Chapter 19 Chemical Thermodynamics Entropy and free energy

Size: px
Start display at page:

Download "Chapter 19 Chemical Thermodynamics Entropy and free energy"

Transcription

1 Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process. State the second law of thermodynamics. Describe the kinds of molecular motion that a molecule can possess. Explain how the entropy of a system is related to the number of accessible microstates. Predict the sign of S for physical and chemical processes. State the third law of thermodynamics. Calculate standard entropy changes for a system from standard molar entropies. Calculate entropy changes in the surroundings for isothermal processes. Calculate the Gibbs free energy from the enthalpy change and entropy change at a given temperature. Use free energy changes to predict whether reactions are spontaneous. Calculate standard free energy changes using standard free energies of formation. Predict the effect of temperature on spontaneity given H and S. Calculate G under nonstandard conditions. Relate G and equilibrium constant. Energetics of solutions An endothermic process is not favored based on the change in enthalpy, yet they occur. Why? We must also look at the disorder (entropy, S) of the system. 0 th Law of Thermodynamics If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then C is also in thermal equilibrium with A. 1 st Law of Thermodynamics Energy of the universe is constant (conserved). U = q + w q = heat absorbed by the system, w = work done on the system 2 nd Law of Thermodynamics In a spontaneous process, the entropy of the universe increases. S universe = S sys + S surr > 0 (if spontaneous) 3 rd Law of Thermodynamics The entropy of a pure crystalline substance at absolute zero is zero: S(0 K) = 0. 1

2 Review Chapter 5: energy, enthalpy, 1 st law of thermo Thermodynamics: the science of heat and work Thermochemistry: the relationship between chemical reactions and energy changes Energy (E) The capacity to do work or to transfer heat. Work (w) The energy expended to move an object against an opposing force. w = F d Heat (q) Derived from the movements of atoms and molecules (including vibrations and rotations). +q, heat absorbed by system (endothermic) -q, heat evolved by the system (exothermic) Surroundings +w, work done onto the system System E = q + w -w, work done by the system 1 st law of thermodynamics: the law of conservation of energy Energy is neither created nor destroyed Internal Energy = heat + work E = q + w 2

3 Enthalpy, H the heat content of a substance at constant pressure. a state function an extensive property reversible The enthalpy change, H, is defined as the heat gained or lost by the system under constant pressure; it depends upon the identity and states of the reactants and products. H = q p Standard Enthalpy Values Most H values are labeled H o Measured under standard conditions P = 1 atm T = usually K (25 o C) (Concentration = 1 M) H fo = standard molar enthalpy of formation (Appendix C) H o rxn = Σ H fo (products) - Σ H fo (reactants) Spontaneous Reactions: reactions that occur without outside intervention In general, spontaneous reactions are exothermic. Thermite reaction: Fe 2 O 3 (s) + 2 Al(s) 2 Fe(s) + Al 2 O 3 (s) H rxn = -848 kj But many spontaneous reactions or processes are endothermic or even have H = 0. 3

4 Spontaneous Processes Spontaneous processes are those that can proceed without any outside intervention. The gas in vessel B will spontaneously effuse into vessel A, but once the gas is in both vessels, it will not spontaneously return to vessel B. 4

5 S = S final S initial Which has a positive value of S? Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous in the reverse direction. Spontaneous Processes Processes that are spontaneous at one temperature may be nonspontaneous at other temperatures. Above 0 C it is spontaneous for ice to melt. Below 0 C the reverse process is spontaneous. 5

6 Reversible Processes In a reversible process the system changes in such a way that the system and surroundings can be put back in their original states by exactly reversing the process. Irreversible Processes Irreversible processes cannot be undone by exactly reversing the change to the system. Spontaneous processes are irreversible. Entropy For a process occurring at constant temperature (an isothermal process), the change in entropy is equal to the heat that would be transferred if the process were reversible divided by the absolute temperature: S sys = q rev T S surr = -q = - H sys sys T T (at constant P,T) Like energy and enthalpy, entropy is a state function and S = S final S initial For any spontaneous process, the entropy of the universe increases: ( S univ >0) 6

