Fault Masking By Probabilistic Voting

Size: px
Start display at page:

Download "Fault Masking By Probabilistic Voting"

Transcription

1 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) Fault Masking B Probabilistic Voting B. Bakant ALAGÖZ Abstract: In this stud, we introduced a probabilistic voter, regarding smbol probabilities in decision process besides majorit consensus. Conventional majorit voter is independent of functionalit of redundant modules. In our stud, proposed probabilistic voter is designed corresponding to functionalit of the redundant module. We tested probabilistic voter for and redundant modules with random transient errors inserted the wires and it was seen from simulation results that Multi-Modular Redundanc (M-MR) with Probabilistic Voting (PV) had been shown better availabilit performance than conventional majorit voter. Keword: Fault Tolerance, Fault Masking,Voting Algorithm. Introduction: Majorit voting is the most common voting technique used in Multi-Modular Redundanc (M-MR) for fault masking in digital sstems. [-] The most basic one is bit-bbit majorit voting, in which voter algorithm selects the most common output. In the Table, truth table of conventional bit-b-bit majorit voting for Triple Modular Redundanc (TMR) was given to demonstrate output selection from redundant modules according to majorit consensus. In this table,, and are output of modules and represents voter output. General architecture of M-MR sstem was shown in the Figure. In older studies, conventional majorit voter was seen to capable of masking single errors which occurs when one of three modules is fault. Table. Conventional bit-b-bit majorit voting [] Module Module Voter Module k Figure. Block diagram of the Multi-Modular Redundanc Conventional bit-b-bit majorit voting made its decision according to majorit consensus at outputs of redundant modules to select the most reliable results. It does not consider an information based on smbol probabilities derived from functionalit of

2 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) modules. In this paper, we proposed a bit-b-bit voting algorithm, which is rather aware of module functionalit, to increase availabilit of M-MR. This awareness relies on error probabilit of obtained result at output of the modules. In this manner, we called proposed voting algorithm as probabilistic voting. Probabilistic voting considerabl raised availabilit of M-MR in our simulations and also reduced the complexit of the voter circuitr. In the next sections, we will suggest a probabilistic voter design methodolog and then we will do performance comparison with conventional majorit voter designed for TMR, made of three redundant modules, and also MR, made of five redundant modules. Probabilistic Voting: Let member of set {,} probabilit of smbol { } be output smbols of redundant modules,,... k. E is being an error at output and E is probabilit of smbol { } being an error at output of module. For redundant module with n -bit input, logic function of n modules is defined b term in its truth table. Number of terms resulting { } at output of module is denoted b N. If smbol { } at output is an error, probabilit of this error can be expressed b N E = n () Number of terms resulting { } at output of module is denoted b N and similarl, if smbol { } at output is an error, probabilit of this error can be expressed b, N E = n () Lets expand truth table of bit-b-bit voter seen in Table to Table. Table. Generic truth table of probabilistic voting for TMR Cost for Cost for E / E / E X E / E X E E / X E / E X E E / X E E / X E / For a given particular logic function, X values in generic truth tables are determined b following equation. C C C C X = () C < C

3 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) Here, o can be calculated b following formulas, C is cost function for smbol { } and C is cost function for smbol { }. The E C = and V E C = () V Here V is number of redundant modules ielding { } smbol at output and V is number of redundant modules ielding { } smbol at output. For the TMR, ( V, V ) couples can take values given b the set of {(,),(,),(,),(,) }. Probabilistic voting selects the output smbol, which has lower cost b mean of equation (). Cost of each smbol is calculated depending onto probabilit of obtained smbol being an error ( E, E ) and number of modules producing this smbol ( V, V ) as expressed at equation (). Probabilit of obtained smbol being an error was expressed b equation () and equation () for each smbol under assumption of the uniform distributed random inputs applied to modules and under this assumption, ( E, E ) parameters is ver dependent on the functionalit of the redundant module. On the other hand, number of modules ielding a smbol reflects strength of smbol among redundant modules,,... k and cost function falls b strength of smbol. Since, lower cost means lower error probabilit and higher consensus, probabilistic voter selects the smbol that has lower cost as the most reliable output smbol. Probabilistic Voter Design Examples: In this section, we will demonstrate a design example of probabilistic voters of TMR for a given logic function. We can use Table that is a generic truth table, subjecting to E and E. Lets consider -input logic function, of which truth table was given in Table. Table. Truth table of f function a b c d f

