SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

Size: px
Start display at page:

Download "SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,"

Transcription

1 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support the cylinder of any mass without slipping. Neglect the mass of the bracket. 100 mm x C 200 mm

2 8 7. The block brake consists of a pin-connected lever and friction block at. The coefficient of static friction between the wheel and the lever is ms = 0.3, and a torque of 5N# m is applied to the wheel. Determine if the brake can hold the wheel stationary when the force applied to the lever is (a) P = 30 N, (b) P = 70 N. 50 mm 150 mm O 5N m P 200 mm 400 mm To hold lever: a+ M O = 0; F (0.15) - 5 = 0; F = N Require N = N 0.3 = N Lever, a+ M = 0; P Reqd. (0.6) (0.2) (0.05) = 0 P Reqd. = 39.8 N a) P = 30 N N No b) P = 70 N N Yes

3 .

4 8 56. The uniform 6-kg slender rod rests on the top center of the 3-kg block. If the coefficients of static friction at the points of contact are m = 0.4, m = 0.6, and m C = 0.3, determine the largest couple moment M which can be applied to the rod without causing motion of the rod. C 800 mm M Equations of Equilibrium: From FD (a), : + F x = 0; F - N C = 0 (1) 300 mm 600 mm + c F y = 0; a+ M = 0; N + F C = 0 F C N C M = 0 (2) (3) 100 mm 100 mm From FD (b), + c F y = 0; N - N = 0 (4) : + F x = 0; F - F = 0 (5) a+ M O = 0; F N 1x x2 = 0 (6) Friction: ssume slipping occurs at point C and the block tips, then F C = ms C N C = 0.3NC and x = 0.1 m. Substituting these values into Eqs. (1), (2), (3), (4), (5), and (6) and solving, we have M = N # m = 8.56 N # m N = N N = N F = F = N C = N Since 1F 2 max = m s N = = N 7 F, the block does not slip. lso, 1F 2 max = m s N = = N 7 F, then slipping does not occur at point. Therefore, the above assumption is correct.

5 8 78. The braking mechanism consists of two pinned arms and a square-threaded screw with left and righthand threads. Thus when turned, the screw draws the two arms together. If the lead of the screw is 4 mm, the mean diameter 12 mm, and the coefficient of static friction is m s = 0.35, determine the tension in the screw when a torque of 5N# m is applied to tighten the screw. If the coefficient of static friction between the brake pads and and the circular shaft is ms œ = 0.5, determine the maximum torque M the brake can resist. 200 mm M 5N m 300 mm 300 mm C D Frictional Forces on Screw: Here, u = tan -1 a l 2pr b = 4 tan-1 c 2p162 d = 6.057, M = 5N# m and f s = tan -1 m s = tan = Since friction at two screws must be overcome, then, W = 2P. pplying Eq. 8 3, we have M = Wr tan1u + f2 5 = 2P tan P = N = 880 N Note: Since f s 7 u, the screw is self-locking. It will not unscrew even if moment M is removed. Equations of Equilibrium and Friction: Since the shaft is on the verge to rotate about point O, then, F = m s N = 0.5N and F = m s N = 0.5N. From FD (a), a+ M D = 0; N = 0 N = N From FD (b), a + MO = 0; M = 0 M = 352 N # m

6 8 80. Determine the horizontal force P that must be applied perpendicular to the handle of the lever at in order to develop a compressive force of 12 kn on the material. Each single square-threaded screw has a mean diameter of 25 mm and a lead of 7.5 mm. The coefficient of static friction at all contacting surfaces of the wedges is m s = 0.2, and the coefficient of static friction at the screw is ms œ = C mm Referring to the free-body diagram of wedge C shown in Fig. a, we have + c F y = 0; 2N cos N sin = 0 N = N Using the result of N and referring to the free-body diagram of wedge shown in Fig. b, we have + c F y = 0; N cos ( ) sin 15 = 0 N =6000 N : + F x = 0; T sin ( ) cos (6000) = 0 T = N Since the screw is being tightened, Eq. 8 3 should be used. Here, u = tan - 1 L c 2pr d = 7.5 tan-1 c 2p(12.5) d = ; f s = tan -1 m s = tan -1 (0.15) = ; M = P(0.25); and W = T = N. Since M must overcome the friction of two screws, M = 23Wr tan (f s + u)4 P(0.25) = (0.0125) tan ( )4 P = 104 N

