Solutions to Problem Set #1

 Grant Benson
 10 months ago
 Views:
Transcription
1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors of vrious movies. Assume movie is uniquely ientifie y its title. Do not ssume tht movie hs unique iretor (so movie y Hithok is one for whih one of the iretors is Hithok). The seon reltion provies the titles of urrently plying movies n the theters where they re eing shown. Express the following queries in (i) reltionl lulus n (ii) reltionl lger. () List the theters showing some movie y Hithok. (i) {t : th x (sheule(t, x) movie(x, Hithok, ))} (ii) π th (sheule π title (σ iretor=hithok (movie))) () List the theters showing only movies y Hithok. (i) {t : th x(sh(t, x)) x[sh(t, x) (movie(x, Hith, ))]} With tive omin semntis, the onjunt x(sh(t, x)) is neee to mke sure t is theter. (ii) π th (sh) π th [sh (π title (movie) π title (σ ir=hith (movie)))] 2. The ivision inry opertor on reltions is efine s follows. Given reltions P n Q for whih tt(q) tt(p ), P Q is reltion with ttriutes tt(p ) tt(q) ontining the tuples t for whih {t} Q P. For exmple, if tt(p ) = {A, B} n tt(q) = {B}, P Q is the reltion with ttriute {A} ontining the tuples for whih, P for every tuple Q. Intuitively, is iret implementtion of universl quntifition. 1
2 (i) Use (n stnr lger opertors) to express the query List the theters showing every movie y Hithok. sheule π title (σ ir=hith (movie)) (ii) Show how P Q n e expresse using the stnr reltionl lger opertors (you n ssume, for simpliity, tht tt(p ) = {A, B} n tt(q) = {B}). π A (P ) π A [π A (P ) Q P ] 3. Consier the following query on the ove sheule reltion: Fin the theters showing more thn one title (i) Express this query in reltionl lulus n reltionl lger. {t : th x 1 x 2 (sh(t, x 1 ) sh(t, x 2 ) x 1 x 2 )} π th (σ title title1 (sheule δ title title1 (sheule))) (σ A B (e) stns for e σ A=B (e)). (ii) ( ) Prove tht every reltionl lger expression efining the ove query must use the ttriute renming opertor δ. Suppose e expresses the query n uses no δ. In the proof elow we lso ssume tht e uses no onstnt reltions (the proof with onstnt reltions is slightly more omplite ut follows the sme lines). However, e my use seletion with onstnts. Let I e the instne of sh: sh th title where e oes not use seletion with ny of the onstnts in C = {,, 1, 2, 3}. Consier ny reltionl lger expression f over sh 2
3 using no renming n no onstnts in C (e is one suh expression). Denote y tt(f) the set of ttriutes of the result of f. Oviously, tt(f) {th, title} sine no renming is use. We enote y I the reltion π th (I) π title (I) n Ī = (I) I. We show y struturl inution the following: if f hs one ttriute A {th, title}, then f(i) = or f(i) = π A (I). if tt(f) = {th, title} then f(i) {, I, Ī, (I)} Note tht this shows tht e nnot express the esire query, sine tt(e) = {th} so y the ove e(i) must equl or π th (I), neither of whih is the esire nswer {}. Bsis f = sh. Then tt(f) = {th, title} n f(i) = I. Inution step We onsier the following ses, where f 1 n f 2 re lger expressions over sh ssume, y the inution hypothesis, to stisfy the ove sttement: f = σ A= (f 1 ). Then f(i) =, sine C, so f 1 (I) oes not ontin. f = σ A=B (f 1 ). Then tt(f 1 ) = {th, title}, so A = th n B = title (or onversely). By the inution hypothesis, f 1 (I) {, I, Ī, (I)}, so σ A=B(f 1 (I)) =. f = π A (f 1 ). We n ssume wlog 1 tht tt(f 1 ) = {th, title}. By the inution hypothesis, f 1 (I) {, I, Ī, (I)}. It follows tht f(i) is either empty or equls π A (I). f is f 1 f 2, f 1 f 2, or f 1 f 2. By the inution hypothesis, f j (I) {, π th (I), π title (I), I, Ī, (I)}. By onsiering ll possiilities (sujet to typing onstrints), we see tht f(i) stisfies the sttement. This ompletes the inution n proves (ii). 4. (Automorphisms) (i) (5 points) Show tht CALC queries re invrint uner utomorphisms. In other wors, if ϕ( x) is CALC query without onstnts 1 Without loss of generlity. 3