4 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) Number of smbol { } in the table is.( N ) Number of smbol { } in the table is =.( N = ) Number of input bits is. ( n = ). Using these parameters coming from logic function, one can calculates error probabilit for smbol { } as E = / 6 and for smbol { } as E = / 6. Now, we can construct truth table of probabilistic voter for the logic function given in Table. Considering Table, produced truth table of probabilistic voter was given in the Table. Table. Truth table for Probabilistic voting Cost for {} Cost for {} (C ) (C ) /8 / /6 / /6 /6 / / /6 /6 / /6 / /8 Logic equation of probabilistic voter originated from Table can be written as following, = () Simulation Results For Probabilistic Voter: Faults on logic gates were assumed to result an error bit at the output of the gate. This error bit would be expectedl complement of correct result. In simulations, error bits satisfing desired error probabilities were inserted to wires, which is connected to outputs of fault gates. Program for this error insertion mechanism used in the simulation is seen below. Program: Error insertion to wire % rand is random number between. and. % Pe: error probabilit for wire. net: Variable for wire if (rand < Pe) net = not(net); end if In the simulation, inputs with uniform distribution were applied to fault redundant modules for each error probabilit given in a range. Outputs of fault redundant modules were connected both of conventional majorit voter and probabilistic voter. Correct results were counted for availabilit calculation defined b following equation, Cr A = (6) Tr

5 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) Cr is number of correct output and Tr is number of total output. A is the availabilit of the sstem. In the Figure, availabilit of the fault module, availabilit of TMR with conventional majorit voter and availabilit of TMR with probabilistic voter are compared for error probabilit of wires ranging. to.. Figure. Availabilit comparison Figure. Number of errors at output of sstem

6 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) It is seen from Figure and Figure, probabilistic voter exhibited superior fault masking performance than conventional bit-b-bit majorit voter. Besides, voter circuitr for probabilistic voter has lower complexit than conventional majorit voter. Probabilistic Voter Design For MR: Generic truth table of probabilistic voting for MR was given in Table. Table. Generic truth table of probabilistic voting for MR C C E / E / E X E / E X E / E / X E / E X E / E / X E / E / X E / E / X E / E X E / E / X E / E / X E / E / X E / E / X E / E / X E / E / X E E / X E / E X E / E / X E / E / X E / E / X E / E / X E / E / X E / E / X E E / X E / E / X E / E / X E / E / X E E / X E / E / X E E / X E E / X E / Let design probabilistic voter for MR with redundant module given as, f = a b c d a b c d a b c d a b c d (7) Relevant parameters for f function would be E = / 6 and E = / 6, logic equation of probabilistic voter inferred from Table can be written as following, 6

7 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) 7 = (8) Obtained results from the simulation are illustrated in the Figure and Figure. Figure. Availabilit comparison Figure. Number of errors at output of sstem

8 OncuBilim Algorithm And Sstems Labs. Vol.9, Art.No:,(9) Conclusions: Probabilistic voting regarding smbol probabilities as well as majorit consensus was seen to provide better availabilit and error masking performance. In the paper, we introduced a probabilistic voter design approach for digital sstems. Suggested probabilistic voter were demonstrated to able to have better performance in case of uniform distributed random error insertion to wires and under application of uniforml distributed random inputs. Other important point to be consider that, complexit of the probabilistic voter can be lower than conventional majorit voter circuitr. This point gains importance when high volume logic is needed to support b M-MR particularl in Register Transfer Level (RTL) designs. As a consequence, probabilistic voter designed for a specific logic function can have better availabilit-complexit performance than conventional majorit voters designed for common-use. Reference: [] S. Mitra, E.J. McCluske, Word Voter: A New Voter Design for Triple Modular Redundant Sstems,8th IEEE VLSI Test Smposium (VTS'), p. 6, () [] J.C. Lo, Single Fault Masking Logic Designs with Error Correcting Codes, International Workshop on Defect and Fault Tolerance in VLSI Sstems, p.96, (99) [] B.B. Alagoz, Hierarchical Triple-Modular Redundanc (H-TMR) Network For Fault Tolerance In Digital Sstems, Turkish Journal of Electrical Engineering and Computer Sciences, In Review, (8) [] B.B. Alagoz, Adaptive Fault Masking With Incoherence Scoring, OncuBilim Algorithm And Sstem Lab, Art. Vol.8 No:, (8) arxiv:8.86 to memor of m brother Serdar Onur Alagöz. 8

