Spin Networks and Anyonic Topological Quantum Computing L. H. Kauffman, UIC.

Size: px
Start display at page:

Download "Spin Networks and Anyonic Topological Quantum Computing L. H. Kauffman, UIC."

Transcription

1 Spin Networks n Anyoni Topologil Quntum Computing L. H. Kuffmn, UIC qunt-ph/ n qunt-ph/ Spin Networks n Anyoni Topologil Computing Louis H. Kuffmn n Smuel J. Lomono Jr. Deprtment of Mthemtis, Sttistis n Computer Siene (m/ 249), 851 South Morgn Street, University of Illinois t Chigo, Chigo, Illinois , USA Deprtment of Computer Siene n Eletril Engineering, University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, USA

2 Journl of Knot Theory n Its Rmifitions Vol. 16, No. 3 (2007) Worl Sientifi Pulishing Compny q-deformed SPIN NETWORKS, KNOT POLYNOMIALS AND ANYONIC TOPOLOGICAL QUANTUM COMPUTATION LOUIS H. KAUFFMAN Deprtment of Mthemtis, Sttistis n Computer Siene (m/ 249), 851 South Morgn Street, University of Illinois t Chigo, Chigo, Illinois , USA kuffmn@ui.eu SAMUEL J. LOMONACO JR. Deprtment of Computer Siene n Eletril Engineering, University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, USA lomono@um.eu Aepte 10 July 2006 ABSTRACT We review the q-eforme spin network pproh to Topologil Quntum Fiel Theory n pply these methos to proue unitry representtions of the ri groups tht re ense in the unitry groups. Our methos re roote in the rket stte sum moel for the Jones polynomil. We give our results for lrge lss of representtions se on vlues for the rket polynomil tht re roots of unity. We mke seprte n self-ontine stuy of the quntum universl Fioni moel in this frmework. We pply our results to give quntum lgorithms for the omputtion of the olore Jones polynomils for knots n links, n the Witten Reshetikhin Turev invrint of three mnifols. Keywors: Knot; link; Reiemeister move; rket polynomil; Jones polynomil; olore Jones polynomils; Kuffmn polynomil; spin network; quntum omputtion; quntum omputer; Temperley Lie lger; reoupling theory; Fioni moel; ri group; unitry representtion. Mthemtis Sujet Clssifition 2000: 57M27

3 Quntum Mehnis in Nutshell 0. A stte of physil system orrespons to unit vetor S> in omplex vetor spe. U 1. (mesurement free) Physil proesses re moele y unitry trnsformtions pplie to the stte vetor: S> -----> U S> 2. If S> z1 e1> + z2 e2> zn en> in mesurement sis { e1>, e2>,..., en>}, then mesurement of S> yiels ei> with proility zi ^2.

4 Preprtion,Trnsformtion, Mesurement. Psi <T U S> Psi*Psi <S U* T> <T U S> U <T S> U*

5 Quit A quit is the quntum version of lssil it of informtion. 0> + 1> mesure 0> 1> pro ^2 pro ^2

6 0> 1> 0> 1> - 1> 0> 1> 0> 0> Mh-Zener Interferometer 0> 1> 1> 0> 0> - 1> [ ] H [ 0 1 ] /Sqrt(2) M 1 HMH [ ]

7 Quntum Gtes re unitry trnsformtions enliste for the purpose of omputtion. CNOT CNOT 00> 00> CNOT 01> 01> CNOT 10> 11> CNOT 11> 10>

8 Quntum Computtion of the Tre of Unitry Mtrix U 1. A goo exmple of quntum lgorithm. 2. Useful for the quntum omputtion of knot polynomils suh s the Jones polynomil.

9 Hmr Test 0> phi> H U H Mesure 0> 0> ours with proility 1/2 + Re[<phi U phi>]/2

10 Grover s Algorithm (1996) [O(Sqrt(N)) time, O(log N) storge spe] Given n unsorte tse with N entries. {0,1,2,...,N-1} Prolem: Fin prtiulr element w in the tse. Form N-imensionl stte spe V. H n oservle ting on V with N istint eigenvlues. { 0>, 1>, 2>,... N-1>} sis for V.

11 Introue stte vetor s> (1/Sqrt(N)) Sum x> sum is over the sis of V. w> s> Ie: Use unitry opertions to rotte s> into the w> iretion.