7 8 91. cable is attached to the plate of mass M, passes over a fixed peg at C, and is attached to the block at. Using the coefficients of static friction shown, determine the smallest mass of block so that it will prevent sliding motion of down the plane. Given: M 20 kg deg 0.3 g 9.81 m s 2 C 0.3 Solution: Iniitial guesses: T 1 1N T 2 1N N 1N N 1N M 1kg Given lock : Plate : F x = 0; T 1 N M g sin 0 F y = 0; N M g cos 0 F x = 0; T 2 M g sin N N 0 F y = 0; N N M g cos 0 Peg C: T 2 T 1 e C T 1 T 2 N N M Find T 1 T 2 N N M M 2.22 kg

8 The 20-kg motor has a center of gravity at G and is pinconnected at C to maintain a tension in the drive belt. Determine the smallest counterclockwise twist or torque M that must be supplied by the motor to turn the disk if wheel locks and causes the belt to slip over the disk. No slipping occurs at. The coefficient of static friction between the belt and the disk is m s = mm C G M 50 mm 150 mm 100 mm Equations of Equilibrium: From FD (a), a + M C = 0; T T = 0 (1) From FD (b), a + M O = 0; M + T T = 0 (2) Frictional Force on Flat elt: Here, b = 180 = p rad. pplying Eq. 8 6, T 2 = T 1 e mb, we have T 2 = T 1 e 0.3p = 3.003T 1 Solving Eqs. (1), (2), and (3) yields M = 3.93 N m # (3) T 1 = N T 2 = N

9 locks and have a mass of 100 kg and 150 kg, respectively. If the coefficient of static friction between and and between and C is m s = 0.25 and between the ropes and the pegs D and E m s = 0.5 determine the smallest force F needed to cause motion of block if P = 30 N. D 45 E P C F ssume no slipping between and. Peg D : T 2 = T 1 e mb ; F D = 30 e 0.5(p 2 ) = N lock : : + F x = 0; + c F y = 0; N C + F E cos 45 = 0 N C F E sin (9.81) = 0 F E = N N C = N Peg E : T 2 = T 1 e mb ; F = 768.1e 0.5(3p 4 ) = 2.49 kn Note: Since moves to the right, (F ) max = 0.25 (981) = N = P max e 0.5(p 2 ) P max = 112 N 7 30 N Hence, no slipping occurs between and as originally assumed.

10 4000 N. If µ s = 0.35, mm 50 mm P = 4000 N = 3 (0.35)(4000) mm = Nmm M = 54.4 N m

11 mm diameter post is driven 3 m into sand for which m s = 0.3. If the normal pressure acting completely around the post varies linearly with depth as shown, determine the frictional torque M that must be overcome to rotate the post. M 200 mm 3m Equations of Equilibrium and Friction: The resultant normal force on the post is N = p = 180p N. 2 F = m s N = p2 = 54.0p N. Since the post is on the verge of rotating, 600 Pa a+ M O = 0; M p10.12 = 0 M = 17.0 N # m

12 The cylinder is subjected to a load that has a weight W. If the coefficients of rolling resistance for the cylinder s top and bottom surfaces are a and a, respectively, show that a horizontal force having a magnitude of P = [W(a + a )]>2r is required to move the load and thereby roll the cylinder forward. Neglect the weight of the cylinder. : + F x = 0; (R ) x - P = 0 (R ) x = P + c F y = 0; (R ) y - W = 0 (R ) y = W a + M = 0; P(r cos f + r cos f ) - W(a + a ) = 0 (1) f f Since and are very small, cos f - cos f = 1. Hence, from Eq. (1) P W r P = W(a + a ) 2r (QED)

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0 8 1. The mine car and its contents have a total mass of 6 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is m s = 0.4 when the wheels are locked,

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 6B: Applications of Friction in Machines Wedges Used to produce small position adjustments of a body or to apply large forces When sliding is impending, the resultant

More information

Engineering Mechanics. Friction in Action

Engineering Mechanics. Friction in Action Engineering Mechanics Friction in Action What is friction? Friction is a retarding force that opposes motion. Friction types: Static friction Kinetic friction Fluid friction Sources of dry friction Dry

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 6B: Applications of Friction in Machines Wedges Used to produce small position adjustments of a body or to apply large forces When sliding is impending, the resultant

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans.