Fault Tolerance. Dealing with Faults

Fault Tolerance. Dealing with Faults Fault Tolerance Real-time computing systems must be fault-tolerant: they must be able to continue operating despite the failure of a limited subset of their hardware or software. They must also allow graceful

More information

Experiment 7: Magnitude comparators

Experiment 7: Magnitude comparators Module: Logic Design Lab Name:... University no:.. Group no: Lab Partner Name: Experiment 7: Magnitude comparators Mr. Mohamed El-Saied Objective: Realization of -bit comparator using logic gates. Realization

More information

System Reliability Analysis. CS6323 Networks and Systems

System Reliability Analysis. CS6323 Networks and Systems System Reliability Analysis CS6323 Networks and Systems Topics Combinatorial Models for reliability Topology-based (structured) methods for Series Systems Parallel Systems Reliability analysis for arbitrary

More information

Combinational Techniques for Reliability Modeling

Combinational Techniques for Reliability Modeling Combinational Techniques for Reliability Modeling Prof. Naga Kandasamy, ECE Department Drexel University, Philadelphia, PA 19104. January 24, 2009 The following material is derived from these text books.

More information

Radiation Induced Multi bit Upsets in Xilinx SRAM Based FPGAs

Radiation Induced Multi bit Upsets in Xilinx SRAM Based FPGAs LA-UR-05-6725 Radiation Induced Multi bit Upsets in Xilinx SRAM Based FPGAs Heather Quinn, Paul Graham, Jim Krone, and Michael Caffrey Los Alamos National Laboratory Sana Rezgui and Carl Carmichael Xilinx

More information

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs EECS150 - Digital Design Lecture 26 - Faults and Error Correction April 25, 2013 John Wawrzynek 1 Types of Faults in Digital Designs Design Bugs (function, timing, power draw) detected and corrected at

More information

A DESIGN DIVERSITY METRIC AND RELIABILITY ANALYSIS FOR REDUNDANT SYSTEMS. Subhasish Mitra, Nirmal R. Saxena and Edward J.

A DESIGN DIVERSITY METRIC AND RELIABILITY ANALYSIS FOR REDUNDANT SYSTEMS. Subhasish Mitra, Nirmal R. Saxena and Edward J. A DESIGN DIVERSITY METRIC AND RELIABILITY ANALYSIS FOR REDUNDANT SYSTEMS Subhasish Mitra Nirmal R. Saxena and Edward J. McCluskey Center for Reliable Computing (http://crc.stanford.edu) Departments of

More information

Lecture 5 Fault Modeling

Lecture 5 Fault Modeling Lecture 5 Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes

More information

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates.

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates. DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS AIM To design and implement encoders and decoders using logic gates. COMPONENTS REQUIRED S.No Components Specification Quantity 1. Digital IC Trainer

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

EGC221: Digital Logic Lab

EGC221: Digital Logic Lab Division of Engineering Programs EGC221: Digital Logic Lab Experiment #1 Basic Logic Gate Simulation Student s Name: Student s Name: Reg. no.: Reg. no.: Semester: Fall 2016 Date: 07 September 2016 Assessment:

More information

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA Nikitha.S.Paulin 1, S.Abirami 2, Prabu Venkateswaran.S 3 1, 2 PG students / VLSI

More information

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap EECS150 - Digital Design Lecture 26 Faults and Error Correction Nov. 26, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof.