7 2 nd Law of Thermodynamics For reversible processes: S univ = S system + S surroundings = 0 For irreversible processes: S univ = S system + S surroundings > 0 Entropy on the molecular scale Molecules exhibit several types of motion: Translational: Movement of the entire molecule from one place to another. Vibrational: Periodic motion of atoms within a molecule. Rotational: Rotation of the molecule on about an axis or rotation about σ bonds. Statistical treatment of entropy open the stopcock no work (w = 0) no heat (q = 0) spontaneous, nonetheless. Reverse is unimaginable. 7

8 Entropy: matter dispersal # particles probability they are all in A 2 1 / 4 = / 8 = / 16 = / 1024 = N = N 0 Entropy: energy dispersal A key contribution is the dispersal of energy over many different energy states (each state is called a microstate). (This is similar to matter dispersal.) Let W = number of microstates of a system S = k ln W where k = J/K (Boltzmann constant) Entropy on the Molecular Scale The change in entropy for a process: S = k lnw final k lnw initial S = k ln W final W initial Entropy increases with the number of microstates in the system. 8

9 Entropy and microstates S = k ln W In general, the number of microstates available to a system increases with an increase in volume, an increase in temperature, or an increase in the number of molecules because any of these changes increases the possible positions and energies of the molecules of the system. Solutions Generally, when a solid is dissolved in a solvent, entropy increases. Entropy, S In general, S (solids) < S (liquids) << S (gases) S o (J/K mol) H 2 O (liq) H 2 O (gas) S (small molecules) < S (large molecules) S (simple molecules) < S (complex molecules) S increases as the temperature is raised 9

10 Entropy Changes In general, entropy increases when Gases are formed from liquids and solids; Liquids or solutions are formed from solids; The number of gas molecules increases; The number of moles increases. Third Law of Thermodynamics The entropy of a pure crystalline substance at absolute zero is zero: S(0 K) = 0. S = k ln W Standard Entropies These are molar entropy values of substances in their standard states. Standard entropies tend to increase with increasing molar mass. See Appendix C. 10

11 Standard Entropies Larger and more complex molecules have greater entropies. Entropy equations Boltzmann Equation: S = k ln W k = J/K S = q rev / T S sys = Σ ns (products) Σ ms (reactants) S univ = Σ S sys + Σ S surr S universe = S sys + S surr > 0 (for a spontaneous reaction) Entropy Change in the Universe S universe = S system + S surroundings Since S surroundings = and q system = H system This becomes: q system T S universe = S system + H system T Multiplying both sides by T, we get T S universe = H system T S system 11

12 Gibbs Free Energy T S universe is defined as the Gibbs free energy, G. When S universe is positive, G is negative. Therefore, when G is negative, a process is spontaneous. G = H T S Gibbs Free Energy 1. If G is negative, the forward reaction is spontaneous. 2. If G is 0, the system is at equilibrium. 3. If G is positive, the reaction is spontaneous in the reverse direction. Standard Free Energy Changes Analogous to standard enthalpies of formation are standard free energies of formation, G. f G = Σn G f (products) Σm G f(reactants) where n and m are the stoichiometric coefficients. 12

13 Free Energy Changes At temperatures other than 25 C, G = H T S How does G change with temperature? There are two parts to the free energy equation: H the enthalpy term T S the entropy term The temperature dependence of free energy comes from the entropy term. Free Energy and Temperature Gibbs free energy change = total energy change for system - energy lost in disordering the system If G o is negative, the reaction is spontaneous (and product-favored). If G o is positive, the reaction is not spontaneous (and reactant-favored). Calculating G a) Determine H o and S o and use Gibbs equation. G o = H o - T S o b) Use tabulated values of free energies of formation, G fo. G o rxn = Σ G fo (products) - Σ G fo (reactants) 13