4 over shem σ, then for every instne I over σ n onetoone mpping f : om om, if f(i) = I then f(ϕ(i)) = ϕ(i). Hint: Assume without loss of generlity tht ϕ uses only,,, n use struturl inution on the formul. Let ϕ( x) e CALC formul with free vriles x. following: We prove the ( ) For eh instne I n utomorphism f of I, f(ϕ(i)) ϕ(i). One ( ) is proven, the onverse inlusion ϕ(i) f(ϕ(i)) is shown s follows. Sine f is n utomorphism of I, so is f 1. By ( ) we hve tht f 1 (ϕ(i)) ϕ(i). But then f(f 1 (ϕ(i))) f(ϕ(i)), so ϕ(i) f(ϕ(i)). The proof of ( ) is y struturl inution on the formul. Suppose ϕ( x) is n tom. If ϕ( x) = R( x) then ϕ(i) = I(R), so f(ϕ(i)) = f(i(r)) = I(R) = ϕ(i). If ϕ is x = y then ϕ(i) = {, om(i)} so f(ϕ(i)) = { f(), f() om(i)} = ϕ(i) (sine f(om(i)) = om(i)). For the inution step, we hve three ses: 1. ϕ = ϕ( x, ȳ, z) = α( x, ȳ) β(ȳ, z). Let f(ū), f( v), f( w) f(ϕ(i)), with ū, v, w ϕ(i). Then ū, v α(i) n v, w β(i). Sine f(α(i)) = α(i), f(ū), f( v) α(i) n similrly f( v), f( w) β(i). It follows tht f(ū), f( v), f( w) ϕ(i). We onlue tht f(ϕ(i)) ϕ(i). 2. ϕ = xα(x, ȳ). Let ū ϕ(i). Then there exists v om(i) suh tht v, ū α(i). Sine f(α(i)) = α(i), it follows tht f(v), f(ū) α(i), n f(ū) ϕ(i). Thus, f(ϕ(i)) ϕ(i). 3. ϕ = α( x). Let ū ϕ(i). Then ū om u n ū α(i). But then f(ū) om u n f(ū) α(i). Inee, suppose f(ū) α(i). Sine f 1 is n utomorphism of I, f 1 (α(i)) α(i) y the inution hypothesis, so f 1 (f(ū)) α(i) n ū α(i). However, this is flse. We onlue tht f(ū) α(i), so f(ū) ϕ(i) n f(ϕ(i)) ϕ(i). This ompletes the proof of ( ) n of (i). (ii) (2 points) Let σ onsist of inry reltion R. Using (i), show tht there is no CALC query without onstnts whih on input 4
5 R proues s nswer Suppose there is CALC query ϕ with no onstnts, with the ove property. Let I e the input in the figure. By (i), f(ϕ(i)) = ϕ(i) for every utomorphism f of I. Consier the 11 mping f on om(i) efine y the tle f Clerly f(i) = I. However, f(ϕ(i)) ϕ(i), ontrition. 5
Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!
Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:
More informationAlgebra 2 Semester 1 Practice Final
Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers
More informationCIT 596 Theory of Computation 1. Graphs and Digraphs
CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege
More informationThe DOACROSS statement
The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows proueronsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete
More informationNumbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point
GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply
More informationChapter 4 StateSpace Planning
Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 StteSpe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different
More informationGraph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}
Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or MultiGrph We llow loops n multiple eges. G = (V, E.ψ)
More informationProportions: A ratio is the quotient of two numbers. For example, 2 3
Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)
More informationCS 360 Exam 2 Fall 2014 Name
CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singlylinke list n stk. Write three ifferent O(n)time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output
More informationI 3 2 = I I 4 = 2A
ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents
More informationMaximum size of a minimum watching system and the graphs achieving the bound
Mximum size of minimum wthing system n the grphs hieving the oun Tille mximum un système e ontrôle minimum et les grphes tteignnt l orne Dvi Auger Irène Chron Olivier Hury Antoine Lostein 00D0 Mrs 00 Déprtement
More informationSturmLiouville Theory
LECTURE 1 SturmLiouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory
More informationfor all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx
Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion
More informationLearning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus
Forml Query Lnguges: Reltionl Alger nd Reltionl Clculus Chpter 4 Lerning Gols Given dtse ( set of tles ) you will e le to express dtse query in Reltionl Alger (RA), involving the sic opertors (selection,
More informationDATABASTEKNIK  1DL116
DATABASTEKNIK  DL6 Spring 004 An introductury course on dtse systems http://user.it.uu.se/~udl/dtvt004/ Kjell Orsorn Uppsl Dtse Lortory Deprtment of Informtion Technology, Uppsl University, Uppsl, Sweden
More informationQUADRATIC EQUATION. Contents
QUADRATIC EQUATION Contents Topi Pge No. Theory 004 Exerise  0509 Exerise  093 Exerise  3 45 Exerise  4 6 Answer Key 78 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,
More informationNondeterministic Finite Automata
Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)
More informationQUADRATIC EQUATIONS OBJECTIVE PROBLEMS
QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.
