Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects:

Size: px
Start display at page:

Download "Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects:"

Transcription

1 ESULTANTS

2 orce Couple Systems = eduction of a orce to an Equivalent orce and Moment (Moving a orce to Another Point) The force acting on a body has two effects: the first one is the tendency to push or pull the body in the direction of the force, and the second one is to rotate the body about any fixed axis which does not intersect nor is parallel to the line of the force. This dual effect can more easily be represented by replacing the given force by an equal parallel force and a couple to compensate for the change in the moment of the force.

3 Let us consider for acting at point A in a rigid body. It is possible to slide force along its line of action, but it is not possible to directly move it to point B without changing the external effect on the rigid body.

4 In order to do this, two equal and opposite forces and are added to point B without introducing any net external effects on the body. It is seen that, the original force at A and and the equal and opposite one at B constitute the couple M=d, which is counterclockwise for this case.

5 Therefore, we have replaced the original force at A by the same force acting at a different point B and a couple, without altering the external effects of the original force on the body. Since a free vector, its location is of no concern. The combination of the force and couple is referred to as a force-couple system. M is

6 By reversing this process, we can combine a given couple and a force which lies in the plane of the couple (normal to the couple vector) to produce a single, equivalent force. orce can be moved to a point by constructing a moment equal in magnitude and M opposite in direction. The magnitude and direction of M remains the same, but its new line of action will be d distance away from point B.

7 1. A force of magnitude 50 N is exerted on the automobile parkingbrake lever at the position x=50 mm. eplace the force by an equivalent force-couple system at the pivot point O.

8 . The device shown is part of an automobile seat-back-release mechanism. The part is subected to the 4 N force exerted at A and a 300 Nmm restoring moment exerted by a hidden torsional spring. Determine the y-intercept of the line of action of the single equivalent force.

9 3. A 50 N horizontal force is applied to the handle of the industrial water valve as shown. The force is perpendicular to the vertical plane containing line OA of the handle. Determine the equivalent forcecouple system at point O.

10 Simplification of orce Systems esultants If two force systems are creating the same external effect on the rigid body they are exerted on, they are said to be equivalent. The resultant of a force system is the simplest combination that they can be reduced without altering the external effects they produce on the body.

11 Coplanar orce Systems If the resultant of all forces 1,, 3,..., n lying in a single plane such as xy is, this resultant is calculated by the vector sum of these forces n x x y y tan x y 1 y x

12 The location of the line of action of the resultant force to an arbitrary point (such as point O is the origin of the xy coordinate system) can be determined by using the Varignon s theorem. The moment of about point O will be equal the sum of the couple moments constructed by moving its components to point O. M o M d d M o

13 380 mm C 160 mm 800 N 150 mm 800 N A 30 mm B 4. The forces acting on the belts on a pulley system are equal with a magnitude of 800 N. The pulley is secured to the steel column by means of two bolts at A and B. eplace the two forces with a force-couple system, in which the equivalent force will be at the midpoint of the bolts. Then, determine the force each bolt will sustain by distributing this force and couple to forces acting at points A and B.

14 5. Under nonuniform and slippery road conditions, the four forces shown are exerted on the four drive wheels of the all-wheel-drive vehicle. Determine the resultant of this system and the x- and y-intercepts of its line of action. Note that the front and rear tracks are equal (i. e., ). AB CD

15 Three Dimensional orce Systems The same principles can be enlarged to three dimensional force systems. The resultant of forces acting on a body can be obtained by moving them to a desired point. In this way, the given force system will be converted to 1,, 3,..., n 1) Three dimensional, concurrent forces comprising the same magnitudes and directions as the original forces, ) Three dimensional couples.

16 By calculating the resultants of these forces and couples, a single resultant force and a single couple can be obtained. The resultant force, z y x z z y y x x n

17 C C The resultant couple moment, The selection of point O is arbitrary, but the magnitude and direction of M M direction of r C will depend on this point; whereas, the magnitude and are the same no matter which point is selected.

18 6. Determine the force-couple system at O which is equivalent to the two forces applied to the shaft AOB. Is perpendicular to M? O

19 7. epresent the resultant of the force system acting on the pipe assembly by a single force at A and a couple.

20 8. The special purpose milling-cutter is subected to the force of 100 N and a couple of 40 N.m as shown. eplace this loading system by an equivalent force-couple system at O.