14 Example: Gibbs free energy Determine G rxn for the following combustion reaction. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (l) H f (kj/mol) S (J/mol K) G f (kj/mol) H rxn = kj S rxn = J/K G rxn = H o rxn - T S o rxn = kj exothermic more ordered spontaneous G rxn = kj spontaneous When G = 0, equilibrium A + B C + D irreversible (easy Gen Chem I) A + B C + D reversible (most reactions) forward reaction = reverse reaction No drive to make all products (spontaneous reaction) or all reactants (nonspontaneous) Examples: melting point boiling point A (s) A (l) A (l) A (g) Example: melting point of water Given ice or H 2 O (s) H f = kj/mol S = 44.8 J/mol K water or H 2 O (l) H f = kj/mol S = J/mol K Find the melting point of water. It better be 0 C! 14

15 Free Energy and Equilibrium Under any conditions, standard or nonstandard, the free energy change can be found this way: G = G + RT lnq (Under standard conditions, all concentrations are 1 M, so Q = 1 and lnq = 0; the last term drops out.) Free Energy and Equilibrium At equilibrium, Q = K, and G = 0. The equation becomes 0 = G + RT lnk Rearranging, this becomes G = RT lnk or, - G RT K = e 15

16 Example: Gibbs free energy and equilibrium constant Use tabulated * free energies of formation to calculated the equilibrium constant for the following reaction at 298 K. N 2 O 4 (g) 2NO 2 (g) *See Appendix C, textbook pages

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 19 John D. Bookstaver St. Charles Community College Cottleville, MO First Law of You will

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics David A. Katz Department of Chemistry Pima Community College Tucson, AZ 85709, USA First Law of Thermodynamics The First Law of Thermodynamics was expressed in the study of thermochemistry.

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 19 John D. Bookstaver St. Charles Community College Cottleville, MO First Law of You will

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Thermodynamics: Entropy, Free Energy, and Equilibrium

Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16 Thermodynamics: Entropy, Free Energy, and Equilibrium spontaneous nonspontaneous In this chapter we will determine the direction of a chemical reaction and calculate equilibrium constant using

More information

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax.

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax. Chemistry: A Molecular Approach, 2nd Ed. Nivaldo Tro First Law of Thermodynamics Chapter 17 Free Energy and Thermodynamics You can t win! First Law of Thermodynamics: Energy cannot be created or destroyed

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes Chemical thermodynamics is concerned with energy relationships in chemical reactions. We consider enthalpy and we also consider entropy in

More information

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions.

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions. 1 of 7 Thermodynamics and Equilibrium Chemical thermodynamics is concerned with energy relationships in chemical reactions. In addition to enthalpy (H), we must consider the change in randomness or disorder

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016 First Law of Thermodynamics The first law of thermodynamics states that the energy of the universe is conserved. If one object loses energy, another has to gain that energy. The mathematical relationship

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Thermodynamics: Review of Thermochemistry 1. Question: What is the sign of DH for an exothermic reaction? An endothermic reaction? Answer: ΔH is negative for an exothermic reaction and positive for an

More information

Chapter 19. Entropy, Free Energy, and Equilibrium

Chapter 19. Entropy, Free Energy, and Equilibrium Chapter 19 Entropy, Free Energy, and Equilibrium Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves in a cup of coffee At 1 atm, water freezes below 0 0 C and

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts:

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts: Thermodynamic Fun Quick Review System vs. Surroundings In thermochemistry, the universe is divided into two parts: The tem: The physical process or chemical reaction in which we are interested. We can

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

Entropy and Free Energy

Entropy and Free Energy Page 1 Entropy and Free Energy How to predict if a reaction can occur at a reasonable rate? KINEICS Chapter 17 How to predict if a reaction can occur, given enough time? HERMODYNAMICS 1 Objectives Spontaneity

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

Ch 18 Free Energy and Thermodynamics:

Ch 18 Free Energy and Thermodynamics: P a g e 1 Ch 18 Free Energy and Thermodynamics: Homework: Read Ch 18, Work out sample/practice exercises in the sections as you read, Ch 18: 27, 31, 33, 41, 43, 47, 51, 55, 61, 63, 67, 71, 77, 87 Check

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Modified by Dr. Cheng-Yu Lai spontaneous nonspontaneous Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous

More information

Thermodynamics Cont. Subtitle

Thermodynamics Cont. Subtitle Thermodynamics Cont. Subtitle System vs. Surroundings The system- the reactants and products of a reaction The surroundings- everything that surrounds a reaction Thermochemistry is concerned with the flow

