Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Size: px
Start display at page:

Download "Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc."

Transcription

1 Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple Machines Inclined Plane Wedge Screw Copyright

2 Mechanical Advantage (MA) Ratio of the magnitude of the resistance and effort forces Ratio of distance traveled by the effort and the resistance force Calculated ratios allow designers to manipulate speed, distance, force, and function Mechanical Advantage Example A mechanical advantage of 4:1 tells us what about a mechanism? Magnitude of Force force magnitude is 4 times less than the magnitude of the resistance force. Distance Traveled by Force force travels 4 times greater distance than the resistance force. Work The force applied on an object times distance the object travels parallel to the force Initial position Force (F) Final position Parallel Distance (d ) Work = Force Distance = F d Copyright

3 Work The product of the effort times the distance traveled will be the same regardless of the system mechanical advantage Mechanical Advantage Ratios One is the magic number If MA is greater than 1: Proportionally less effort force is required to overcome the resistance force Proportionally greater effort distance is required to overcome the resistance force If MA is less than 1: Proportionally greater effort force is required to overcome the resistance force Proportionally less effort distance is required to overcome the resistance force MA can never be less than or equal to zero. Ideal Mechanical Advantage (IMA) Theory-based calculation Friction loss is not taken into consideration Ratio of distance traveled by effort and resistance force Used in efficiency and safety factor design calculations DE IMA = D D E = Distance traveled by effort force D R = Distance traveled by resistance force R Copyright

4 Actual Mechanical Advantage (AMA) Inquiry-based calculation Frictional losses are taken into consideration Used in efficiency calculations Ratio of force magnitudes F R = Magnitude of resistance force F E = Magnitude of effort force F AMA = F R E Real World Mechanical Advantage Can you think of a machine that has a mechanical advantage greater than 1? Real World Mechanical Advantage Can you think of a machine that has a mechanical advantage less than 1? Copyright

5 Lever A rigid bar used to exert a pressure or sustain a weight at one point of its length by the application of a force at a second point and turning on a fulcrum at a third. First Class Lever Fulcrum is located between the effort and the resistance forces. and resistance forces are applied to the lever arm in the same direction. Only class of lever that can have an MA greater than or less than 1. MA =1 MA <1 MA >1 Second Class Lever Fulcrum is located at one end of the lever. force is located between the fulcrum and the effort force. force and effort force are in opposing directions. Always has a mechanical advantage >1. Copyright

6 Third Class Lever Fulcrum is located at one end of the lever. force is located between the fulcrum and the resistance. force and effort force are in opposing directions. Always has a mechanical advantage < 1. Moment The turning effect of a force about a point equal to the magnitude of the force times the perpendicular distance from the point to the line of action from the force. Torque: M = d x F A force that produces or tends to produce rotation or torsion. Lever Moment Calculation 5.5 in. 15 lb 15 lbs Calculate the effort moment acting on the lever. M = d x F Moment = 5.5 in. x 15 lb Moment = 82.5 in. lb Copyright

7 Lever Moment Calculation When the sum of all moments on a lever equals 0, the lever is in rotational equilibrium. Rotational Equilibrium The state in which the sum of all the clockwise moments equals the sum of all the counterclockwise moments about a pivot point. Lever Moment Calculation 5.5 in.? 36 2/3 lb 15 lb Using what you know regarding rotational equilibrium, calculate the unknown distance from the fulcrum to the resistance force. Rotational equilibrium: Moment (cc wise) = Moment (clockwise) 15 lb x (5.5 in.) = 36 2/3 lb x D R 82.5 in-lb = lb x D R 82.5 in-lb / lb = D R 2.25 in. = D R Lever IMA D IMA = D E R Both effort and resistance forces will travel in a circle if unopposed. Circumference = 2 p r D E = 2 π (effort arm length) D R = 2 π (resistance arm length) Circumference is the distance around the perimeter of a circle. IMA = 2 π (effort arm length) 2 π (resistance arm length) Copyright

