Temperature C. Heat Added (Joules)

Size: px
Start display at page:

Download "Temperature C. Heat Added (Joules)"

Transcription

1 Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance. Temperature C Heat Added (Joules)

2 Here s the same curve now applying the conservation of energy (sum of the heats) q = s ice m ice Tq = m ice H fus q = s H2 O m H2 O T q = m H2 O H vap q = s stm m stm T 220 Phase transition Temperature does not change during a phase transition. Phase transition Temperature does not change during a phase transition. F Steam Temperature C Heating solid ice to 0 C A Ice B Ice + Water mix C Melting solid ice to 0 C water Water Heating water to boiling 100 C D Water + steam mix Boiling all water to steam 100 C E Heating steam past 100 C Heat Added (kj/mole)

3 Calculate the amount of heat required to convert 500 grams of ice at C to steam at 120. C. The specific heat capacities of water, ice and water vapor are 4.18, 2.06 and 1.84 J/g C respectively, and the latent heat of fusion and vaporization, ΔHf and ΔHv, are 6.02 and 40.7 kj/mol respectively. n i=1 q i = 0 sum the q s baby q = si mi ΔT for heating non-phase transitions qsolid=>liquid = (# moles) ΔH fusion for phase transitions qliquid=>gas = (# moles) ΔH vaporization

4 Calculate the amount of heat required to convert 500 grams of ice at -20 C to steam at 120 C. The specific heat capacities of water, ice and water vapor are 4.18, 2.06 and 1.84 J/g C respectively, and the latent heat of fusion and vaporization, ΔHf and ΔHv, are 6.02 and 40.7 kj/mol respectively. 1. Heat ice from -20 C to ice at 0 C = 500. g x 2.06 J/g C x 20 C 2. Melt ice at 0 C to water at 0 C = 500. g/(18 g/mol) x 6.02 kj/mol 3. Heat water from 0 C to water at 100 C= 500. g x 4.18 J/g C x 100 C 4. Evap water at 100 C to vap at 100 C = 500. g/(18 g/mol) x 40.7 kj/mol 5. Heat vap from 100 C to vap at 120 C = 500. g x 1.84 J/g C x 20 C 1. = 20.6 kj 2. = kj 3. = kj 4. = kj 5. = 18.4 kj Total = kj

5 Bunker fuel C, coal and rice hulls are the most widely used fuels in the Philippines (world too) used in create steam in nearly all industries worldwide. Look up the heating value of each of these fuels. By hook or by crook find the price per liter or price per kg of each of these fuels. Which fuel is the cheapest fuel to produce steam? What is the approximate cost to produce a MT steam at 120 C starting from 24 C assuming the efficiencies of all the heating processes are the same, and the cost of boilers are the same as well? Unfortunately not everything is simple economics. What other factors might one consider with each of these fuels assuming 15MT of steam is produced per day 7 days a week, 30 days a month and 12 months a year?

6 The concept of vapor pressure The equilibrium vapor pressure is the pressure exerted by a vapor over its liquid phase (measured under vacuum) when dynamic equilibrium exists between condensation and evaporation. Evaporation Vapor Pressure Liquid In open containers, molecules that have enough KE can overcome IMF s at the surface and evaporate into the atmosphere. Liquid In closed containers, molecules vaporize and condense until there is no further change in concentration in each phase. This forms an equilibrium vapor pressure over the liquid.

7 Dynamic chemical equilibrium is reached when there is no net change in the number of molecules: the rate of evaporation and the rate of condensation are equal. Molecules in liquid begin to vaporize Molecules vaporizing and condensing at such a rate that no net change in numbers occure

8 Dynamic equilibria is also reached in melting and sublimation and also in most chemical reactions. At the melting point a solid begins to change into a liquid as heat is added. As long no heat is added or removed melting (red arrows) and freezing (black arrows) occur at the same rate an the number of particles in the solid remains constant. aa + bb Reactants cc + dd Products Reaction Rate of the forward reaction = = Rate of Reverse reaction

9 Because kinetic energy (of molecules in any phase) depends on temperature, so does vapor pressure of a liquid. KE = Ek = 3 2 RT Relates molecular properties of molecules to bulk properties that we observe! Kinetic Energy Temperature More molecules escape at high temp At higher temperatures, a larger fraction of molecules have enough KE to escape the liquid phase.