21 9. The tension in cable AB is 450 N and the tension in cable CD is 70 N. Suppose that you want to replace these two cables by a single cable E so that the force exerted on the wall at E is equivalent to the two forces exerted by cables AB and CD on the walls at A and C. What is the tension in cable E and what are the coordinates of points E and?

22 10. The threading dye is screwed onto the end of the fixed pipe which is bent through an angle of 0. eplace the two forces by an equivalent force at O and a couple. ind and calculate the magnitude M of the moment which tends to screw the pipe into the fixed block about its angled axis through O.

23 M o 0.15sin 0i 0.15cos 0k 0.k 0.5i sin 0i 0.15cos 0k 0.k 0.5i 150 M o 17i 85k eoc sin 0i cos 0k 0.34i M M M OC o 0.94k 17i 85k 0.34i 0.94k Nm

24 tan N 500 N y 34 cm 3400 N cm 30 cm 800 N. m tan 8 15 z 50 cm x 50 cm 11. The pulleys and the gear are subected to the loads shown. or these forces, determine the equivalent force-couple system at point A.

25 i i i i i i i i i k i C r M k C k i i k r k i r k i r i k i i i k r C r M A A

26 * Line MN lies in a plane parallel to the horizontal plane * Line AD lies in the xz plane and makes a 37 angle with the x axis 1. The direction cosines of robot arm AB are cos x =0.6, cos y ( y <90 ) and cos z =0 dır. or arm BC the direction cosines are, cos x =7/9, cos y =4/9 and cos z =4/9. A force of magnitude =50 N and a couple of magnitude C=7 Nm along the axis BC are applied to the end C of arm BC. Determine the moment about line AD. eplace the force and couple acting on the robot assembly with an equivalent force-couple at point A.

27 As a special case, if the resultant couple the resultant force is perpendicular to, these two vectors can further be simplified to obtain a single resultant force. The force can be slided a distance d to form a moment and opposite in direction M M M out. The distance d will be equal to d=m/., which is equal in magnitude, so that they will cancel each other

28 Wrench esultants When the resultant couple vector force, the resultant is called a wrench. is parallel to the resultant The wrench is the simplest form in which the resultant of a general force system may be expressed. By definition, a wrench is positive if the couple and force vectors point in the same direction, and negative it they point in opposite directions. M

29 Wrench esultants A common example example of a wrench is found with the application of a screw driver. All force systems can be reduced to a wrench acting at a particular line of action. M

30 // // 1 M M M M e e M M M Equivalent force-couple system at point O M is resolved into components M 1 along the direction of and M normal to. Positive wrench M d

31 Positive Wrench Negative Wrench

32 13. In tightening a bolt whose center is at point O, a person exerts a 180 N force on the ratchet handle with his right hand. In addition, with his left hand he exerts a 90-N force as shown in order to secure the socket onto the bolt head. Determine the equivalent forcecouple system at O. The find the point in the x-y plane through which the line of action of the resultant force of the wrench passes.

33 14.

34 Z C 1 = 30 N = 75 N 3 = 40 N C 1 = 60 Nm C = 100 Nm (in yz plane) X B 6 m 37 C 1 A C 3 G y C O 53 E 30 3 C 3 = 80 Nm (in plane ABCD) y > 90 o Y O (0, 0, 0) m A (1, 0, 0) m B (in xz plane) C (1, 8, 0) m E (6, 10, -3) m G (10, 4, 4) m 4 m D 15. eplace the system comprising two forces, two couples and a positive wrench with an equivalent force-couple acting at point O. Then, reduce the system further into a wrench and determine the coordinates of point P, of which the line of action of the wrench cuts through the yz plane.

35 0.78k i k i e 96.5k i 34.64k 16 1i 40cos 30k 40cos 60sin53 40cos 60cos 53i 46.88k i )k (0 0) (8 i k i cos60k cos60 30 cos45 i 60 1 cos 60 cos 45 cos o y y orce:

36 Moment: M o r C r1 1 r r3 3 C1 60 cos45 i C 100i BA BD 6i 8k 4 3i 4k 3i 4k C i 3k 3 4 M M o o 10i 4 4k 1.1i 15 15k 1i i k 6i 10 3k 1i k cos 60 cos 60k 4.4i k i k 394.4i k 4.4i 30 30k 100i 64i 3k i k k i k 394.4i k 30 30k