8 Lever AMA The ratio of applied resistance force to applied effort force FR AMA = F E 16 lb 5.5 in. What is the AMA of the lever above? AMA = 2:1 32lb AMA = 16lb What is the IMA of the lever above? IMA = 2.44:1 DE 5.5in. IMA= IMA = D R 2.25in. Why is the IMA larger than the AMA? 2.25 in. 32 lb Efficiency In a machine, the ratio of useful energy output to the total energy input, or the percentage of the work input that is converted to work output The ratio of AMA to IMA AMA % Efficiency = 100 IMA What is the efficiency of the lever on the previous slide? Click to return to previous slide AMA = 2:1 IMA = 2.44: % Efficiency = 100 = 82.0% 2.44 No machine is 100% efficient. Wheel and Axle A wheel is a lever arm fixed to a shaft, called an axle. The wheel and axle move together as a simple lever to lift or move an item by rolling. It is important to know which is applying the effort and resistance force wheel or axle. Can you think of an example of a wheel driving an axle? Copyright

9 Wheel and Axle IMA D IMA = D E R Both effort and resistance forces will travel in a circle if unopposed. Ǿ6 in. Ǿ20 in. Circumference = 2pr or πd D E = π [Diameter of effort (wheel or axle)] D R = π [Diameter resistance (wheel or axle)] π (effort diameter) IMA = π (resistance diameter) What is the IMA of the wheel if the axle is driving the wheel? 6 in. / 20 in. =.3 =.3:1 = 3:10 What is the IMA of the wheel if the wheel is driving the axle? 20 in. / 6 in. = 3.33 = 3.33:1 Wheel and Axle AMA F AMA = F R E Use the wheel and axle assembly illustration to solve the following. Ǿ6 in. 200lb Ǿ20 in. 70lb What is the AMA if the wheel is driving the axle? 200 lb / 70 lb = 2.86 = 2.86:1 What is the efficiency of the wheel and axle assembly? AMA % Efficiency = = 100 = 85.9% IMA 3.33 Pulley A pulley is a lever consisting of a wheel with a groove in its rim that is used to change the direction and magnitude of a force exerted by a rope or cable. Copyright

10 Pulley IMA 5 lb 5 lb Fixed Pulley - First class lever with an IMA of 1 - Changes the direction of force 10 lb 10 lb Movable Pulley - Second class lever with an IMA of 2 - Force directions stay constant 10 lb Pulleys In Combination Fixed and movable pulleys in combination (called a block and tackle) provide mechanical advantage and a change of direction for effort force. If a single rope or cable is threaded multiple times through a system of pulleys, Pulley IMA = # strands opposing the force of the load What is the IMA of the pulley system on the right? 4 Compound Machines If one simple machine is used after another, the mechanical advantages multiply. IM A total = IM A pulley IM A lever = #strands D E / D R = ft/4.0 ft = 2 3 = 6 Copyright

11 Pulleys In Combination With separate ropes or cables, the output of one pulley system can become the input of another pulley system. This is a compound machine. 10 lbf 10 lbf 20 lbf 20 lbf What is the IMA of this pulley system? 40 lbf 40 lbf 80 lbf Pulley AMA F AMA = F What is the AMA of the pulley system on the right? 800lb AMA = 230lb AMA = 3.48 = 3.48:1 R E What is the efficiency of this pulley system? AMA 3.48 % Efficiency = 100 = 100 IMA 4 = 87% 800 lb 230 lb Common misconception: Angles don t matter Pulley IMA = # strands opposing load only if strands are opposite/parallel to resistance force. IMA=2 Calculating IMA requires trigonometry Copyright

12 Common misconception: Count the effort strand if it pulls up sometimes Pulley IMA = # strands opposing the load. Count a strand if it opposes the load or the load s movable pulley. It might pull up or down. IMA=2 80 lbf 40 lbf 40 lbf Image Resources Microsoft, Inc. (2008). Clip art. Retrieved January 10, 2008, from Copyright