12 w> Pi/2 - Thet s> Thet U(w) refletion in plne perp to w>. U(s) refletion in s>. s > U(s)U(w) s> is rotte towr w> y 2 x Thet. Do this pprox Pi Sqrt(N)/4 times. For N lrge the proility of not oserving w> is O(1/N).

13 Polynomil-Time Algorithms for Prime Ftoriztion n Disrete Logrithms on Quntum Computer rxiv:qunt-ph/ v2 25 Jn 1996 Peter W. Shor Astrt A igitl omputer is generlly elieve to e n effiient universl omputing evie; tht is, it is elieve le to simulte ny physil omputing evie with n inrese in omputtion time y t most polynomil ftor. This my not e true when quntum mehnis is tken into onsiertion. This pper onsiers ftoring integers n fining isrete logrithms, two prolems whih re generlly thought to e hr on lssil omputer n whih hve een use s the sis of severl propose ryptosystems. Effiient rnomize lgorithms re given for these two prolems on hypothetil quntum omputer. These lgorithms tke numer of steps polynomil in the input size, e.g., the numer of igits of the integer to e ftore. Keywors: lgorithmi numer theory, prime ftoriztion, isrete logrithms, Churh s thesis, quntum omputers, fountions of quntum mehnis, spin systems, Fourier trnsforms AMS sujet lssifitions: 81P10, 11Y05, 68Q10, 03D10

14 Universl Gtes A two-quit gte G is unitry liner mpping G : V V V V where V is two omplex imensionl vetor spe. We sy tht the gte G is universl for quntum omputtion (or just universl) if G together with lol unitry trnsformtions (unitry trnsformtions from V to V ) genertes ll unitry trnsformtions of the omplex vetor spe of imension 2 n to itself. It is well-known [44] tht CNOT is universl gte. Lol Unitries re generte (up to ensity) y smll numer of gtes. Expliit gte reliztion in the sis fj0i; j1ig: H D p ; S D i ; T D e i4

15 A gte G is universl iff G is entngling. A gte G, s ove, is si to e entngling if there is vetor αβ α β V V suh tht G αβ is not eomposle s tensor prout of two quits. Uner these irumstnes, one sys tht G αβ is entngle. In [6], the Brylinskis give generl riterion of G to e universl. They prove tht two-quit gte G is universl if n only if it is entngling.

16 An Entngle Stte

17 An Entnglement Criterion Remrk. A two-quit pure stte φ is entngle extly when ( ) 0. It is esy to use this ft to hek when speifi mtrix is, or is not, entngling. The Bell Sttes R 00 (1/ 2) 00 (1/ 2) 11, R 01 (1/ 2) 01 + (1/ 2) 10, R 10 (1/ 2) 01 + (1/ 2) 10, R 11 (1/ 2) 00 + (1/ 2) 11.

18 Briing n the Yng-Bxter Eqution R I I R R I I R I R R I R I I R (R I)(I R)(R I) (I R)(R I)(I R).

19 Let V e two omplex imensionl vetor spe. Briing Opertors re Universl Quntum Gtes Universl gtes n e onstrute from ertin solutions to the Yng-Bxter Eqution R: V V V V (R I)(I R)(R I) (I R)(R I)(I R).

20 Representtive Exmples of Unitry Solutions to the Yng-Bxter Eqution tht re Universl Gtes. te. R R R 0 1/ / 2 0 1/ 2 1/ / 2 1/ 2 0 1/ / Swp Gte with Phse R Bell Bsis Chnge Mtrix R + R* Sqrt[2]I Corresponing Link Invrint is Speil Cse of Homfly Poly. (virtul rossing orrespons to swp gte.)

21 Issues 1. Giving Universl Gte tht is topologil gives PARTIAL topologil quntum omputing euse the U(2) lol opertions hve not een me topologil. 2. Nevertheless, Yng-Bxter gtes re interesting to onstrut n help to isuss Topologil Entnglement versus Quntum Entnglement.

22 Quntum Entnglement n Topologil Entnglement An exmple of Arvin [1] mkes the possiility of suh onnetion even more tntlizing. Arvin ompres the Borromen rings (see figure 2) n the GHZ stte ψ ( β 1 β 2 β 3 α 1 α 2 α 3 )/ 2. ( 000> - 111>)/Sqrt(2) Is the Arvin nlogy only superfiil?!