37 Equivalent force-couple system at point O 1.95i k M i k o eduction to a wrench in yz plane M // M o e i k 0.015i k M M e i k i // // Positive wrench 1.95i k M i k // k M M o Nm z Positive wrench M // 1.95i k i k O x y

38 The coordinates of point P, of which the line of action of the wrench cuts through the yz plane: M Mo M // M i k y zk 1.95i k r i k i k i k 1.95yk 96.5yi 1.45z 77.8zi i k 1.95z z m k 1.95y y m M z 1.95i k Positive wrench r M // i k P(0;391.7;474.66) x O y

acting on a body has two effects:

acting on a body has two effects: The force acting on a body has two effects: the first one is the tendency to push or pull the body in the direction of the force, and the second one is to rotate the body about any fixed axis which does

More information

1. The tie-rod AB exerts the 250 N force on the steering knuckle AO as shown. Replace this force by an equivalent force-couple system at O.

1. The tie-rod AB exerts the 250 N force on the steering knuckle AO as shown. Replace this force by an equivalent force-couple system at O. 1. The terod AB exerts the 50 N force on the steerng knuckle AO as shown. Replace ths force by an equvalent forcecouple system at O. . The devce shown s part of an automoble seatbackrelease mechansm. The

More information

Force Couple Systems = Replacement of a Force with an Equivalent Force and Moment (Moving a Force to Another Point)

Force Couple Systems = Replacement of a Force with an Equivalent Force and Moment (Moving a Force to Another Point) orce Couple Sstems = eplacement of a orce with an Equivalent orce and oment (oving a orce to Another Point) The force acting on a bod has two effects: The first one is the tendenc to push or pull the bod

More information

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A.

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A. 3D Force Couple System and Resultant Q.No.1: Replace the force system by an equivalent force and couple moment at point A. Q.No.2: Handle forces F1 and F2 are applied to the electric drill. Replace this

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 2: Force Systems Part A: Two Dimensional Force Systems Force Force = an action of one body on another Vector quantity External and Internal forces Mechanics of Rigid

More information

2. Force Systems. 2.1 Introduction. 2.2 Force

2. Force Systems. 2.1 Introduction. 2.2 Force 2. Force Systems 2.1 Introduction 2.2 Force - A force is an action of one body on another. - A force is an action which tends to cause acceleration of a body (in dynamics). - A force is a vector quantity.

More information

ARC241 Structural Analysis I Lecture 5, Sections ST4.5 ST4.10

ARC241 Structural Analysis I Lecture 5, Sections ST4.5 ST4.10 Lecture 5, Sections ST4.5 ST4.10 ST4.5) Moment of a Force about a Specified Axis ST4.6) Moment of a Couple ST4.7) Equivalent System ST4.8) Resultant of a Force and a Couple System ST4.9) Further Reduction

More information

F = 140 N. 1. A mechanic pulls on the 13-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center O.

F = 140 N. 1. A mechanic pulls on the 13-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center O. 95sin15 1. mechanic pulls on the 1-mm combination wrench with the 140 N force shown. Determine the moment of this force about the bolt center. //y = 140 N y = 140cos5 N 15 o 5 o + o 15 o 95cos15 //x x

More information

Similar to trusses, frames are generally fixed, load carrying structures.

Similar to trusses, frames are generally fixed, load carrying structures. Similar to trusses, frames are generally fixed, load carrying structures. The main difference between a frame and a truss is that in a frame at least one member is a multi force member (çoklu kuvvet elemanı).

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

(counterclockwise - ccw)

(counterclockwise - ccw) Problems (on oment) 1. The rod on the power control mechanism for a business jet is subjected to a force of 80 N. Determine the moment of this force about the bearing at. + 0.15sin 6080sin 00.15cos60 80

More information

STATICS. Rigid Bodies: Equivalent Systems of Forces VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Rigid Bodies: Equivalent Systems of Forces VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Rigid Bodies: Equivalent Systems of Forces Contents

More information

Force System Resultants. Engineering Mechanics: Statics

Force System Resultants. Engineering Mechanics: Statics Force System Resultants Engineering Mechanics: Statics Chapter Objectives To discuss the concept of the moment of a force and show how to calculate it in 2-D and 3-D systems. Definition of the moment of

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Engineering Mechanics I. Phongsaen PITAKWATCHARA

Engineering Mechanics I. Phongsaen PITAKWATCHARA 2103-213 Engineering Mechanics I phongsaen@gmail.com December 6, 2007 Contents Preface iii 1 Introduction to Statics 1 1.0 Outline................................. 2 1.1 Basic Concepts............................