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Unit 1 Lesson 1.1 Mechanisms

Unit 1 Lesson 1.1 Mechanisms Simple Machines Inclined Plane, Wedge, and Screw Principles of ngineering 2012 The Six Simple Machines Inclined Plane Wedge Screw Mechanical Advantage (MA) atio of the magnitude of the resistance and effort

More information

Chapter: Work and Machines

Chapter: Work and Machines Table of Contents Chapter: Work and Machines Section 1: Work Section 2: Using Machines Section 3: Simple Machines 1 Work What is work? To many people, the word work means something they do to earn money.

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines What is work? The product of the force applied to an object and the distance through which that force is applied. Is work being done or not? Mowing the lawn Weight-lifting Moving

More information

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work Simple Machines A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work A simple machine works with only one movement There are six simple machines

More information

PHY 126 Lecture Notes Chapter 10

PHY 126 Lecture Notes Chapter 10 Chapter 10 Simple Machines OBJECTIVES Define a machine Examine energy transfer in machine to determine Mechanical Advantage and Energy Efficiency KEY WORDS: Simple and complex machines, Effort and resistance

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines 1 What is work? To many people, the word work means something they do to earn money. The word work also means exerting a force with your muscles. 1 What is work? Someone might say

More information

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines Table of Contents Chapter: Work and Simple Machines Section 1: Work and Power Section 2: Using Machines Section 3: Simple Machines 1 Work and Power What is work? Work is done when a force causes an object

More information

Chapter 15 Work, Power & Simple Machines

Chapter 15 Work, Power & Simple Machines Chapter 15 Work, Power & Simple Machines Essential Questions: I. What is Work? (In Physics Terms!) II. What is Power? (In Physics Terms!) III. How do machines make work easier and how efficient are they?

More information

Science Olympiad. Machines. Roger Demos

Science Olympiad. Machines. Roger Demos Science Olympiad Machines. Roger Demos Some Basic Physics Concepts What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines

More information

Work, Power and Simple Machines. Chapter 4 Physical Science

Work, Power and Simple Machines. Chapter 4 Physical Science Work, Power and Simple Machines Chapter 4 Physical Science Work, Power and Simple Machines Machines make jobs easier by increasing the applied force on an object. The trade-off is that this also requires

More information

Work & Simple Machines. Chapter 4

Work & Simple Machines. Chapter 4 Work & Simple Machines Chapter 4 Work & Power Section 1 Work Work - occurs when a force causes an object to move in the same direction that the force is applied. Work involves motion, not just effort.

More information

Lever Lab: First Class Lever

Lever Lab: First Class Lever Lever Lab 2 Name: Lever Lab: First Class Lever Objective: To investigate the use of a lever as a simple machine. Materials: Workshop Stand, Lever, Bolt, Hooked Masses Background: A lever is one of the

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

Simple Machines. Changes effort, displacement or direction and magnitude of a load 6 simple machines. Mechanical Advantage

Simple Machines. Changes effort, displacement or direction and magnitude of a load 6 simple machines. Mechanical Advantage Simple Machine Simple Machines Changes effort, displacement or direction and magnitude of a load 6 simple machines Lever Incline plane Wedge Screw Pulley Wheel and Axle Mechanical Advantage Ideal: IMA

More information

Work and Simple Machines

Work and Simple Machines Work Work and Simple Machines Simple Machines Mechanical Advantage Calculating MA Misc. 200 200 200 200 200 400 400 400 400 400 600 600 600 600 600 800 800 800 800 800 1000 1000 1000 1000 1000 FINAL JEOPARDY

More information

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks Mechanical Advantage & Simple Machines Physics 5 th Six Weeks And now, for an appetizer: Bill Nye and using Mechanical Advantage Mechanical Advantage A machine is something that makes doing work easier