23 Do we nee Quntum Knots? K> + K > K: proility ^2 K :proility ^2 K K Oserving Quntum Knot

24

25 The Temperley-Lie Ctegory Ientity Ω > Θ < Θ Ω < > Ω Θ > < U U U φ > Θ > ψ > { Ω Θ } > < 1 P Ω < 1 QPQQ { Ω > < } Θ Q { 1 < } { > PQP Θ P Ω φ > ψ > Θ Ω φ > ψ > Θ Ω The Key to Teleporttion

26 Digrmmti Mtries, Knots n Teleporttion i N i N M i M M M Figure 5 - Mtrix Composition

27 Quntum Link Invrints

28 y mesuring mplitue n phse in referene setting.. r.. Untying Knots y NMR: first experimentl implementtion of quntum lgorithm for pproximting the Jones polynomil Rimun Mrx 1, Anres Spörl, Amr F. Fhmy, John M. Myers, Louis H. Kuffmn, Smuel J. Lomono, Jr., Thoms-Shulte-Herrüggen, n Steffen J. Glser 1 Deprtment of Chemistry, Tehnil University Munih, Lihtenergstr. 4, Grhing, Germny 2 Hrvr Meil Shool, 25 Shttuk Street, Boston, MA 02115, U.S.A. 3 Goron MKy Lortory, Hrvr University, 29 Oxfor Street, Cmrige, MA 02138, U.S.A. 4 University of Illinois t Chigo, 851 S. Morgn Street, Chigo, IL , U.S.A. 5 University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, U.S.A. romp of the quntum lgorithm exmple #1 Trefoil exmple #2 Figure-Eight exmple #3 Borromen rings A knot is efine s lose, non-self-interseting urve tht is emee in three imensions. exmple: onstrution of the Trefoil knot: knot or link mke knot fuse the free ens mke it look nie strt with rope en up with Trefoil trelose ri J. W. Alexner prove, tht ny knot n e represente s lose ri (polynomil time lgorithm) genertors of the 3 strn ri group: unitry mtrix i e U 1 0 U 3 1 U Trefoil 1 U U 2 Figure Eight 2 U1 0 i sin(4 ) i e e sin(2 ) 1 U U Borrom. R. U i sin(6 ) i i sin(6 )sin(2 ) e e e sin(4 ) sin(4 ) U 2 i sin(2 ) i sin(6 )sin(2 ) i e e e sin(4 ) sin(4 ) -1-1 It is well known in knot theory, how to otin the unitry mtrix representtion of ll genertors of given ri goup (see Temperley-Lie lger n pth moel representtion ). The unitry mtries U1 n U 2, orresponing to the genertors 1 n 2 of the 3 strn ri group re shown on the left, where the vrile is relte i to the vrile A of the Jones polynomil y: A e. 1 2 The unitry mtrix representtions of n -1-1 re given y U1 n U 2. The knot or link tht ws expresse s prout of ri group genertors n therefore lso e expresse s prout of the orresponing unitry mtries. ontrolle unitry mtrix Step #1: from the 2x2 mtrix U to the 4x4 mtrix U: 1 0 U ( 0 U ) U I 1x Step #2: pplition of U on the NMR prout opertor I1x : 1 0 U 1 ( 0 U ) ( ) ( 0 U ) 1 ( ) 0 U 2 U 0 Step #3: mesurement of I 1x n I 1y : 0 U tr { I 1x ( U 0 )} 1 1 ( tr{ U}) U tr { I 1y ( U 0 ) } 1 1 ( tr{ U}) 2 2 U, U Inste of pplying the unitry mtrix we pply it s ontrolle vrint. This mtrix is espeilly suite for NMR quntum omputers [4] n other therml stte expettion vlue quntum omputers: you only hve to pply U to the NMR prout opertor I n mesure I1x n I1y in orer to otin 1x the tre of the originl mtrix U. Inepenent of the imension of mtrix U you only nee ONE extr quit for the implementtion of U s ompre to the implementtion of U itself. The mesurement of I1x n I1y n e omplishe in one single-sn experiment. NMR pulse sequene I S U 1 mens I S - z - z J I S U 1 U 1 U 1 I S U -1 1 mens I S y J I S - y z z I S U 2 mens -1-1 U 1 U 2 U 1 U 2 I S y - z - z J - y I S I S U -1 2 mens I S U 1 U 2 U 1 U 2 U 1 U 2 y J - y z z - y All knots n links n e expresse s prout of ri group genertors (see ove). Hene the orresponing NMR pulse sequene n lso e expresse s sequene of NMR pulse sequene loks, where eh lok orrespons to the ontrolle unitry mtrix U of one ri group genertor.. This moulr pproh llows for n esy optimiztion of the NMR pulse sequenes: only smll n limite numer of pulse sequene loks hve to e optimize.. NMR experiment Comprison of experimentl results, theoretil preitions, n simulte experiments, where relisiti inperfetions like relxtion, B1 fiel inhomogeneity, n finite length of the pulses re inlue. For eh t point, four single-sn NMR experiments hve een performe: mesurement of I1x, mesurement of I1y, referene for I1x, n referene for I1y. If neessry eh t point n lso e otine in one single-sn experiment Jones polynomil Jones Polynomil Trefoil": ( A + A - A ) 2-2 (- A - A ) Jones Polynomil Figure-Eight": Jones Polynomil Borromen rings": + 4A A - A - A + 3A - 2A + A - A -4 - A + 3A 0-2A -1 + A 0 The Jones Polynomils n e reonstrute out of the NMR experiments y: 3 -w( L) I( L) V (A)(- A ) ( tr{ U} + A [(-A -A ) -2]) L where: w( L) is the writhe of the knot or link L tr{ U} is etermine y the NMR experiments I( L) is the sum of exponents in the ri wor orresponing to the knot or link L Referenes: 1) 1) L. Kuffmn, AMS Contemp. Mth. Series, 305, eite y S. J. Lomono, (2002), (mth.qa/ ) 2) R. Mrx, A. Spörl, A. F. Fhmy, J. M. Myers, L. H. Kuffmn, S. J. Lomono, Jr., T. Shulte-Herrüggen, n S. J. Glser: pper in preprtion 3) Vughn F. R. Jones, Bull. Amer. Mth. So., (1985), no. 1, ) J. M. Myers, A. F. Fhmy, S. J. Glser, R. Mrx, Phys. Rev. A, (2001), 63, (qunt-ph/ ) 5) D. Ahronov, V. Jones, Z. Lnu, Proeeings of the STOC 2006, (2006), (qunt-ph/ ) 6) M. H. Freemn, A. Kitev, Z. Wng, Commun. Mth. Phys., (2002), 227,