10 The vapor pressure of a pure liquid (bulk property) depends on the intermolecular forces between molecules. The stronger the attractive forces in the liquid phase the lower the vapor pressure--and the less volatile it is. 2 atm Which of the following has the highest vapor pressure at 1 atm? Which is the least volatile at 1 atm?.66 atm water boils at 75 C at 300 torr =.4 atm

11 Vapor Pressure of Some Liquids

12 The following diagram shows a close-up view of part of the vapor-pressure curves for a solvent (red curve) and a solution of the solvent with a second liquid (green curve). Which solvent is more volatile?

13 The boiling point of a pure liquid is the temperature at which the equilibrium vapor pressure of a liquid over its liquid phase is equal to the external pressure on the liquid. The normal boiling point is the temperature at which a liquid boils when the external pressure is 1 atm. Evaporation Boiling

14 If we plot vapor pressure vs temperature we observe a linear relationship between ln P and 1/T. Vapor pressure plotted as a function of temperature ln (vapor pressure) plotted as a function of 1/Temp

15 The Clausius-Claperyron equation relates the vapor pressure (P) of a pure liquid to the liquid s temperature (T) and the liquids molar heat of vaporization ( H vap ). ln P = -ΔHvap R 1 + C T slope = H vap /R y = m x + b (note R = 8.31 J/K mol) ln P By taking measurements at two temps, we get: ln P 2 = -ΔHvap P R T 2 T 1 1/T

16 Vapor pressure of pure etoh is 115 torr at 34.9 C. If ΔHvap = 40.5 kj/mol calculate the temperature when the vapor pressure of etoh is 760 torr. R is the gas constant given at J/mol K

Chapter 12 Intermolecular Forces of Attraction

Chapter 12 Intermolecular Forces of Attraction Chapter 12 Intermolecular Forces of Attraction Intermolecular Forces Attractive or Repulsive Forces between molecules. Molecule - - - - - - Molecule Intramolecular Forces bonding forces within the molecule.

More information

q i = 0 aa + bb cc + dd q = si mi!t qsolid=>liquid = # moles!h fusion qliquid=>gas = # moles!h vaporization i=1

q i = 0 aa + bb cc + dd q = si mi!t qsolid=>liquid = # moles!h fusion qliquid=>gas = # moles!h vaporization i=1 Temperature C ere s the same curve now applying the conservation of energy (sum of the heats) 220 100 0-100 q = s ice m ice Tq = m ice fus q = s 2 m 2 T eating solid ice to 0 C A Ice Phase transition Temperature

More information

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes) Chapter 11 part 2 Properties of Liquids Viscosity Surface Tension Capillary Action Phase Changes (energy of phase changes) Dynamic Equilibrium Vapor pressure Phase diagram 1 Structure Affects Function

More information

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces 1 To understand properties, we want to connect what we see to what is happening on a molecular level. Start with

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012 Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

Heating Curve Worksheet If this curve is read from right to left, it is a Cooling Curve.

Heating Curve Worksheet If this curve is read from right to left, it is a Cooling Curve. Heating Curve Worksheet If this curve is read from right to left, it is a Cooling Curve. The diagram below illustrates the steps involved to convert 10g of solid ice at -20 C to 10g of gaseous steam at

More information

Phase Change (State Change): A change in physical form but not the chemical identity of a substance.

Phase Change (State Change): A change in physical form but not the chemical identity of a substance. CHM 123 Chapter 11 11.1-11.2 Phase change, evaporation, vapor pressure, and boiling point Phase Change (State Change): A change in physical form but not the chemical identity of a substance. Heat (Enthalpy)

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Lecture 26: Liquids 1: phase changes & heat capacity

Lecture 26: Liquids 1: phase changes & heat capacity Lecture 26: Liquids 1: phase changes & heat capacity Read: BLB 5.5; 11.4 HW: BLB 5:48,49,51; 11:33,37,39 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

Heating and Cooling Curves

Heating and Cooling Curves Heating and Cooling Curves $ Under normal circumstances, particles will undergo more than one type of change when heated or cooled $ During a phase change, the temperature will not change $ Parts of the

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces Nestor S. Valera Ateneo de Manila Chapter 12 - Intermolecular Forces 1 A phase is a region that differs in structure and/or composition from another region. 2 Phases Solid phase - ice Liquid phase - water

More information

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon 97403 USA Closed system vs Open

More information

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 11 Intermolecular Forces and Liquids and Solids Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department

More information

Chapter 12. Intermolecular Forces: Liquids, Solids, and Phase Changes

Chapter 12. Intermolecular Forces: Liquids, Solids, and Phase Changes Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes Intermolecular Forces: Liquids, Solids, and Phase Changes 12.1 An Overview of Physical States and Phase Changes 12.2 Quantitative Aspects