More information

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Check out  Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Mr. Willis Conceptual Physics: Date: Unit IV Work, Power, and Machines Need extra help? Check out http://www.bayhicoach.com Unit IV Study Guide Multiple Choice Identify the letter of the choice that

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER WORK Work: The transfer of energy to an object by the application of a force that causes the object to move in the direction of the force. WORK

More information

Broughton High School

Broughton High School 1 Physical Science Vocabulary Vocabulary for Chapter 5 - Work and Machines No.# Term Page # Definition 2 1. Compound Machine 2. Efficiency 3. Inclined Plane 4. Input force 5. Lever 6. Machine 7. Mechanical

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES CONTENT Be able to determine the operating characteristics of lifting

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

Pre and Post-Visit Activities

Pre and Post-Visit Activities Pre and Post-Visit Activities Simple Machines Table of Contents: Important Information: 2 Vocabulary: 3 Pre-Visit Activities: 4 Post-Visit Activities: 5 Vocabulary Word Search: 6 2 Important Information

More information

Chapter 09 Multiple Choice Test

Chapter 09 Multiple Choice Test Class: Date: Chapter 09 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A simple machine can multiply: a. forces only. b. energy only.

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

Work, Power and Machines

Work, Power and Machines CHAPTER 13.1 & 13.2 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make

More information

CHAPTER 5. Work, Power and Machines

CHAPTER 5. Work, Power and Machines CHAPTER 5 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make work easier

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 6B: Applications of Friction in Machines Wedges Used to produce small position adjustments of a body or to apply large forces When sliding is impending, the resultant

More information

acceleration weight load

acceleration weight load Instructions for Vocabulary Cards: Please photocopy the following pages onto heavy card stock (back to back, so the word is printed on the back side of the matching definition). Then, laminate each page.

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Simple machines and the lever

Simple machines and the lever Simple machines and the lever Objectives Define mechanical advantage. Calculate and demonstrate the mechanical advantage of a lever. Draw a free-body diagram of a simple machine. 1. What is mechanical

More information

1. List the six simple machines and give three examples (8:3)

1. List the six simple machines and give three examples (8:3) Unit 3 Study Guide Name 2017 Key Section 1. ist the six simple machines and give three examples (8:3) Machine xample 1 xample 2 xample 3 1. Pulley lag Pole Curtains Crane 2. Wheel and Axle Steering Wheel

More information

Chapter 3 Machines EXERCISE- 3 (A)

Chapter 3 Machines EXERCISE- 3 (A) EXERCISE- 3 (A) Question 1: What do you understand by a simple machine? Solution 1: A machine is a device by which we can either overcome a large resistive force at some point by applying a small force

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 6B: Applications of Friction in Machines Wedges Used to produce small position adjustments of a body or to apply large forces When sliding is impending, the resultant

More information

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14 Objectives Calculate torque given the lever arm (perpendicular distance) and the force. Calculate torque in newton meters and in pound feet. Interpret positive and negative signs in the context of torque.

More information

Milford Public Schools Curriculum

Milford Public Schools Curriculum Milford Public Schools Curriculum Department: SCIENCE Course Name: Grade 8 Course Description Physical Science UNIT 1 - Motion LEARNING GOALS Enduring Understanding(s): Motion is relative to a reference

More information

Work & Energy. Chapter 4 pg

Work & Energy. Chapter 4 pg Work & Energy Chapter 4 pg 106-127 Today s Learning Objectives 1) Know the vocabulary of this chapter. 2) What is the two-pronged test to see if something qualifies as work? 3) Solve and calculate problems

More information

Section 1 Work, Power, and Machines

Section 1 Work, Power, and Machines Chapter 12 Work and Energy Section 1 Work, Power, and Machines Section 2 Simple Machines Section 3 What is Energy? Section 4 Conservation of Energy Skills Experiment Design SI Units and SI unit conversions

More information

CPO Science Foundations of Physics

CPO Science Foundations of Physics CPO Science Foundations of Physics Unit 4, Chapter 10 Chapter 9 Unit 4: Energy and Momentum Chapter 10 Work and Energy 10.1 Machines and Mechanical Advantage 10.3 Energy and Conservation of Energy Chapter

More information

POE 1 st Semester Exam Review

POE 1 st Semester Exam Review POE 1 st Semester Exam Review Vocabulary Matching 1. Actual Mechanical Advantage a. A force that produces or tends to produce rotation or torsion. 2. Efficiency b. A fundamental entity of nature that is

More information

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the Module 2: LEVERS Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the difference between the three classes of levers.