29 SU(2) Representtions of the Artin Bri Group Theorem. If g + u n h + v re pure unit quternions,then, without loss of generlity, the ri reltion ghg hgh is true if n only if h + v, n φ g (v) φ h 1(u). Furthermore, given tht g + u n h + v, the onition φ g (v) φ h 1(u) is stisfie if n only if u v when u v. If u v then then g h n the ri reltion is trivilly stisfie. g + u h + v u v (^2 - ^2)/2^2

30 An Exmple. Let where os(θ) n sin(θ). Let g e iθ + i h + [( 2 s 2 )i + 2sk] where 2 +s 2 1 n 2 s Then we n reexpress g n h in mtrix 2 2 form s the mtries G n H. Inste of writing the expliit form of H, we write H F GF where F is n element of SU(2) s shown elow. G F ( e iθ 0 0 e iθ ( i is is i ) ) ing where one genert

31 SU(2) Fioni Moel τ 2 + τ 1. g e 7πi/10 f iτ + k τ h frf 1 fgf -1 {g,h} represents 3-strn ris, generting ense suset of SU(2).

32 We shll see tht the representtion lele SU(2) Fioni Moel in the lst slie extens eyon SU(2) to representtions of mny-strne ri groups rih enough to generte quntum omputtion.

33 Quntum Hll Effet

34 The qusi-prtile theory is onnete with Chern-Simons Theory n it explins the FQHE on the sis of nyons : prtiles tht hve non-trivil (not +1 or -1) phse hnge when they exhnge ples in the plne.

35 Nuler Physis B360 (1991) North-Holln NONABELIONS IN THE FRACTIONAL QUANTUM HALL EFFECT Gregory MOORE Deprmzent of Physis, Yle Uniersity, New Hen, CT 06511, USA Nihols READ Deprtments of Applie Physis n Physis, Yle Unirersity, New Ht'en, CT 06520, USA Reeive 31 My 1990 (Revise 5 Deemer 1990) Applitions of onforml fiel theory to the theory of frtionl quntum Hll systems re isusse. In prtiulr, Lughlin's wve funtion n its ousins re interprete s onforml loks in ertin rtionl onforml fiel theories. Using this point of view hmiitonin is onstrute for eletrons for whih the groun stte is known extly n whose qusihole exittions hve nonelin sttistis; we term these ojets "nonelions". It is rgue tht universlity lsses of frtionl quntum Hll systems n e hrterize y the quntum numers n sttistis of their exittions. The reltion etween the orer prmeter in the frtionl quntum Hll effet n the hirl lger in rtionl onforml fiel theory is stresse, n new orer prmeters for severl sttes re given.