More information

Reliable Computing I

Reliable Computing I Instructor: Mehdi Tahoori Reliable Computing I Lecture 5: Reliability Evaluation INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC) National Research Center of the Helmholtz

More information

A Low-Error Statistical Fixed-Width Multiplier and Its Applications

A Low-Error Statistical Fixed-Width Multiplier and Its Applications A Low-Error Statistical Fixed-Width Multiplier and Its Applications Yuan-Ho Chen 1, Chih-Wen Lu 1, Hsin-Chen Chiang, Tsin-Yuan Chang, and Chin Hsia 3 1 Department of Engineering and System Science, National

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Fault Tolerant Computing ECE 655 Part 1 Introduction C. M. Krishna Fall 2006 ECE655/Krishna Part.1.1 Prerequisites Basic courses in

More information

Markov Models for Reliability Modeling

Markov Models for Reliability Modeling Markov Models for Reliability Modeling Prof. Naga Kandasamy ECE Department, Drexel University, Philadelphia, PA 904 Many complex systems cannot be easily modeled in a combinatorial fashion. The corresponding

More information

Improving Common Subexpression Elimination Algorithm with A New Gate-Level Delay Computing Method

Improving Common Subexpression Elimination Algorithm with A New Gate-Level Delay Computing Method , 23-25 October, 2013, San Francisco, USA Improving Common Subexpression Elimination Algorithm with A New Gate-Level Dela Computing Method Ning Wu, Xiaoqiang Zhang, Yunfei Ye, and Lidong Lan Abstract In

More information

Tree and Array Multipliers Ivor Page 1

Tree and Array Multipliers Ivor Page 1 Tree and Array Multipliers 1 Tree and Array Multipliers Ivor Page 1 11.1 Tree Multipliers In Figure 1 seven input operands are combined by a tree of CSAs. The final level of the tree is a carry-completion

More information

Fault Detection probability evaluation approach in combinational circuits using test set generation method

Fault Detection probability evaluation approach in combinational circuits using test set generation method Fault Detection probability evaluation approach in combinational circuits using test set generation method Namita Arya 1, Amit Prakash Singh 2 University of Information and Communication Technology, Guru

More information

CpE358/CS381. Switching Theory and Logical Design. Class 2

CpE358/CS381. Switching Theory and Logical Design. Class 2 CpE358/CS38 Switching Theor and Logical Design Class 2 CpE358/CS38 Switching Theor and Logical Design Summer- 24 Copright 24 Stevens Institute of Technolog -45 Toda s Material Fundamental concepts of digital

More information

Stochastic Computing: A Design Sciences Approach to Moore s Law

Stochastic Computing: A Design Sciences Approach to Moore s Law Stochastic Computing: A Design Sciences Approach to Moore s Law Naresh Shanbhag Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana Champaign

More information

ECE 3060 VLSI and Advanced Digital Design. Testing

ECE 3060 VLSI and Advanced Digital Design. Testing ECE 3060 VLSI and Advanced Digital Design Testing Outline Definitions Faults and Errors Fault models and definitions Fault Detection Undetectable Faults can be used in synthesis Fault Simulation Observability

More information

Digital Electronics. Part A

Digital Electronics. Part A Digital Electronics Final Examination Part A Winter 2004-05 Student Name: Date: lass Period: Total Points: Multiple hoice Directions: Select the letter of the response which best completes the item or

More information

CHAPTER 9: SEQUENTIAL CIRCUITS

CHAPTER 9: SEQUENTIAL CIRCUITS CHAPTER 9: ASYNCHRONOUS SEUENTIAL CIRCUITS Chapter Objectives 2 Sequential circuits that are not snchronized b a clock Asnchronous circuits Analsis of Asnchronous circuits Snthesis of Asnchronous circuits

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

LA-UR- Title: Author(s): Submitted to: Approved for public release; distribution is unlimited.

LA-UR- Title: Author(s): Submitted to: Approved for public release; distribution is unlimited. LA-UR- Approved for public release; distribution is unlimited. Title: Author(s): Submitted to: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University

More information

Design of an Online Testable Ternary Circuit from the Truth Table

Design of an Online Testable Ternary Circuit from the Truth Table Design of an Online Testable Ternary Circuit from the Truth Table N. M. Nayeem and J. E. Rice Dept. of Math & Computer Science University of Lethbridge, Lethbridge, Canada {noor.nayeem,j.rice}@uleth.ca

More information

Terminology and Concepts

Terminology and Concepts Terminology and Concepts Prof. Naga Kandasamy 1 Goals of Fault Tolerance Dependability is an umbrella term encompassing the concepts of reliability, availability, performability, safety, and testability.