More information

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines.

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Simple Machines This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Use Target Reading Skills Before you read the section,

More information

A 45 kg box is pulled across a 23 m floor with a force of 215 N directed along a rope making an

A 45 kg box is pulled across a 23 m floor with a force of 215 N directed along a rope making an A 45 kg box is pulled across a 23 m floor with a force of 215 N directed along a rope making an angle of 23 0. How much work is done? How much power is consumed if it takes 8.0 s? A 45 kg box is pulled

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

Comparing the Mechanical Advantage of Levers

Comparing the Mechanical Advantage of Levers Chapter 14 Work, Power, and Machines Investigation 14A Comparing the Mechanical Advantage of Levers Background Information A lever consists of a rigid bar that is free to rotate around a fixed point. The

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers.

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. Ch 9 Energy Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. 9.1 Work Work is the product of the force on an object and the distance through

More information

Physical Science midterm study guide. Chapter 1 and 2

Physical Science midterm study guide. Chapter 1 and 2 Physical Science midterm study guide Chapter 1 and 2 1. Explain the difference between a scientific law and a scientific theory a. Laws generalize observations b. Theories explain observations 2. Select

More information

W = Fd. KE = 1 2 mv2

W = Fd. KE = 1 2 mv2 Ch 10 Energy, Work and Simple Machines work: moving an object in the direction of the force exerted upon it (Joules) work W = Fd force (Newtons) (meters) distance object is displaced in the direction of

More information

Equilibrium and Torque

Equilibrium and Torque Equilibrium and Torque Equilibrium An object is in Equilibrium when: 1. There is no net force acting on the object 2. There is no net Torque In other words, the object is NOT experiencing linear acceleration

More information

Welcome. I will be using your LBCC to communicate with you about the class.

Welcome. I will be using your LBCC  to communicate with you about the class. Welcome David Ruiz I will be using your LBCC email to communicate with you about the class. I will NEVER send scores/grades to your email address unless you ask me to do so. Syllabus Read over carefully

More information

Engineering Mechanics. Friction in Action

Engineering Mechanics. Friction in Action Engineering Mechanics Friction in Action What is friction? Friction is a retarding force that opposes motion. Friction types: Static friction Kinetic friction Fluid friction Sources of dry friction Dry

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW CHAPTER 4 TEST REVIEW Work = Force x Distance 1. Work is measured in. a. Newtons b. Joules c. Centimeters d. Grams 2. Sir Isaac Newton is famous for discovering the. a. Laws of motion b. Laws of work c.

More information

2.1 Introduction to Simple Machines

2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines Simple Machines Unit DO NOT WRITE ANYWHERE IN THIS PACKAGE One of the few properties that separate us from animals is our ability

More information

Turning Forces and Levers. Junior Science

Turning Forces and Levers. Junior Science Turning Forces and Levers Junior Science Lesson Objectives Understand the terms - Lever, Fulcrum, Turning effect, Moment Recall the formula M= Fd and be able to calculate the moment of a force Be able

More information

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers OpenStax-CNX module: m38992 1 Torque and levers * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Torque and

More information

Copyright by Harcourt, Inc.