More information

What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance

What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance Why do some reactions occur spontaneously & others do not? Atoms react to

More information

Exam 2: Ave=65, Hi=96. Chem 106 Tues Chapt. 19 Entropy and Gibbs Free Energy. Background: this is a thermodynamics topic, not kinetics

Exam 2: Ave=65, Hi=96. Chem 106 Tues Chapt. 19 Entropy and Gibbs Free Energy. Background: this is a thermodynamics topic, not kinetics Exam 2: Ave=65, Hi=96 Chem 106 Tues 4-5-2011 Chapt. 19 Entropy and Gibbs Free Energy Background: this is a thermodynamics topic, not kinetics Exothermic reactions are always spontaneous but what about

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy 1 Thermodynamics: Spontaneity, Entropy, and Free Energy 2 Introductory Concepts Thermodynamics examines the relationship between heat (q) and work (w) Spontaneity is the notion of whether or not a process

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics II Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 19 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 17. Spontaneity, Entropy, and Free Energy

Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics Thermodynamics is the study of the relationship between heat and other forms of energy in a chemical or physical process. Thermodynamics

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

Lecture #13. Chapter 17 Enthalpy and Entropy

Lecture #13. Chapter 17 Enthalpy and Entropy Lecture #13 Chapter 17 Enthalpy and Entropy First Law of Thermodynamics Energy cannot be created or destroyed The total energy of the universe cannot change Energy can be transferred from one place to

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermodynamics: Directionality of Chemical Reactions

Thermodynamics: Directionality of Chemical Reactions Thermodynamics: Directionality of Chemical Reactions Josian W. Gibbs 1839-1903. Pioneered concepts of chemical thermodynamics and free energy. Ludwig Boltzmann 1844-1906. Famous for his equation statistically

More information

Spontaneous Change.! Although exothermic processes tend to be spontaneous, spontaneous reactions can be exothermic or endothermic:

Spontaneous Change.! Although exothermic processes tend to be spontaneous, spontaneous reactions can be exothermic or endothermic: Spontaneous Change! Any process, once initiated, that continues without further intervention is spontaneous.! Although exothermic processes tend to be spontaneous, spontaneous reactions can be exothermic

More information

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen CHAPTER 12: Thermodynamics Why Chemical Reactions Happen Useful energy is being "degraded" in the form of unusable heat, light, etc. A tiny fraction of the sun's energy is used to produce complicated,

More information

Chapter 16: Spontaneity, Entropy, and Free Energy Spontaneous Processes and Entropy

Chapter 16: Spontaneity, Entropy, and Free Energy Spontaneous Processes and Entropy Chapter 16: Spontaneity, Entropy, and Free Energy 16.1 Spontaneous Processes and Entropy 1 3 The first law of thermodynamics the law of conservation of energy: Energy can be neither created nor destroyed

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics Chem 1B Dr. White 1 Chapter 17: Thermodynamics Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics 17.1 Spontaneous Processes and Entropy A. Spontaneous Change Chem 1B Dr. White

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

THERMODYNAMICS. Dr. Sapna Gupta

THERMODYNAMICS. Dr. Sapna Gupta THERMODYNAMICS Dr. Sapna Gupta FIRST LAW OF THERMODYNAMICS Thermodynamics is the study of heat and other forms of energy involved in chemical or physical processes. First Law of Thermodynamics Energy cannot

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 19 Study Guide Concepts 1. The First Law of Thermodynamics is also known as the Law of Conservation of Energy. 2. In any process

More information

Entropy, Free Energy and the Direction of Chemical Reactions

Entropy, Free Energy and the Direction of Chemical Reactions Thermodynamics: Entropy, Free Energy and the Direction of Chemical Reactions Dr.ssa Rossana Galassi 320 4381420 rossana.galassi@unicam.it 20-1 Thermodynamics: Entropy, Free Energy, and the Direction of

More information

3/30/2017. Section 17.1 Spontaneous Processes and Entropy Thermodynamics vs. Kinetics. Chapter 17. Spontaneity, Entropy, and Free Energy