More information

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview 407 Computer Aided Design for Electronic Systems Simulation Instructor: Maria K. Michael Overview What is simulation? Design verification Modeling Levels Modeling circuits for simulation True-value simulation

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Saroj Kumar Chandra Department Of Computer Science & Engineering, Chouksey Engineering College, Bilaspur

More information

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria SENS'6 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY 4 6 June 6, Varna, Bulgaria SIMULATION ANALYSIS OF THE VITERBI CONVOLUTIONAL DECODING ALGORITHM

More information

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions 6.45 Principles of Digital Communication II Wednesda, Ma 4, 25 MIT, Spring 25 Hand #22 Problem Set 9 Solutions Problem 8.3 (revised) (BCJR (sum-product) decoding of SPC codes) As shown in Problem 6.4 or

More information

COMPARISON STUDY OF SENSITIVITY DEFINITIONS OF NEURAL NETWORKS

COMPARISON STUDY OF SENSITIVITY DEFINITIONS OF NEURAL NETWORKS COMPARISON SUDY OF SENSIIVIY DEFINIIONS OF NEURAL NEORKS CHUN-GUO LI 1, HAI-FENG LI 1 Machine Learning Center, Facult of Mathematics and Computer Science, Hebei Universit, Baoding 07100, China Department

More information

Lecture 8: Sequential Multipliers

Lecture 8: Sequential Multipliers Lecture 8: Sequential Multipliers ECE 645 Computer Arithmetic 3/25/08 ECE 645 Computer Arithmetic Lecture Roadmap Sequential Multipliers Unsigned Signed Radix-2 Booth Recoding High-Radix Multiplication

More information

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM Nabihah Ahmad Department of Electronic Engineering, Faculty of Electrical and Electronic Engineering, Universiti

More information

Toward Hardware- Redundant, Fault-Tolerant Logic for Nanoelectronics

Toward Hardware- Redundant, Fault-Tolerant Logic for Nanoelectronics Advanced Technologies and Reliable Design for Nanotechnology Systems Toward Hardware- Redundant, Fault-Tolerant Logic for Nanoelectronics Jie Han and Jianbo Gao University of Florida Yan Qi Johns Hopkins

More information

Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary

Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary Extracted from Agrawal & Bushnell VLSI Test: Lecture 15 1 % of chip area Importance of memories Memories dominate

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.)

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) 1 Learning Objectives 1. Apply the laws and theorems of Boolean algebra to to the manipulation of algebraic expressions to simplifying an expression, finding

More information

Simplification of State Machines

Simplification of State Machines T3 Lecture Notes State Reduction hapter 9 - of Simplification of State Machines This semester has been spent developing the techniques needed to design digital circuits. Now we can compile a list of just

More information

Reliability Modeling of Nanoelectronic Circuits

Reliability Modeling of Nanoelectronic Circuits Reliability odeling of Nanoelectronic Circuits Jie Han, Erin Taylor, Jianbo Gao and José Fortes Department of Electrical and Computer Engineering, University of Florida Gainesville, Florida 6-600, USA.

More information

Counting Two-State Transition-Tour Sequences

Counting Two-State Transition-Tour Sequences Counting Two-State Transition-Tour Sequences Nirmal R. Saxena & Edward J. McCluskey Center for Reliable Computing, ERL 460 Department of Electrical Engineering, Stanford University, Stanford, CA 94305

More information

Lecture 6 - LANDAUER: Computing with uncertainty

Lecture 6 - LANDAUER: Computing with uncertainty Lecture 6 - LANDAUER: Computing with uncertainty Igor Neri - NiPS Laboratory, University of Perugia July 18, 2014!! NiPS Summer School 2014 ICT-Energy: Energy management at micro and nanoscales for future

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY

IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY Dr.E.N.Ganesh Professor ECE Department REC Chennai, INDIA Email : enganesh50@yahoo.co.in Abstract Quantum cellular automata

More information

NEW SELF-CHECKING BOOTH MULTIPLIERS

NEW SELF-CHECKING BOOTH MULTIPLIERS Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 3, 319 328 DOI: 10.2478/v10006-008-0029-4 NEW SELF-CHECKING BOOTH MULTIPLIERS MARC HUNGER, DANIEL MARIENFELD Department of Electrical Engineering and

More information

CS/EE 181a 2008/09 Lecture 4

CS/EE 181a 2008/09 Lecture 4 CS/EE 181a 28/9 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance

Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance Tong-Yu Hsieh and Kuen-Jong Lee Department of Electrical Engineering National Cheng Kung University Tainan, Taiwan 70101