More information

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector 1. Sstems of orces & s 2142111 Statics, 2011/2 Department of Mechanical Engineering, Chulalongkorn Uniersit bjecties Students must be able to Course bjectie Analze a sstem of forces and moments Chapter

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

DEFINITION AND CLASSIFICATION OF FORCES

DEFINITION AND CLASSIFICATION OF FORCES DEINITION AND CLASSIICATION O ORCES As defined before, force is an action of one body on another. It is a vector quantity since its effect depends on the direction as well as on the magnitude of the action.

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk.

1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk. 1. An experimental device imparts a force of magnitude F = 225 N to the front edge of the rim at A to simulate the effect of a slam dunk. Determine the moments of the force F about point and about point

More information

Ishik University / Sulaimani Architecture Department Structure ARCH 214 Chapter -4- Force System Resultant

Ishik University / Sulaimani Architecture Department Structure ARCH 214 Chapter -4- Force System Resultant Ishik University / Sulaimani Architecture Department 1 Structure ARCH 214 Chapter -4- Force System Resultant 2 1 CHAPTER OBJECTIVES To discuss the concept of the moment of a force and show how to calculate

More information

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module No. - 01 Basics of Statics Lecture No. - 01 Fundamental of Engineering Mechanics

More information

SOLUTION 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D).

SOLUTION 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D). 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D). Consider the three vectors; with A vertical. Note obd is perpendicular

More information

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0 8 1. The mine car and its contents have a total mass of 6 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is m s = 0.4 when the wheels are locked,

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

SIMPLIFICATION OF FORCE AND COUPLE SYSTEMS & THEIR FURTHER SIMPLIFICATION

SIMPLIFICATION OF FORCE AND COUPLE SYSTEMS & THEIR FURTHER SIMPLIFICATION SIMPLIFICATION OF FORCE AND COUPLE SYSTEMS & THEIR FURTHER SIMPLIFICATION Today s Objectives: Students will be able to: a) Determine the effect of moving a force. b) Find an equivalent force-couple system

More information

PROBLEMS on FORCE SYSTEMS

PROBLEMS on FORCE SYSTEMS on FORCE SYSTEMS 1. The guy cables AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8 kn. Determine the required tension T in cable AC such that the net effect of

More information

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc. Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six

More information

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces Chap. 3 Rigid Bodies: Equivalent Systems of Forces Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application of the forces

More information

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force Course Overview Statics (Freshman Fall) Engineering Mechanics Dynamics (Freshman Spring) Strength of Materials (Sophomore Fall) Mechanism Kinematics and Dynamics (Sophomore Spring ) Aircraft structures

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/c05/c2hlch... CHAPTER 5 MOMENTS 1 of 3 10-Sep-12 16:35

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/c05/c2hlch... CHAPTER 5 MOMENTS 1 of 3 10-Sep-12 16:35 Peter Christopher/Masterfile... 1 of 3 10-Sep-12 16:35 CHAPTER 5 MOMENTS Peter Christopher/Masterfile... 2 of 3 10-Sep-12 16:35 Peter Christopher/Masterfile In Chapter 4 we considered the forces that push

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

The case where there is no net effect of the forces acting on a rigid body

The case where there is no net effect of the forces acting on a rigid body The case where there is no net effect of the forces acting on a rigid body Outline: Introduction and Definition of Equilibrium Equilibrium in Two-Dimensions Special cases Equilibrium in Three-Dimensions

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1 MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

More information

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley.

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley. Sample 1 The tongs are designed to handle hot steel tubes which are being heat-treated in an oil bath. For a 20 jaw opening, what is the minimum coefficient of static friction between the jaws and the

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

Chapter - 1. Equilibrium of a Rigid Body

Chapter - 1. Equilibrium of a Rigid Body Chapter - 1 Equilibrium of a Rigid Body Dr. Rajesh Sathiyamoorthy Department of Civil Engineering, IIT Kanpur hsrajesh@iitk.ac.in; http://home.iitk.ac.in/~hsrajesh/ Condition for Rigid-Body Equilibrium

More information

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF.