More informationProject 6: Minigoals Towards Simplifying and Rewriting Expressions
MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy
More informationHarvard University Computer Science 121 Midterm October 23, 2012
Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closedook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is
More informationLesson 55  Inverse of Matrices & Determinants
// () Review Lesson  nverse of Mtries & Determinnts Mth Honors  Sntowski  t this stge of stuying mtries, we know how to, subtrt n multiply mtries i.e. if Then evlute: () + B (b)  () B () B (e) B n
More informationSeptember 30, :24 WSPC/Guidelines Y4Spanner
Septemer 30, 2011 12:24 WSPC/Guielines Y4Spnner Interntionl Journl of Computtionl Geometry & Applitions Worl Sientifi Pulishing Compny π/2angle YAO GAPHS AE SPANNES POSENJIT BOSE Shool of Computer Siene,
More informationSeparable discrete functions: recognition and sufficient conditions
Seprle isrete funtions: reognition n suffiient onitions Enre Boros Onřej Čepek Vlimir Gurvih Novemer 21, 217 rxiv:1711.6772v1 [mth.co] 17 Nov 217 Astrt A isrete funtion of n vriles is mpping g : X 1...
More informationINF1383 Bancos de Dados
3//0 INF383 ncos de Ddos Prof. Sérgio Lifschitz DI PUCRio Eng. Computção, Sistems de Informção e Ciênci d Computção LGER RELCIONL lguns slides sedos ou modificdos dos originis em Elmsri nd Nvthe, Fundmentls
More informationBoolean Algebra. Boolean Algebra
Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with:  two inry opertions, commonly denoted y + nd,  unry opertion, usully denoted y ˉ or ~ or,  two elements usully clled zero nd
More information1.2 What is a vector? (Section 2.2) Two properties (attributes) of a vector are and.
Homework 1. Chpters 2. Bsis independent vectors nd their properties Show work except for fillinlnksprolems (print.pdf from www.motiongenesis.com Textooks Resources). 1.1 Solving prolems wht engineers
More informationIntroduction to Olympiad Inequalities
Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd AmGm inequlity 2. Elementry inequlities......................
More informationAlgorithm Design and Analysis
Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing
More informationMonochromatic Plane Matchings in Bicolored Point Set
CCCG 2017, Ottw, Ontrio, July 26 28, 2017 Monohromti Plne Mthings in Biolore Point Set A. Krim AuAffsh Sujoy Bhore Pz Crmi Astrt Motivte y networks interply, we stuy the prolem of omputing monohromti
More informationSection 4.4. Green s Theorem
The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higherdimensionl nlogues) with the definite integrls
More information6.5 Improper integrals
Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =
More informationChapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)
C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,
More informationFarey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
More information= state, a = reading and q j
4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those
More informationNon Right Angled Triangles
Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in nonright ngled tringles. This unit
More informationwhere the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b
CS 2942 9/11/04 Quntum Ciruit Model, SolovyKitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits  Universl Gte Sets A lssil iruit implements multioutput oolen funtion f : {0,1}
More informationON LEFT(RIGHT) SEMIREGULAR AND greguar posemigroups. Sang Keun Lee
KngweonKyungki Mth. Jour. 10 (2002), No. 2, pp. 117 122 ON LEFT(RIGHT) SEMIREGULAR AND greguar posemigroups Sng Keun Lee Astrt. In this pper, we give some properties of left(right) semiregulr nd gregulr
More informationChapter Five  Eigenvalues, Eigenfunctions, and All That
Chpter Five  Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl
More informationChapter Gauss Quadrature Rule of Integration
Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationChapter 2 Finite Automata
Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht
More informationMCH T 111 Handout Triangle Review Page 1 of 3
Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:
More informationLecture 11 Binary Decision Diagrams (BDDs)
C 474A/57A ComputerAie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, Kmp, iruit, et
More informationData Structures LECTURE 10. Huffman coding. Example. Coding: problem definition
Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt
More informationGeometry of the Circle  Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.