More information

RT54SX72SU Heavy Ion Beam Test Report. August 6, 2004 J.J. Wang (650)

RT54SX72SU Heavy Ion Beam Test Report. August 6, 2004 J.J. Wang (650) RT54SX72SU Heavy Ion Beam Test Report August 6, 2004 J.J. Wang (650) 318-4576 jih-jong.wang@actel.com 1 SUMMARY RT54SX72SU from UMC foundry is heavy-ion-beam tested for single event effects (SEE) at Brookhaven

More information

EXPERT SYSTEM FOR POWER TRANSFORMER DIAGNOSIS

EXPERT SYSTEM FOR POWER TRANSFORMER DIAGNOSIS EXPERT SYSTEM FOR POWER TRANSFORMER DIAGNOSIS Virginia Ivanov Maria Brojboiu Sergiu Ivanov University of Craiova Faculty of Electrical Engineering 107 Decebal Blv., 200440, Romania E-mail: vivanov@elth.ucv.ro

More information

Online Testable Reversible Circuits using reversible gate

Online Testable Reversible Circuits using reversible gate Online Testable Reversible Circuits using reversible gate 1Pooja Rawat, 2Vishal Ramola, 1M.Tech. Student (final year), 2Assist. Prof. 1-2VLSI Design Department 1-2Faculty of Technology, University Campus,

More information

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only)

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only) CSE140 HW1 Solution (100 Points) 1 Introduction The purpose of this assignment is three-fold. First, it aims to help you practice the application of Boolean Algebra theorems to transform and reduce Boolean

More information

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3,

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3, 1 Ph 219c/CS 219c Exercises Due: Thursday 9 March 2017.1 A cleaning lemma for CSS codes In class we proved the cleaning lemma for stabilizer codes, which says the following: For an [[n, k]] stabilizer

More information

Transistor Implementation of Reversible Comparator Circuit Using Low Power Technique

Transistor Implementation of Reversible Comparator Circuit Using Low Power Technique Transistor Implementation of Reversible Comparator Circuit Using Low Power Technique Madhina Basha, V.N.Lakshmana Kumar Department of ECE, MVGR COLLEGE OF ENGINEERING Visakhapatnam, A.P, INDIA Abstract:

More information

Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case

Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case Aleksei Vambol 1 and Vyacheslav Kharchenko 1,2 1 Department of Computer Systems, Networks and Cybersecurity, National

More information

Additional Gates COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

Additional Gates COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Additional Gates COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Additional Gates and Symbols Universality of NAND and NOR gates NAND-NAND

More information

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Uppoju Shiva Jyothi M.Tech (ES & VLSI Design), Malla Reddy Engineering College For Women, Secunderabad. Abstract: Quantum cellular automata

More information

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 04 (April 2015), PP.72-77 High Speed Time Efficient Reversible ALU Based

More information

DEPARTMENT OF ECE Faculty of Engineering and Technology, SRM University 15EC203J DIGITAL SYSTEMS LAB

DEPARTMENT OF ECE Faculty of Engineering and Technology, SRM University 15EC203J DIGITAL SYSTEMS LAB DEPARTMENT OF ECE Faculty of Engineering and Technology, SRM University SRM Nagar, Kattankulathur 603203, Kancheepuram District, Tamilnadu 15EC203J DIGITAL SYSTEMS LAB LABORATORY REPORT COVER PAGE Name

More information

Vision Modules and Cue Combination

Vision Modules and Cue Combination Cue Coupling This section describes models for coupling different visual cues. The ideas in this section are logical extensions of the ideas in the earlier sections. But we are now addressing more complex

More information

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA International Journal on Intelligent Electronic System, Vol.9 No.2 July 2015 1 DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA Aruna S 1, Senthil Kumar K 2 1 PG scholar

More information

12/31/2010. Overview. 05-Boolean Algebra Part 3 Text: Unit 3, 7. DeMorgan s Law. Example. Example. DeMorgan s Law

12/31/2010. Overview. 05-Boolean Algebra Part 3 Text: Unit 3, 7. DeMorgan s Law. Example. Example. DeMorgan s Law Overview 05-oolean lgebra Part 3 Text: Unit 3, 7 EEGR/ISS 201 Digital Operations and omputations Winter 2011 DeMorgan s Laws lgebraic Simplifications Exclusive-OR and Equivalence Functionally omplete NND-NOR