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF. 1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member B. Joint A AB A I. Cut D D B A 26 kn A I. Cut H 13 kn D B D A H 13 kn 2. Determine

More information

MOMENT OF A FORCE ABOUT A POINT

MOMENT OF A FORCE ABOUT A POINT MOMENT OF A FORCE ABOUT A POINT The tendency of a body to rotate about an axis passing through a specific point O when acted upon by a force (sometimes called a torque). 1 APPLICATIONS A torque or moment

More information

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Questions from all units

Questions from all units Questions from all units S.NO 1. 1 UNT NO QUESTON Explain the concept of force and its characteristics. BLOOMS LEVEL LEVEL 2. 2 Explain different types of force systems with examples. Determine the magnitude

More information

Force in Mechanical Systems. Overview

Force in Mechanical Systems. Overview Force in Mechanical Systems Overview Force in Mechanical Systems What is a force? Created by a push/pull How is a force transmitted? For example by: Chains and sprockets Belts and wheels Spur gears Rods

More information

1. The toggle pliers are used for a variety of clamping purposes. For the handle position given by a=10 o and for a handle grip P=150 N, calculate

1. The toggle pliers are used for a variety of clamping purposes. For the handle position given by a=10 o and for a handle grip P=150 N, calculate 1. The toggle pliers are used for a variet of clamping purposes. or the handle position given b a=10 o and for a handle grip P=150 N, calculate the clamping force C produced. Note that pins A and D are

More information

EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM

EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today s Objectives: Students will be able to: a) Determine the effect of moving a force. b) Find

More information

MOMENT OF A COUPLE. Today s Objectives: Students will be able to. a) define a couple, and, b) determine the moment of a couple.

MOMENT OF A COUPLE. Today s Objectives: Students will be able to. a) define a couple, and, b) determine the moment of a couple. Today s Objectives: Students will be able to MOMENT OF A COUPLE a) define a couple, and, b) determine the moment of a couple. In-Class activities: Check Homework Reading Quiz Applications Moment of a Couple

More information

Determine the angle θ between the two position vectors.

Determine the angle θ between the two position vectors. -100. Determine the angle θ between the two position vectors. -105. A force of 80 N is applied to the handle of the wrench. Determine the magnitudes of the components of the force acting along the axis

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body Ishik University / Sulaimani Architecture Department 1 Structure ARCH 214 Chapter -5- Equilibrium of a Rigid Body CHAPTER OBJECTIVES To develop the equations of equilibrium for a rigid body. To introduce

More information

Chapter -4- Force System Resultant

Chapter -4- Force System Resultant Ishik University / Sulaimani Civil Engineering Department Chapter -4- Force System Resultant 1 2 1 CHAPTER OBJECTIVES To discuss the concept of the moment of a force and show how to calculate it in two

More information

Problems (Force Systems)

Problems (Force Systems) 1. Problems (orce Sstems) Problems (orce Sstems). Determine the - components of the tension T which is applied to point A of the bar OA. Neglect the effects of the small pulle at B. Assume that r and are

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015. 3 Rigid CHPTER VECTR ECHNICS R ENGINEERS: STTICS erdinand P. eer E. Russell Johnston, Jr. Lecture Notes: J. Walt ler Teas Tech Universit odies: Equivalent Sstems of orces Contents Introduction Eternal

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

Introduction /Basic concept

Introduction /Basic concept GCHAPTER 1 Introduction /Basic concept MECHANICS: Mechanics can be defined as the branch of physics concerned with the state of rest or motion of bodies that subjected to the action of forces. OR It may

More information

WEEK 1 Dynamics of Machinery

WEEK 1 Dynamics of Machinery WEEK 1 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J. Uicker, G.R.Pennock ve J.E. Shigley, 2003 Makine Dinamiği, Prof. Dr. Eres SÖYLEMEZ, 2013 Uygulamalı Makine Dinamiği, Jeremy

More information

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine (ISO/IEC - 700-005 Certified) Model Answer: Summer 07 Code: 70 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

DOT PRODUCT. Statics, Fourteenth Edition in SI Units R.C. Hibbeler. Copyright 2017 by Pearson Education, Ltd. All rights reserved.