36 3. Eletron wve funtions s onforml loks: Lughlin sttes n the hierrhy Let us return to the Lughlin stte in the is geometry:, 2] ~l~.gi, li,,(zl,---, zn) r l ( z, - zs) exp[ - ~ Y:lz, I, i < j (3.1) where q is n o integer [3]. In the thermoynmi limit this stte IOL; N ) esries flui groun stte with uniform numer ensity P0 - v/2z: 1/2zrq insie rius of orer 2~-N. The GL esription of this limit for normlize flui stte [t~ ) of slowly vrying ensity involves guge fiel i ~ ( z ) ~ f z - z ' z' (3.2) In the GL esription [4] this guge fiel ouples to the orer prmeter (whih hs hrge q; we set the hrge of the eletron to 1 from now on) n lso enters with Chern-Simons term q 4rr f z C ~ (3.3) in the tion. If we re intereste primrily in sttistis of exittions we my expet suh topologil terms in the tion to ply ominnt role - sine they ominte ll other terms t long istnes n low energies. On the other hn, it is now well known tht CSW theory (i.e. (2 + 1)-imensionl guge theory with only CS term in the tion) for n elin guge fiel is losely onnete to the (1 + 1)-imensionl onforml fiel theory known s the "rtionl torus" [1,5].

37 Briing Anyons Λ Reoupling Proess Spes

38 Proess Vetor Spes n Reoupling ε V( ) e f ε V( )

39 A B A B C C

40 Topologil Quntum Fiel Theory Trinion Proess Spes on Surfes Le to Three-Mnifol Invrints.

41 Non-Lol Briing is Inue vi Reoupling F R -1 F B F -1 RF

42 Proess Spes Cn e Aitrrily Lrge. With oherent reoupling theory, ll trnsformtions re in the representtion of one ri group.

43 Mthemtil Moels for Reoupling Theory with Briing ome from Comintion of Penrose Spin Networks n Knot Theory. See Temperley Lie Reoupling Theory n Invrints of Three-Mnifols y L. Kuffmn n S. Lins, PUP, 1994.

44 Brket Polynomil Moel for Jones Polynomil -1 A A A -1 A A -1 A -1 < > A < > + A < > -1 < > A < > + A < > < K > S < K S > δ S 1.

45 q-deforme Spin Networks ~ 2-2 -A - A 2 1/δ A + -1 A n 1 1 n 1 1 n... n n / n n+1 n n strns δ n+1 - n n-1 {n}! Σ σ ε S n -4 t( σ) (A ) 0 n -3 t( σ ) (1/{n}!) (A ) Σ σ ε S n ~ σ i j k 45 i + j j + k i + k

46 Projetors re Sums over Permutions, Lifte to Bris n Expne vi the Brket into the Temperley Lie Alger

47 Briing, Nturlity, Reoupling, Pentgon n Hexgon -- Automti Consequenes of the Constution R F F R F F F F F F R R F

48 P P P P Fioni Moel A e 3πi/5. ) ( 1/δ * P P P P 0 P 111 im(v ) 1 0 Forien * P P P P P P P P * P 1111 im(v ) 2 0 * * 0 > 1 > P P Temperley Lie Representtion of Fioni Moel

49

50 Fioni Moel

51 The Simple, yet Quntum Universl, Struture of the Fioni Moel A e 3πi/5. ) ( ( ) ( ) δ A 2 A 2 δ (1 + 5)/2, ( 1/ 1/ F 1/ 1/ ( ) A 4 0 R 0 A 8 ) ( ) τ τ τ τ ( e 4πi/5 0 0 e 2πi/5 exmple of ri group representtion ).