More information

On the Reliable Performance of Sequential Adders for Soft Computing

On the Reliable Performance of Sequential Adders for Soft Computing On the Reliable Performance of Sequential Adders for Soft Computing Jinghang Liang ECE Department University of Alberta Edmonton, Canada jinghang@ualberta.ca Jie Han ECE Department University of Alberta

More information

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers Gerard MBlair The Department of Electrical Engineering The University of Edinburgh The King

More information

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder M.S.Navya Deepthi M.Tech (VLSI), Department of ECE, BVC College of Engineering, Rajahmundry. Abstract: Quantum cellular automata (QCA) is

More information

On the Functions Realized by Stochastic Computing Circuits

On the Functions Realized by Stochastic Computing Circuits On the Functions Realied b Stochastic uting Circuits Armin Alaghi and John P. Haes Advanced uter Architecture Laborator Department of Electrical Engineering and uter Science Universit of Michigan, Ann

More information

Menu. Binary Adder EEL3701 EEL3701. Add, Subtract, Compare, ALU

Menu. Binary Adder EEL3701 EEL3701. Add, Subtract, Compare, ALU Other MSI Circuit: Adders >Binar, Half & Full Canonical forms Binar Subtraction Full-Subtractor Magnitude Comparators >See Lam: Fig 4.8 ALU Menu Look into m... 1 Binar Adder Suppose we want to add two

More information

Decision tables and decision spaces

Decision tables and decision spaces Abstract Decision tables and decision spaces Z. Pawlak 1 Abstract. In this paper an Euclidean space, called a decision space is associated with ever decision table. This can be viewed as a generalization

More information

D.5 Quantum error correction

D.5 Quantum error correction D. QUANTUM ALGORITHMS 157 Figure III.34: E ects of decoherence on a qubit. On the left is a qubit yi that is mostly isoloated from its environment i. Ontheright,aweakinteraction between the qubit and the

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

c 2009 Eric Park Kim

c 2009 Eric Park Kim c 2009 Eric Park Kim SOFT N -MODULAR REDUNDANCY: EXPLOITING STATISTICS FOR ROBUST COMPUTATION BY ERIC PARK KIM THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Exam for Physics 4051, October 31, 2008

Exam for Physics 4051, October 31, 2008 Exam for Physics 45, October, 8 5 points - closed book - calculators allowed - show your work Problem : (6 Points) The 4 bit shift register circuit shown in Figure has been initialized to contain the following

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 3: Fault-Tolerance and Modelling Contents Reliability: Basic Mathematical Model Example Failure Rate Functions Probabilistic Structural-Based Modeling: Part 1 Maintenance

More information

Quantitative evaluation of Dependability

Quantitative evaluation of Dependability Quantitative evaluation of Dependability 1 Quantitative evaluation of Dependability Faults are the cause of errors and failures. Does the arrival time of faults fit a probability distribution? If so, what

More information

Analysis and Synthesis of Weighted-Sum Functions

Analysis and Synthesis of Weighted-Sum Functions Analysis and Synthesis of Weighted-Sum Functions Tsutomu Sasao Department of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka 820-8502, Japan April 28, 2005 Abstract A weighted-sum

More information

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2.

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2. Digital Circuits 1. Inputs & Outputs are quantized at two levels. 2. inary arithmetic, only digits are 0 & 1. Position indicates power of 2. 11001 = 2 4 + 2 3 + 0 + 0 +2 0 16 + 8 + 0 + 0 + 1 = 25 Digital

More information

Implementation of Boolean Logic by Digital Circuits

Implementation of Boolean Logic by Digital Circuits Implementation of Boolean Logic by Digital Circuits We now consider the use of electronic circuits to implement Boolean functions and arithmetic functions that can be derived from these Boolean functions.