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Review of Terms. Additional Review. Energy, Enthalpy, & Thermochemistry

Review of Terms. Additional Review. Energy, Enthalpy, & Thermochemistry Energy, Enthalpy, & Thermochemistry 9.1 The Nature of Energy 9. Enthalpy 9. Thermodynamics of Ideal Gases 9.4 alorimetry 9.5 Hess s Law 9.6 Standard Enthalpies of Formation 9.7 Present Sources of Energy

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Review Solid - Has a definite (fixed) shape and volume (cannot flow). Liquid - Definite volume but takes the shape of its container (flows). Gas Has neither fixed shape nor

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Liquids and Solids: The Molecular Kinetic Theory II. Unit 5

Liquids and Solids: The Molecular Kinetic Theory II. Unit 5 Liquids and Solids: The Molecular Kinetic Theory II Unit 5 Energy Definition Energy is the ability to do work. The ability to make something happen. Different Kinds of Energy: Heat (Thermal) Energy energy

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

q = m. C p. T q = heat (Joules) m = mass (g) C p = specific heat (J/g.o C) T = change in temp. ( o C) UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES

q = m. C p. T q = heat (Joules) m = mass (g) C p = specific heat (J/g.o C) T = change in temp. ( o C) UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES HEAT ENERGY NOTES UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES SECTION (A): same temp or change? SECTION (B): same temp or change? temp is called the energy difference at same temp = SECTION (C): same temp

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules).

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Name: Date: Unit 6: Energy Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Physical Changes Chemical Changes Example: Example: Energy is measured

More information

Honors Unit 9: Liquids and Solids

Honors Unit 9: Liquids and Solids Name: Honors Unit 9: Liquids and Solids Objectives: 1. Students will be able to describe particles in the solid, liquid, and gas phases, and to explain what happens during phase transitions in terms of

More information

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key Supplemental Activities Module: Thermodynamics Section: Second Law of Thermodynamics Key Spontaneity ACTIVITY 1 The purpose of this activity is to practice your understanding of the concept of spontaneous

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Name Chemistry / / Understanding Phase Changes

Name Chemistry / / Understanding Phase Changes Name Chemistry / / Understanding Phase Changes As a piece of ice is exposed to a warmer environment, it begins to absorb heat. The heat causes the solid molecules to vibrate faster. Eventually, the ice

More information

Water SECTION The properties of water in all phases are determined by its structure.

Water SECTION The properties of water in all phases are determined by its structure. SECTION 10.5 Water Water commonly exists in all three physical states on Earth, where it is by far the most abundant liquid. It covers nearly three-quarters of Earth s surface. Water is an essential component

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

Duncan. Q = m. C p. T. Q = heat (Joules) m = mass (g) C p = specific heat capacity (J/g.o C) T = change in temp. ( o C)

Duncan. Q = m. C p. T. Q = heat (Joules) m = mass (g) C p = specific heat capacity (J/g.o C) T = change in temp. ( o C) HEAT ENERGY NOTES SECTION (A): phase(s) of matter = SECTION (B): phase(s) of matter = energy difference at same temp = temp is called the SECTION (C): phase(s) of matter = SECTION (D): phase(s) of matter

More information

Ch. 11 States of matter

Ch. 11 States of matter Ch. 11 States of matter States of Matter Solid Definite volume Definite shape Liquid Definite volume Indefinite shape (conforms to container) Gas Indefinite volume (fills any container) Indefinite shape

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Upon successful completion of this unit, the students should be able to:

Upon successful completion of this unit, the students should be able to: Unit 9. Liquids and Solids - ANSWERS Upon successful completion of this unit, the students should be able to: 9.1 List the various intermolecular attractions in liquids and solids (dipole-dipole, London

More information

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Physics 111 Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Dec. 7, 2009 Kinetic Theory Pressure is the result of collisions between gas molecules and walls of container.

More information

THE ENERGY OF THE UNIVERSE IS CONSTANT.