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans. 17 4. Determine the moment of inertia of the semiellipsoid with respect to the x axis and express the result in terms of the mass m of the semiellipsoid. The material has a constant density r. y x y a

More information

M D P L sin x FN L sin C W L sin C fl cos D 0.

M D P L sin x FN L sin C W L sin C fl cos D 0. 789 roblem 9.26 he masses of the ladder and person are 18 kg and 90 kg, respectively. he center of mass of the 4-m ladder is at its midpoint. If D 30, what is the minimum coefficient of static friction

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied. FRICTION 1 Introduction In preceding chapters, it was assumed that surfaces in contact were either frictionless (surfaces could move freely with respect to each other) or rough (tangential forces prevent

More information

PART-A. a. 60 N b. -60 N. c. 30 N d. 120 N. b. How you can get direction of Resultant R when number of forces acting on a particle in plane.

PART-A. a. 60 N b. -60 N. c. 30 N d. 120 N. b. How you can get direction of Resultant R when number of forces acting on a particle in plane. V.S.. ENGINEERING OLLEGE, KRUR EPRTMENT OF MEHNIL ENGINEERING EMI YER: 2009-2010 (EVEN SEMESTER) ENGINEERING MEHNIS (MEH II SEM) QUESTION NK UNIT I PRT- EM QUESTION NK 1. efine Mechanics 2. What is meant

More information

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D. ... 7. Three torques act on the shaft. Determine the internal torque at points,, C, and D. Given: M 1 M M 3 300 Nm 400 Nm 00 Nm Solution: Section : x = 0; T M 1 M M 3 0 T M 1 M M 3 T 100.00 Nm Section

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

More information

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without Chapter 10: Friction 10-1 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC - 65 AD) 10.1 Overview When two bodies are

More information

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley.

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley. Sample 1 The tongs are designed to handle hot steel tubes which are being heat-treated in an oil bath. For a 20 jaw opening, what is the minimum coefficient of static friction between the jaws and the

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

SOLUTION 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D).

SOLUTION 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D). 4 1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e., A : (B + D) = (A : B) + (A : D). Consider the three vectors; with A vertical. Note obd is perpendicular

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1 Section 4: TJW Rotation: Example 1 The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of

More information

Physics 8 Wednesday, October 25, 2017

Physics 8 Wednesday, October 25, 2017 Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane

More information

Course Material Engineering Mechanics. Topic: Friction

Course Material Engineering Mechanics. Topic: Friction Course Material Engineering Mechanics Topic: Friction by Dr.M.Madhavi, Professor, Department of Mechanical Engineering, M.V.S.R.Engineering College, Hyderabad. Contents PART I : Introduction to Friction

More information

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc. Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b02/c2hlch...

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b02/c2hlch... If you a empt to slide one... 1 of 1 16-Sep-12 19:29 APPENDIX B If you attempt to slide one solid object across another, the sliding is resisted by interactions between the surfaces of the two objects.

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Dry Friction Static vs. Kinetic Angles

Dry Friction Static vs. Kinetic Angles Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential force Friction occurs

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

On completion of this short tutorial you should be able to do the following. Calculate the effort and torque needed to raise and lower a load.

On completion of this short tutorial you should be able to do the following. Calculate the effort and torque needed to raise and lower a load. CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 6 TUTORIAL 3 - SCREW DRIVES Outcome 6 Explain the concepts of friction and friction devices. The learner can: 1. Explain

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A. Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

More information

PROBLEMS. m s TAC. m = 60 kg/m, determine the tension in the two supporting cables and the reaction at D.

PROBLEMS. m s TAC. m = 60 kg/m, determine the tension in the two supporting cables and the reaction at D. 1. he uniform I-beam has a mass of 60 kg per meter of its length. Determine the tension in the two supporting cables and the reaction at D. (3/62) A( 500) m (5 23) m m = 60 kg/m determine the tension in

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS UNIVERSITY OF SASKATCHEWAN GE 226.3 MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT NUMBER: EXAMINATION

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Exam 04: Chapters 08 and 09

Exam 04: Chapters 08 and 09 Name: Exam 04: Chapters 08 and 09 Select and solve four of the following problems to the best of your ability. You must choose two problem from each column. Please notice that it is possible to select

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

CHAPTER VII FRICTION

CHAPTER VII FRICTION CHAPTER VII FRICTION 1- The block brake conit of a pin-connected lever and friction block at B. The coefficient of tatic friction between the wheel and the lever i and a torque of i applied to the wheel.