52 Spin Network Gymnstis

53 1/δ (δ 1/δ) (δ 1/δ) (δ 1/δ) δ 2 δ 1 Θ 1/δ Θ 2 (δ 1/δ) δ /δ

54 + + 1/ 2 Θ Θ / /Θ 2 Θ/ Τ /Θ 2

55 Θ(,, ) Θ(,, ) δ { } i j Σ j i j k [ ] Tet i k i Closure, Bule n Reoupling

56 The 6-j Coeffiients i k Σ j i { j } j k Σ j i { j } Θ(,, j ) Θ(,, j ) j j j k δ j { } i Θ(,, k) Θ(,, k ) k k i { } k Tet i [ ] k k Θ(,, k) Θ(,, k)

57 Lol Briing λ λ (+-)/2 (-1) A ('+'-')/2 x' x(x+2)

58 Θ(,, ) Reefining the Vertex is the key to otining Unitry Reoupling Trnsformtions. Θ(,, ) Θ(,, )

59 Σ j i k Σ j δ j k k MoTet[ ] i i j i j i i j j j k k k j j i j j j j j j New Reoupling Formul

60 The Reoupling Mtrix is Rel Unitry t Roots of Unity. i Σ j i j j i j i j, i j j i M[,,,] i j i j T -1

61 Theorem. Unitry Representtions of the Bri Group ome from Temperley Lie Reoupling Theory t roots of unity. A e iπ/2r Suffiient to Proue Enough Unitry Trnsformtions for Quntum Computing.

62 Quntum Computtion of Colore Jones Polynomils n WRT invrints. B P(B) Σ B(x,y) x y x, y Σ B(x,y) if 0 0 Σ x, y B(x,y) x 0 y 0 0 B(0,0) if 0 B(0,0) ( ) 2 B(0,0) ( ) 2 Nee to ompute igonl element of unitry trnsformtion. Use the Hmr Test.

63 Colore Jones Polynomil for n 2 is Speiliztion of the Durovnik version of Kuffmn polynomil. 4-4 A + A + δ -4 4 A + A + δ ( A - A ) - ( ) ( A - A ) - ( ) 8 A

64 Will these moels tully e use for quntum omputtion? Will quntum omputtion tully hppen? Will topology ply key role? Time will tell.

Spin Networks and Anyonic Topological Quantum Computing. L. H. Kauffman, UIC.

Spin Networks and Anyonic Topological Quantum Computing. L. H. Kauffman, UIC. Spin Networks n Anyoni Topologil Quntum Computing L. H. Kuffmn, UC qunt-ph/0603131 n qunt-ph/0606114 www.mth.ui.eu/~kuffmn/unitry.pf Spin Networks n Anyoni Topologil Computing Louis H. Kuffmn n Smuel J.

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

N=2 Gauge Theories. S-duality, holography and a surprise. DG, G. Moore, A. Neitzke to appear. arxiv:

N=2 Gauge Theories. S-duality, holography and a surprise. DG, G. Moore, A. Neitzke to appear. arxiv: N=2 Guge Theories S-ulity, hologrphy n surprise DG, G. Moore, A. Neitzke to pper DG: rxiv:0904.2715 DG, J. Mlen: rxiv:0904.4466 L.F.Aly, DG, Y.Thikw: rxiv:0906.3219 1 Overview M5 rnes on Riemnn surfes.

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

MCH T 111 Handout Triangle Review Page 1 of 3

MCH T 111 Handout Triangle Review Page 1 of 3 Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:

More information

Qubit and Quantum Gates

Qubit and Quantum Gates Quit nd Quntum Gtes Shool on Quntum omputing @Ygmi Dy, Lesson 9:-:, Mrh, 5 Eisuke Ae Deprtment of Applied Physis nd Physio-Informtis, nd REST-JST, Keio University From lssil to quntum Informtion is physil

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Generalized Kronecker Product and Its Application

Generalized Kronecker Product and Its Application Vol. 1, No. 1 ISSN: 1916-9795 Generlize Kroneker Prout n Its Applition Xingxing Liu Shool of mthemtis n omputer Siene Ynn University Shnxi 716000, Chin E-mil: lxx6407@163.om Astrt In this pper, we promote

More information

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work Eexel Level 3 Avne GCE in Mthemtis (9MA0) Two-yer Sheme of Work Stuents stuying A Level Mthemtis will tke 3 ppers t the en of Yer 13 s inite elow. All stuents will stuy Pure, Sttistis n Mehnis. A level

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Topological quantum computation. John Preskill, Caltech Biedenharn Lecture 4 15 September 2005

Topological quantum computation. John Preskill, Caltech Biedenharn Lecture 4 15 September 2005 Topologil quntum omputtion John Preskill, Clteh Biedenhrn Leture 4 5 Septemer 2005 http://www.iqi.lteh.edu/ http://www.theory.lteh.edu/~preskill/ph29/ph29_2004.html Quntum omputer: the stndrd model ()