THE ENERGY OF THE UNIVERSE IS CONSTANT. Chapter 6 Thermochemistry.notebook Chapter 6: Thermochemistry Jan 29 1:37 PM 6.1 The Nature of Energy Thermodynamics: The study of energy and its interconversions Energy: the capacity to do work or to

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Let's look at how different properties affect vapor pressure. P =0 P =vapor pressure P =vapor pressure. first all liquid

Let's look at how different properties affect vapor pressure. P =0 P =vapor pressure P =vapor pressure. first all liquid Let's look at how different properties affect vapor pressure P =0 P =vapor pressure P =vapor pressure Quick Quiz You have two containers. one has a total volume of 2 L and one has a total volume of 1 L

More information

Chapter 6: The States of Matter

Chapter 6: The States of Matter Spencer L. Seager Michael R. Slabaugh www.cengage.com/chemistry/seager Chapter 6: The States of Matter PHYSICAL PROPERTIES OF MATTER All three states of matter have certain properties that help distinguish

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

CHAPTER 10. States of Matter

CHAPTER 10. States of Matter CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

Unit 4: Gas Laws. Matter and Phase Changes

Unit 4: Gas Laws. Matter and Phase Changes Unit 4: Gas Laws Matter and Phase Changes ENERGY and matter What is 에너지 A fundamental property of the universe that cannot be easily defined. Energy No one knows what energy is, only what it does or has

More information

Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Chapter 11: Liquids, Solids, and Intermolecular Forces. Mrs. Brayfield

Chapter 11: Liquids, Solids, and Intermolecular Forces. Mrs. Brayfield Chapter 11: Liquids, Solids, and Intermolecular Forces Mrs. Brayfield 11.1: Intermolecular Forces Intermolecular forces are attractive forces that exist between all molecules and atoms The state of matter

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change in

More information

The graph represents the uniform cooling of water at 1 atmosphere, starting with water as a gas above its boiling point.

The graph represents the uniform cooling of water at 1 atmosphere, starting with water as a gas above its boiling point. Teacher: Mr. gerraputa Print Close Name: 1. Which graph best represents a change of phase from a gas to a solid? 1. 3. 2. 4. 2. The graph represents the uniform cooling of water at 1 atmosphere, starting

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

Chapter 10 Liquids and Solids

Chapter 10 Liquids and Solids The Three States (Phases) of Matter Chapter 10 Liquids and Solids The Phase Changes of Water Changes of State Evaporation and Condensation Enthalpy (Heat) of Vaporization, H vap The energy needed to vaporize

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Liquids. properties & structure

Liquids. properties & structure Liquids properties & structure Energetics of Vaporization when the high energy molecules are lost from the liquid, it lowers the average kinetic energy if energy is not drawn back into the liquid, its

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Chapter 11. Kinetic Molecular Theory. Attractive Forces Chapter 11 KMT for Solids and Liquids Intermolecular Forces Viscosity & Surface Tension Phase Changes Vapor Pressure Phase Diagrams Solid Structure Kinetic Molecular Theory Liquids and solids will experience

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Marc R. Roussel February 12, 2019 Marc R. Roussel Temperature dependence of equilibrium February 12, 2019 1 / 15 Temperature

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations * Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Supplemental 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Chem 102--Exam #2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When water is measured in a plastic graduated cylinder, a reverse meniscus

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion Chapter 5 Energy and States of Matter Changes of State 5.6 Melting and Freezing 5.7 Boiling and Condensation 1 2 Melting and Freezing A substance is melting while it changes from a solid to a liquid. A

More information

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion Chapter 10 Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

CHEMISTRY. Chapter 11 Intermolecular Forces Liquids and Solids

CHEMISTRY. Chapter 11 Intermolecular Forces Liquids and Solids CHEMISTRY The Central Science 8 th Edition Chapter 11 Liquids and Solids Kozet YAPSAKLI States of Matter difference between states of matter is the distance between particles. In the solid and liquid states

More information

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole!

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole! States of Matter Chemistry Joke Once you ve seen 6.02 x 10 23 atoms You ve seen a mole! Kinetic Theory Kinetic Theory explains the states of matter based on the concept that the particles in all forms

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Lecture Notes 2: Physical Equilibria Phase Diagrams

Lecture Notes 2: Physical Equilibria Phase Diagrams Lecture Notes 2: Physical Equilibria Phase Diagrams There are number of graphical means to help to understand the relationships between the different phases of a particular substance. The first thing we

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

SUPeR Chemistry CH 222 Practice Exam

SUPeR Chemistry CH 222 Practice Exam SUPeR Chemistry CH 222 Practice Exam This exam has been designed to help you practice working multiple choice problems over the material that will be covered on the first CH 222 midterm. The actual exams

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Packet 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 14 Notes ENERGY AND CHEMICAL CHANGE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Energy the capacity to do work or produce heat A. two basic types of

More information

Chapter 10. Intermolecular Forces II Liquids and Phase Diagrams

Chapter 10. Intermolecular Forces II Liquids and Phase Diagrams Chapter 10 Intermolecular Forces II Liquids and Phase Diagrams Liquids Properties & Structure Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information