3/30/2017. Section 17.1 Spontaneous Processes and Entropy Thermodynamics vs. Kinetics. Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Thermodynamics vs. Kinetics Domain of Kinetics Rate of a reaction depends on the pathway from reactants to products. Thermodynamics tells us whether a reaction is spontaneous

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot

More information

Free Energy and Spontaneity

Free Energy and Spontaneity Free Energy and Spontaneity CHEM 107 T. Hughbanks Free Energy One more state function... We know S universe > 0 for a spontaneous change, but... We are still looking for a state function of the system

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Chapter 16. Spontaneity, Entropy and Free energy

Chapter 16. Spontaneity, Entropy and Free energy Chapter 16 Spontaneity, Entropy and Free energy Contents Spontaneous Process and Entropy Entropy and the second law of thermodynamics The effect of temperature on spontaneity Free energy Entropy changes

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

CHAPTER 11: Spontaneous Change and Equilibrium

CHAPTER 11: Spontaneous Change and Equilibrium CHAPTER 11: Spontaneous Change and Equilibrium Goal of chapter: Be able to predict which direction a reaction will go (cases where there is not necessarily an equilibrium) At high temperatures, ice always

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Entropy, free energy and equilibrium. Spontaneity Entropy Free energy and equilibrium

Entropy, free energy and equilibrium. Spontaneity Entropy Free energy and equilibrium Entropy, free energy and equilibrium Spontaneity Entropy Free energy and equilibrium Learning objectives Discuss what is meant by spontaneity Discuss energy dispersal and its relevance to spontaneity Describe

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Unit 12. Thermochemistry

Unit 12. Thermochemistry Unit 12 Thermochemistry A reaction is spontaneous if it will occur without a continuous input of energy However, it may require an initial input of energy to get it started (activation energy) For Thermochemistry

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

AP Chemistry Study Guide 6 v Evaporation vs. condensation Ø Vaporization and condensation are opposite processes Ø In an open container the vapor

AP Chemistry Study Guide 6 v Evaporation vs. condensation Ø Vaporization and condensation are opposite processes Ø In an open container the vapor AP Chemistry Study Guide 6 v Evaporation vs. condensation Ø Vaporization and condensation are opposite processes Ø In an open container the vapor molecules generally spread out faster than they can condense

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

General Entropy Trends

General Entropy Trends General Entropy Trends The following generally show an in entropy: 1. Phase changes from solid to liquid, or liquid to gas or a solid to a gas. SOLID LIQUID GAS low entropy high entropy 2. Chemical reactions

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

AP* Chemistry Spontaneity: Entropy and Free Energy

AP* Chemistry Spontaneity: Entropy and Free Energy WHAT DRIVES A REACTION TO BE SPONTANEOUS? AP* Chemistry Spontaneity: Entropy and Free Energy Dr. Valverde s AP Chemistry Class Chapter 17 Review: Spontaneity, Entropy, and Free Energy (1) ENTHALPY ( H)

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

1. III only 2. II, III. 3. II only. 4. I only 5. I, III. 6. I, II, III correct

1. III only 2. II, III. 3. II only. 4. I only 5. I, III. 6. I, II, III correct Version 001 EXAM 8 PRACTICE PROBLEMS chemistry (78712) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001

More information

Energy is the capacity to do work

Energy is the capacity to do work 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Sparks CH301 GIBBS FREE ENERGY. UNIT 4 Day 8

Sparks CH301 GIBBS FREE ENERGY. UNIT 4 Day 8 Sparks CH301 GIBBS FREE ENERGY UNIT 4 Day 8 What are we going to learn today? Quantify change in Gibbs Free Energy Predict Spontaneity at Specific Temperatures QUIZ: iclicker Questions S H2 = 131 J/K mol

More information

Class XI Chapter 6 Thermodynamics Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii)

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Chemical thermodynamics and bioenergetics

Chemical thermodynamics and bioenergetics Chemical thermodynamics and bioenergetics Thermodynamics is a branch of physics that studies energy, the forms of its transformation, and the laws controlling its properties. Basic Concepts and Definitions.

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information