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

John Preskill, Caltech KITP 7 June 2003

John Preskill, Caltech KITP 7 June 2003 Topologil quntum omputing for eginners John Preskill, Clteh KITP 7 June 2003 http://www.iqi.lteh.edu/ http://www.theory.lteh.edu/~preskill/ph29/ph29_2004.html Kitev Freedmn Kitev Freedmn Kitev, Fult-tolernt

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Total score: /100 points

Total score: /100 points Points misse: Stuent's Nme: Totl sore: /100 points Est Tennessee Stte University Deprtment of Computer n Informtion Sienes CSCI 2710 (Trnoff) Disrete Strutures TEST 2 for Fll Semester, 2004 Re this efore

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

arxiv: v1 [cond-mat.str-el] 22 Dec 2016

arxiv: v1 [cond-mat.str-el] 22 Dec 2016 Refletion n time reversl symmetry enrihe topologil phses of mtter: pth integrls, non-orientle mnifols, n nomlies Missm Brkeshli, 1,, 3, 4 Prs Bonerson, 4 Meng Cheng, 5, 4 Cho-Ming Jin, 3, 4 n Kevin Wlker

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Exercise 3 Logic Control

Exercise 3 Logic Control Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled

More information

arxiv: v2 [cond-mat.str-el] 12 Nov 2014

arxiv: v2 [cond-mat.str-el] 12 Nov 2014 Symmetry, Defets, n Guging of Topologil Phses rxiv:1410.4540v2 [on-mt.str-el] 12 Nov 2014 Missm Brkeshli, 1 Prs Bonerson, 1 Meng Cheng, 1 n Zhenghn Wng 1, 2 1 Sttion Q, Mirosoft Reserh, Snt Brr, Cliforni

More information

On the Spectra of Bipartite Directed Subgraphs of K 4

On the Spectra of Bipartite Directed Subgraphs of K 4 On the Spetr of Biprtite Direte Sugrphs of K 4 R. C. Bunge, 1 S. I. El-Znti, 1, H. J. Fry, 1 K. S. Kruss, 2 D. P. Roerts, 3 C. A. Sullivn, 4 A. A. Unsiker, 5 N. E. Witt 6 1 Illinois Stte University, Norml,

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Topological Quantum Compiling

Topological Quantum Compiling Topologicl Quntum Compiling Work in collbortion with: Lyl Hormozi Georgios Zikos Steven H. Simon Michel Freedmn Nd Petrovic Florid Stte University Lucent Technologies Microsoft Project Q UCSB NEB, L. Hormozi,

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Chapter Five - Eigenvalues, Eigenfunctions, and All That Chpter Five - Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

MATH 122, Final Exam

MATH 122, Final Exam MATH, Finl Exm Winter Nme: Setion: You must show ll of your work on the exm pper, legily n in etil, to reeive reit. A formul sheet is tthe.. (7 pts eh) Evlute the following integrls. () 3x + x x Solution.

More information

arxiv: v2 [cond-mat.str-el] 18 Sep 2015

arxiv: v2 [cond-mat.str-el] 18 Sep 2015 Topologil Superonutors n Ctegory Theory Anrei Bernevig 1 n Titus Neupert 2 1 Deprtment of Physis, Prineton University, Prineton, New Jersey 08544, USA 2 Prineton Center for Theoretil Siene, rxiv:1506.05805v2

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

Analysis of Temporal Interactions with Link Streams and Stream Graphs

Analysis of Temporal Interactions with Link Streams and Stream Graphs Anlysis of Temporl Intertions with n Strem Grphs, Tiphine Vir, Clémene Mgnien http:// ltpy@ LIP6 CNRS n Soronne Université Pris, Frne 1/23 intertions over time 0 2 4 6 8,,, n for 10 time units time 2/23

More information

A Short Introduction to Self-similar Groups

A Short Introduction to Self-similar Groups A Short Introution to Self-similr Groups Murry Eler* Asi Pifi Mthemtis Newsletter Astrt. Self-similr groups re fsinting re of urrent reserh. Here we give short, n hopefully essile, introution to them.