Copyright by Harcourt, Inc. Forces Copyright by Harcourt, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording,

More information

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14 Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2016 2-1 2-2 Freeform c 2016 Homework 2. Given: The pulley shown below freely rotates about point C and interacts with two rubber belts (one horizontal,

More information

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review Date Period Name CHAPTER 10 Study Guide Energy, Work, and Simple Machines Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance

More information

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines Chapter 12 - Work and Energy Section 1 - Work, Power, and Machines 1 Imagine trying to lift a car without a jack You might be exerting a lot of force, but not moving the It would feel like you have done

More information

WORK, ENERGY, AND MACHINES

WORK, ENERGY, AND MACHINES WORK, ENERGY, AND MACHINES Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance force efficiency kinetic energy translational kinetic

More information

Principles Of Engineering. Part A

Principles Of Engineering. Part A Principles Of Engineering Final Examination Part A Fall 2007 Student Name: Date: Class Period: Total Points: /40 Converted Score: /50 Page 1 of 11 Directions: Circle the letter of the response that best

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Lesson 1: How can you describe motion?

Lesson 1: How can you describe motion? Lesson 1 Summary Use with pp. 407 409 Lesson 1: How can you describe motion? Vocabulary velocity the speed and direction of an object s motion Types of Motion Motion is movement. When you see something

More information

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension. (1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects:

Force Couple Systems = Reduction of a Force to an Equivalent Force and Moment (Moving a Force to Another Point) acting on a body has two effects: ESULTANTS orce Couple Systems = eduction of a orce to an Equivalent orce and Moment (Moving a orce to Another Point) The force acting on a body has two effects: the first one is the tendency to push or

More information

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

More information

CHAPTER 24 SIMPLE MACHINES

CHAPTER 24 SIMPLE MACHINES CHAPTER 24 SIMPLE MACHINES EXERCISE 106, Page 240 1. A simple machine raises a load of 825 N through a distance of 0.3 m. The effort is 250 N and moves through a distance of 3.3 m. Determine: (a) the,

More information

Sph4c Chapter 2 Simple Machines LoRusso

Sph4c Chapter 2 Simple Machines LoRusso Sph4c Chapter Simple Machines orusso Machine: A machine is any evice that helps us perform a task. hey are esigne to achieve at least one of five main functions Change energy from one form to another.

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

7.7 Rolling Resistance

7.7 Rolling Resistance 7.7 Rolling Resistance 7.7 Rolling Resistance Example 1, page 1 of 4 1. The fertilizer spreader and the fertilizer it contains have a combined mass of 40 kg and a center of gravity located at point G.

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

Chapter 8 Study Questions

Chapter 8 Study Questions Chapter 8 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is being done when a. you apply a force to an object. b. an

More information

Unit 10: Work and Energy. * When the object moves, it must move in the same direction as the force for there to be work.

Unit 10: Work and Energy. * When the object moves, it must move in the same direction as the force for there to be work. Work: Occurs as a force is applied over a distance. Ex: *It is a vector. (Has a number and direction) Unit 10: Work and Energy *If there is no movement, there is no work on that object. * When the object

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

The Force, Energy Transfer and Machines Spring Catapult Testing: Force equals Mass x Acceleration

The Force, Energy Transfer and Machines Spring Catapult Testing: Force equals Mass x Acceleration Science Unit: Lesson #3: The Force, Energy Transfer and Machines Spring Catapult Testing: Force equals Mass x Acceleration Lesson Summary Students build simple machines (catapults made of popsicle sticks

More information

Free-Body Diagrams. Introduction

Free-Body Diagrams. Introduction Free-Body Diagrams Introduction A Free-Body Diagram is a basic two or three-dimensional representation of an object used to show all present forces and moments. The purpose of the diagram is to deconstruct

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

Equilibrium and Torque

Equilibrium and Torque Equilibrium and Torque Equilibrium An object is in Equilibrium when: 1. There is no net force acting on the object 2. There is no net Torque (we ll get to this later) In other words, the object is NOT

More information

AP Physics Multiple Choice Practice Torque

AP Physics Multiple Choice Practice Torque AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44

More information

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1 Section 4: TJW Rotation: Example 1 The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#: Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 1-45) Section EB02

More information