DOT PRODUCT. Statics, Fourteenth Edition in SI Units R.C. Hibbeler. Copyright 2017 by Pearson Education, Ltd. All rights reserved. DOT PRODUCT Today s Objective: Students will be able to use the vector dot product to: a) determine an angle between two vectors and, b) determine the projection of a vector along a specified line. In-Class

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

Equivalent Systems of Forces

Equivalent Systems of Forces Equivalent Systems of orces Contents Introduction( 绪论 ) Vector Products of Two Vectors( 矢量积 ) Moment of a orce About a Point( 力对点的矩 ) Moment of a orce About a Given Axis( 力对轴的矩 ) Moment of a Couple( 力偶矩

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI DEPARTMRNT OF MECHANICAL ENGINEERING. Subject Code. Mechanics

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI DEPARTMRNT OF MECHANICAL ENGINEERING. Subject Code. Mechanics VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI 625 009 DEPARTMRNT OF MECHANICAL ENGINEERING Year / Sem / Branch I Year / II Sem / CSE Subject Code GE 204 Subject Name Engineering Mechanics Faculty

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

ME101 (Division III) webpage

ME101 (Division III) webpage ME101 (Division III) webpage Lecture Slides available on http://www.iitg.ernet.in/kd/me101.htm Also available on: http://shilloi.iitg.ernet.in/~kd/me101.htm Equivalent Systems: Resultants Equilibrium Equilibrium

More information

Chapter 1: The Prime Movers

Chapter 1: The Prime Movers What is force? Chapter 1: The Prime Movers Force is a push or pull. It is a vector, meaning that it has a magnitude and direction. A vector is a physical quantity that has both magnitude and direction

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Physics, Chapter 3: The Equilibrium of a Particle

Physics, Chapter 3: The Equilibrium of a Particle University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 3: The Equilibrium of a Particle

More information

Static Equilibrium; Torque

Static Equilibrium; Torque Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

Engineering Mechanics. Equivalent force systems: problems

Engineering Mechanics. Equivalent force systems: problems Engineering Mechanics Equivalent force systems: problems A 36-N force is applied to a wrench to tighten a showerhead. Knowing that the centerline of the wrench is parallel to the x axis. Determine the

More information

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by Unit 12 Centroids Page 12-1 The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by (12-5) For the area shown

More information

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Name ME 270 Fall 2005 Final Exam PROBLEM NO. 1 Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Find: a) Draw a free body diagram of link BCDE and one of link

More information

Review of Lectures 1, 2 and 3

Review of Lectures 1, 2 and 3 Physics 22000 General Physics Lecture 4 Applying Newton s Laws Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1, 2 and 3 Algebraic description of linear motion with constant acceleration:

More information

Principles of Technology

Principles of Technology Principles of Technology Prime Movers in Mechanical Systems Introduction Force and torque are the two prime movers in any mechanical system. Force is the name given to a push or pull on an object that

More information

Equilibrium of a Rigid Body. Engineering Mechanics: Statics

Equilibrium of a Rigid Body. Engineering Mechanics: Statics Equilibrium of a Rigid Body Engineering Mechanics: Statics Chapter Objectives Revising equations of equilibrium of a rigid body in 2D and 3D for the general case. To introduce the concept of the free-body

More information

CIV100: Mechanics. Lecture Notes. Module 1: Force & Moment in 2D. You Know What to Do!

CIV100: Mechanics. Lecture Notes. Module 1: Force & Moment in 2D. You Know What to Do! CIV100: Mechanics Lecture Notes Module 1: Force & Moment in 2D By: Tamer El-Diraby, PhD, PEng. Associate Prof. & Director, I2C University of Toronto Acknowledgment: Hesham Osman, PhD and Jinyue Zhang,

More information

Engineering Mechanics. Friction in Action

Engineering Mechanics. Friction in Action Engineering Mechanics Friction in Action What is friction? Friction is a retarding force that opposes motion. Friction types: Static friction Kinetic friction Fluid friction Sources of dry friction Dry

More information

Mechanics: Scalars and Vectors

Mechanics: Scalars and Vectors Mechanics: Scalars and Vectors Scalar Onl magnitude is associated with it Vector e.g., time, volume, densit, speed, energ, mass etc. Possess direction as well as magnitude Parallelogram law of addition

More information

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. READING

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b02/c2hlch...

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b02/c2hlch... If you a empt to slide one... 1 of 1 16-Sep-12 19:29 APPENDIX B If you attempt to slide one solid object across another, the sliding is resisted by interactions between the surfaces of the two objects.

More information

Chapter 5: Forces in Equilibrium

Chapter 5: Forces in Equilibrium Chapter 5: Forces in Equilibrium I don't know what I may seem to the world, but, as to myself, I seem to have been only like a boy playing on the sea shore, and diverting myself in now and then finding

More information

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading Chapter 4 Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading The moment of a force about a point provides a measure of the

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information