Both the logical solution to the problem

More information

CHEM Exam 2 March 3, 2016

CHEM Exam 2 March 3, 2016 CHEM 123 - Exam 2 March 3, 2016 Constants and Conversion Factors R = 0.082 L-atm/mol-K R = 8.31 J/mol-K 1 atm. = 760 torr Molar Masses: C6H12O6-180. C12H22O11-32. C2H6O - 6. H2O - 18. Al(NO3)3-213. NaOH

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm 1. (6 pts) A sample of gas with a volume of 750 ml exerts a pressure of 756 mm Hg at 30.0 0 C. What pressure (atm) will the sample exert when it is compressed to 250 ml and cooled to -25.0 0 C? a) 1.3

More information

CHEMISTRY 102 FALL 2009 EXAM 1 FORM A SECTION 501 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2009 EXAM 1 FORM A SECTION 501 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2009 EXAM 1 FORM A SECTION 501 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

Review of Terms. Additional Review. Energy, Enthalpy, & Thermochemistry

Review of Terms. Additional Review. Energy, Enthalpy, & Thermochemistry Energy, Enthalpy, & Thermochemistry 9.1 The Nature of Energy 9. Enthalpy 9. Thermodynamics of Ideal Gases 9.4 alorimetry 9.5 Hess s Law 9.6 Standard Enthalpies of Formation 9.7 Present Sources of Energy

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

1. Which molecule will have the strongest intermolecular forces? _D. 2. Which molecule will have the weakest intermolecular forces?

1. Which molecule will have the strongest intermolecular forces? _D. 2. Which molecule will have the weakest intermolecular forces? Use the following information to answer questions 1-5: 1. Which molecule will have the strongest intermolecular forces? _D 2. Which molecule will have the weakest intermolecular forces? _C 3. What is the

More information

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 1. Which statement would be the best interpretation of the First Law of Thermodynamics? 1. The total

More information

CHEMISTRY 202 Practice Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 21 (40 pts.) 22 (20 pts.)

CHEMISTRY 202 Practice Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 21 (40 pts.) 22 (20 pts.) CHEMISTRY 202 Practice Hour Exam II Fall 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 22 questions on 7 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, 2011. 6:30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Dr. A. Fenster Name: Associate Examiner: A. Fenster

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Exam 1 Solutions 100 points

Exam 1 Solutions 100 points Chemistry 360 Fall 018 Dr. Jean M. Standard September 19, 018 Name KEY Exam 1 Solutions 100 points 1.) (14 points) A chunk of gold metal weighing 100.0 g at 800 K is dropped into 100.0 g of liquid water

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Supplemental 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity

More information

REMEMBER: Bubble in ALL Bubblesheet information!

REMEMBER: Bubble in ALL Bubblesheet information! 005 version last name first name signature practiceexam 1 practice MWF Classes Spring 2016 REMEMBER: Bubble in ALL Bubblesheet information! This includes your first and last name, your UTEID, and your

More information

REMEMBER: Bubble in ALL Bubblesheet information!

REMEMBER: Bubble in ALL Bubblesheet information! 004 version last name first name signature practiceexam 1 practice MWF Classes Spring 2016 REMEMBER: Bubble in ALL Bubblesheet information! This includes your first and last name, your UTEID, and your

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces! When two molecules approach one another, they are attracted to some extent! Polar molecules are attracted through the electrostatic interaction of their dipole moments! Non-polar

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

Phase Change (State Change): A change in physical form but not the chemical identity of a substance.

Phase Change (State Change): A change in physical form but not the chemical identity of a substance. CHM 123 Chapter 11 11.1-11.2 Phase change, evaporation, vapor pressure, and boiling point Phase Change (State Change): A change in physical form but not the chemical identity of a substance. Heat (Enthalpy)

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

CHEMISTRY 202 Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 31 (20 pts.) 32 (40 pts.)

CHEMISTRY 202 Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 31 (20 pts.) 32 (40 pts.) CHEMISTRY 202 Hour Exam II October 27, 2015 Dr. D. DeCoste Name Signature T.A. This exam contains 32 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

CHM 2046 Test 2 Review: Chapter 12, Chapter 13, & Chapter 14

CHM 2046 Test 2 Review: Chapter 12, Chapter 13, & Chapter 14 Chapter 12: 1. In an 80.0 L home aquarium, the total pressure is 1 atm and the mole fraction of nitrogen is 0.78. Henry s law constant for N 2 in water at 25 is 6.1 x 10 4. What mass of nitrogen is dissolved

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Packet 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

P a g e What is the algebraic sign for enthalpy of solution? A. positive B. negative C. not enough information is given

P a g e What is the algebraic sign for enthalpy of solution? A. positive B. negative C. not enough information is given P a g e 1 Chem 123 Practice Questions for EXAM II Spring 2014 Exam II on Wed 3/12/14 This HAS BEEN updated after Monday s lecture (3/10/14) JUST studying these questions is not sufficient preparation.

More information

CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017

CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017 1 CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017 1. Select the characteristic(s) of the liquid phase: (You may need a periodic table. Useful information appears on page 5.) (i) adopts the shape of the container

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Lecture 26: Liquids 1: phase changes & heat capacity

Lecture 26: Liquids 1: phase changes & heat capacity Lecture 26: Liquids 1: phase changes & heat capacity Read: BLB 5.5; 11.4 HW: BLB 5:48,49,51; 11:33,37,39 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2 CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies CHM202 Class #2 1 Chemistry, 5 th Edition Copyright 2017, W. W. Norton & Company CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1. Examiners: Prof. B. Siwick Prof. I. Butler Dr. A.

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1. Examiners: Prof. B. Siwick Prof. I. Butler Dr. A. FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1 Examiners: Prof. B. Siwick Prof. I. Butler Dr. A. Fenster Name: INSTRUCTIONS 1. Enter your student number and name on the

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

1 Which of the following compounds has the lowest solubility in water? (4 pts)

1 Which of the following compounds has the lowest solubility in water? (4 pts) version: 516 Exam 1 - Sparks This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is

More information

Homework 11 - Second Law & Free Energy

Homework 11 - Second Law & Free Energy HW11 - Second Law & Free Energy Started: Nov 1 at 9:0am Quiz Instructions Homework 11 - Second Law & Free Energy Question 1 In order for an endothermic reaction to be spontaneous, endothermic reactions

More information

Thermodynamics. 1. Which of the following processes causes an entropy decrease?

Thermodynamics. 1. Which of the following processes causes an entropy decrease? Thermodynamics 1. Which of the following processes causes an entropy decrease? A. boiling water to form steam B. dissolution of solid KCl in water C. mixing of two gases in one container D. beach erosion

More information