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

arxiv: v1 [quant-ph] 2 Apr 2007

arxiv: v1 [quant-ph] 2 Apr 2007 Towrds Miniml Resoures of Mesurement-sed Quntum Computtion riv:0704.00v1 [qunt-ph] Apr 007 1. Introdution Simon Perdrix PPS, CNRS - niversité Pris 7 E-mil: simon.perdrix@pps.jussieu.fr Astrt. We improve

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2 EE08A Leture 2: Comintionl Logi Design EE 08A Leture 2 () 2005-2008 W. J. Dlly n P. Levis Announements Prof. Levis will hve no offie hours on Friy, Jn 8. Ls n setions hve een ssigne - see the we pge Register

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS

COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS Interntionl Journl of Fuzzy Loi Systems (IJFLS) Vol.5 No. Otoer 05 COMPRISON OF DIFFERENT PPROXIMTIONS OF FUZZY NUMBERS D. Stephen Dinr n K.Jivn PG n Reserh Deprtment of Mthemtis T.B.M.L. Collee Poryr

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Entanglement Purification

Entanglement Purification Lecture Note Entnglement Purifiction Jin-Wei Pn 6.5. Introduction( Both long distnce quntum teleporttion or glol quntum key distriution need to distriute certin supply of pirs of prticles in mximlly entngled

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Measurement-Only Topological Quantum Computation

Measurement-Only Topological Quantum Computation Mesurement-Only Topologicl Quntum Computtion Prs Bonderson Microsoft Sttion Q University of Virgini Condensed Mtter Seminr October, 8 work done in collbortion with: Mike Freedmn nd Chetn Nyk rxiv:8.79

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

Alpha Algorithm: Limitations

Alpha Algorithm: Limitations Proess Mining: Dt Siene in Ation Alph Algorithm: Limittions prof.dr.ir. Wil vn der Alst www.proessmining.org Let L e n event log over T. α(l) is defined s follows. 1. T L = { t T σ L t σ}, 2. T I = { t

More information

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Geodesics on Regular Polyhedra with Endpoints at the Vertices Arnol Mth J (2016) 2:201 211 DOI 101007/s40598-016-0040-z RESEARCH CONTRIBUTION Geoesis on Regulr Polyher with Enpoints t the Verties Dmitry Fuhs 1 To Sergei Thnikov on the osion of his 60th irthy Reeive:

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

arxiv: v2 [quant-ph] 15 Aug 2008

arxiv: v2 [quant-ph] 15 Aug 2008 Mesurement-Only Topologil Quntum Computtion Prs Bonderson, 1 Mihel Freedmn, 1 nd Chetn Nyk 1, 2 1 Mirosoft Reserh, Sttion Q, Elings Hll, University of Cliforni, Snt Brbr, CA 93106 2 Deprtment of Physis,

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information

Unfoldings of Networks of Timed Automata

Unfoldings of Networks of Timed Automata Unfolings of Networks of Time Automt Frnk Cssez Thoms Chtin Clue Jr Ptrii Bouyer Serge H Pierre-Alin Reynier Rennes, Deemer 3, 2008 Unfolings [MMilln 93] First efine for Petri nets Then extene to other

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE V.S. Gordeev, G.A. Myskov Russin Federl Nuler Center All-Russi Sientifi Reserh Institute of Experimentl Physis (RFNC-VNIIEF)

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Bivariate drought analysis using entropy theory

Bivariate drought analysis using entropy theory Purue University Purue e-pus Symposium on Dt-Driven Approhes to Droughts Drought Reserh Inititive Network -3- Bivrite rought nlysis using entropy theory Zengho Ho exs A & M University - College Sttion,

More information

CSC2542 State-Space Planning

CSC2542 State-Space Planning CSC2542 Stte-Spe Plnning Sheil MIlrith Deprtment of Computer Siene University of Toronto Fll 2010 1 Aknowlegements Some the slies use in this ourse re moifitions of Dn Nu s leture slies for the textook

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Commun. Koren Mth. So. 31 016, No. 1, pp. 65 94 http://dx.doi.org/10.4134/ckms.016.31.1.065 A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Hrsh Vrdhn Hrsh, Yong Sup Kim, Medht Ahmed Rkh, nd Arjun Kumr Rthie

More information

The Stirling Engine: The Heat Engine

The Stirling Engine: The Heat Engine Memoril University of Newfounln Deprtment of Physis n Physil Oenogrphy Physis 2053 Lortory he Stirling Engine: he Het Engine Do not ttempt to operte the engine without supervision. Introution Het engines

More information

"Add"-operator "Mul"-operator "Pow"-operator. def. h b. def

Add-operator Mul-operator Pow-operator. def. h b. def Opertors A sort review of opertors. Te isussions out tetrtion le me to two impressions. ) It my e etter to see opertors using prmeters, inste of two, s it is ommon use upte 4 ) Sering for noter onsistent

More information