More information

Chapter 2 Fault Modeling

Chapter 2 Fault Modeling Chapter 2 Fault Modeling Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why Model Faults? Fault Models (Faults)

More information

Data Dependence in Combining Classifiers

Data Dependence in Combining Classifiers in Combining Classifiers Mohamed Kamel, Nayer Wanas Pattern Analysis and Machine Intelligence Lab University of Waterloo CANADA ! Dependence! Dependence Architecture! Algorithm Outline Pattern Recognition

More information

UNIVERSITY OF CALGARY. Noise-Immune Digital Circuit Design. Based on Probabilistic Models. Golam Tangim A THESIS

UNIVERSITY OF CALGARY. Noise-Immune Digital Circuit Design. Based on Probabilistic Models. Golam Tangim A THESIS UNIVERSITY OF CALGARY Noise-Immune Digital Circuit Design Based on Probabilistic Models by Golam Tangim A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

CSE 320: Spartan3 I/O Peripheral Testing

CSE 320: Spartan3 I/O Peripheral Testing CSE 320: Spartan3 I/O Peripheral Testing Ujjwal Gupta, Kyle Gilsdorf Arizona State University Version 1.1 October 2, 2012 Contents 1 Introduction 2 2 Test code description and procedure 2 2.1 Modes...............................

More information

Soft N-Modular Redundancy. Eric P. Kim, Student, IEEE, and Naresh R. Shanbhag, Fellow, IEEE

Soft N-Modular Redundancy. Eric P. Kim, Student, IEEE, and Naresh R. Shanbhag, Fellow, IEEE 1 Soft N-Modular Redundancy Eric P. Kim, Student, IEEE, and Naresh R. Shanbhag, Fellow, IEEE Abstract Achieving robustness and energy-efficiency in nanoscale CMOS process technologies is made challenging

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

CHAPTER 7. Solutions for Exercises

CHAPTER 7. Solutions for Exercises CHAPTER 7 Solutions for Exercises E7.1 (a) For the whole part we have: Quotient Remainders 23/2 11 1 11/2 5 1 5/2 2 1 2/2 1 0 1/2 0 1 Reading the remainders in reverse order we obtain: 23 10 = 10111 2

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T1 SYSTEMS OF LINEAR INEQUALITIES 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) A SYSTEM OF LINEAR INEQUALITIES = a problem where or more inequalities are graphed on the same grid, the solution

More information

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices Indian Institute of Technolog Jodhpur, Year 207 208 Digital Logic and Design (Course Code: EE222) Lecture 5: Digital Electronics Fundamentals Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

Safety and Reliability of Embedded Systems

Safety and Reliability of Embedded Systems (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Mathematical Background and Algorithms Prof. Dr. Liggesmeyer, 0 Content Definitions of Terms Introduction to Combinatorics General

More information

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

Resource Efficient Design of Quantum Circuits for Quantum Algorithms Resource Efficient Design of Quantum Circuits for Quantum Algorithms Himanshu Thapliyal Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY hthapliyal@uky.edu Quantum

More information

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops Int. J. Nanosci. Nanotechnol., Vol. 13, No. 1, March. 2017, pp. 53-58 Design of Optimized Quantum-dot Cellular Automata RS Flip Flops A. Rezaei* 1 Electrical Engineering Department, Kermanshah University

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

SEMICONDUCTOR MEMORIES

SEMICONDUCTOR MEMORIES SEMICONDUCTOR MEMORIES Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM

More information

Assessing system reliability through binary decision diagrams using bayesian techniques.

Assessing system reliability through binary decision diagrams using bayesian techniques. Loughborough University Institutional Repository Assessing system reliability through binary decision diagrams using bayesian techniques. This item was submitted to Loughborough University's Institutional

More information

Volume 3, No. 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at

Volume 3, No. 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at Volume 3, No 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at wwwjgrcsinfo A NOVEL HIGH DYNAMIC RANGE 5-MODULUS SET WHIT EFFICIENT REVERSE CONVERTER AND

More information

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Miloš D. Ercegovac Computer Science Department Univ. of California at Los Angeles California Robert McIlhenny

More information

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation Congbing Li Haruo Kobayashi Gunma University Gunma University Kobayashi Lab Outline Research Objective & Background

More information

A COMPARISON OF LOGICAL EFFICIENCY

A COMPARISON OF LOGICAL EFFICIENCY A COMPARISON OF LOGICAL EFFICIENCY OF REVERSIBLE AND CONVENTIONAL GATES P. KERNTOPF WARSAW UNIVERSITY OF TECHNOLOGY, POLAND ABSTRACT In contrast to conventional gates, reversible logic gates have the same

More information