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

if the initial displacement and velocities are zero each. [ ] PART-B

if the initial displacement and velocities are zero each. [ ] PART-B Set No - 1 I. Tech II Semester Regular Examinations ugust - 2014 ENGINEERING MECHNICS (Common to ECE, EEE, EIE, io-tech, E Com.E, gri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part- and

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities.

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities. Ch.6 Friction Types of friction a) Dry friction: occurs when non smooth (non ideal) surfaces of two solids are in contact under a condition of sliding or a tendency to slide. (also called Coulomb friction)

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

Anna University May/June 2013 Exams ME2151 Engineering Mechanics Important Questions.

Anna University May/June 2013 Exams ME2151 Engineering Mechanics Important Questions. Anna University May/June 2013 Exams ME2151 Engineering Mechanics Important Questions 1. Find the resultant force and its direction for the given figure 2. Two forces are acting at a point O as shown in

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13 ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 2012/13 COURSE NAME: ENGINEERING MECHANICS - STATICS CODE: ENG 2008 GROUP: AD ENG II DATE: May 2013 TIME: DURATION: 2 HOURS INSTRUCTIONS: 1. This

More information

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ AE 688 Dynamics And Vibration Assignment No. 1. A car is descending the hill of slope θ 1 with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ at point A.

More information

Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics. Static Equilibrium Translational Forces Torque Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

More information

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A.

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A. 3D Force Couple System and Resultant Q.No.1: Replace the force system by an equivalent force and couple moment at point A. Q.No.2: Handle forces F1 and F2 are applied to the electric drill. Replace this

More information

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Name ME 270 Fall 2005 Final Exam PROBLEM NO. 1 Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Find: a) Draw a free body diagram of link BCDE and one of link

More information

Exercise Torque Magnitude Ranking Task. Part A

Exercise Torque Magnitude Ranking Task. Part A Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

Dynamics of Rotation

Dynamics of Rotation Dynamics of Rotation 1 Dynamic of Rotation Angular velocity and acceleration are denoted ω and α respectively and have units of rad/s and rad/s. Relationship between Linear and Angular Motions We can show

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1 Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

Rotational Motion What is the difference between translational and rotational motion? Translational motion.

Rotational Motion What is the difference between translational and rotational motion? Translational motion. Rotational Motion 1 1. What is the difference between translational and rotational motion? Translational motion Rotational motion 2. What is a rigid object? 3. What is rotational motion? 4. Identify and

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Engineering Mechanics

Engineering Mechanics Engineering Mechanics Continued (5) Mohammed Ameen, Ph.D Professor of Civil Engineering B Section Forces in Beams Beams are thin prismatic members that are loaded transversely. Shear Force, Aial Force

More information

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects:

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects: ESULTANTS orce Couple Systems = eduction of a orce to an Equivalent orce and Moment (Moving a orce to Another Point) The force acting on a body has two effects: the first one is the tendency to push or

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B. Tech I Semester Supplementary Examinations Aug. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction ENGR 1205 Appendix B 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

The student will be able to: 1 Determine the torque of an applied force and solve related problems.

The student will be able to: 1 Determine the torque of an applied force and solve related problems. Honors Physics Assignment Rotational Mechanics Reading Chapters 10 and 11 Objectives/HW The student will be able to: HW: 1 Determine the torque of an applied force and solve related problems. (t = rx r

More information

Exam 3 PREP Chapters 6, 7, 8

Exam 3 PREP Chapters 6, 7, 8 PHY241 - General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. APPLICATIONS

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

Part 1 of 1. (useful for homework)

Part 1 of 1. (useful for homework) Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Questions from all units

Questions from all units Questions from all units S.NO 1. 1 UNT NO QUESTON Explain the concept of force and its characteristics. BLOOMS LEVEL LEVEL 2. 2 Explain different types of force systems with examples. Determine the magnitude

More information

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14 Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

More information