Geometry of the irle  hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion
More informationSolutions to Assignment 1
MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove
More informationset is not closed under matrix [ multiplication, ] and does not form a group.
Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed
More informationCS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)
CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts
More informationMTH 505: Number Theory Spring 2017
MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c
More informationPAIR OF LINEAR EQUATIONS IN TWO VARIABLES
PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,
More informationSymmetrical Components 1
Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedystte nlysis of high voltge trnsmission systems, we mke use of the perphse equivlent
More informationGeneralized Kronecker Product and Its Application
Vol. 1, No. 1 ISSN: 19169795 Generlize Kroneker Prout n Its Applition Xingxing Liu Shool of mthemtis n omputer Siene Ynn University Shnxi 716000, Chin Emil: lxx6407@163.om Astrt In this pper, we promote
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationArrow s Impossibility Theorem
Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationMATH 573 FINAL EXAM. May 30, 2007
MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.
More informationMATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.
MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].
More informationLecture 1  Introduction and Basic Facts about PDEs
* 18.15  Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1  Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV
More informationYear 11 Matrices. A row of seats goes across an auditorium So Rows are horizontal. The columns of the Parthenon stand upright and Columns are vertical
Yer 11 Mtrices Terminology: A single MATRIX (singulr) or Mny MATRICES (plurl) Chpter 3A Intro to Mtrices A mtrix is escribe s n orgnise rry of t. We escribe the ORDER of Mtrix (it's size) by noting how
More informationy = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is...
. Liner Equtions in Two Vriles C h p t e r t G l n e. Generl form of liner eqution in two vriles is x + y + 0, where 0. When we onsier system of two liner equtions in two vriles, then suh equtions re lle
More informationAPPROXIMATION AND ESTIMATION MATHEMATICAL LANGUAGE THE FUNDAMENTAL THEOREM OF ARITHMETIC LAWS OF ALGEBRA ORDER OF OPERATIONS
TOPIC 2: MATHEMATICAL LANGUAGE NUMBER AND ALGEBRA You shoul unerstn these mthemtil terms, n e le to use them ppropritely: ² ition, sutrtion, multiplition, ivision ² sum, ifferene, prout, quotient ² inex
More informationNONDETERMINISTIC FSA
Tw o types of nondeterminism: NONDETERMINISTIC FS () Multiple strtsttes; strtsttes S Q. The lnguge L(M) ={x:x tkes M from some strtstte to some finlstte nd ll of x is proessed}. The string x = is
More informationQUADRATIC EQUATION EXERCISE  01 CHECK YOUR GRASP
QUADRATIC EQUATION EXERCISE  0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions
More informationReflection Property of a Hyperbola
Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the
More informationAutomata and Regular Languages
Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moellnguge reltionship hs multiple levels. We shll explore the simplest level,
More informationSTRAND J: TRANSFORMATIONS, VECTORS and MATRICES
Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors
More informationHomework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)
More information1 Nondeterministic Finite Automata
1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you
More informationThe Modified Heinz s Inequality
Journl of Applied Mthemtics nd Physics, 03,, 6570 Pulished Online Novemer 03 (http://wwwscirporg/journl/jmp) http://dxdoiorg/0436/jmp03500 The Modified Heinz s Inequlity Tkshi Yoshino Mthemticl Institute,
More informationParallel Projection Theorem (Midpoint Connector Theorem):
rllel rojection Theorem (Midpoint onnector Theorem): The segment joining the midpoints of two sides of tringle is prllel to the third side nd hs length onehlf the third side. onversely, If line isects
More informationSTRUCTURE OF CONCURRENCY Ryszard Janicki. Department of Computing and Software McMaster University Hamilton, ON, L8S 4K1 Canada
STRUCTURE OF CONCURRENCY Ryszrd Jnicki Deprtment of Computing nd Softwre McMster University Hmilton, ON, L8S 4K1 Cnd jnicki@mcmster.c 1 Introduction Wht is concurrency? How it cn e modelled? Wht re the
More informationexpression simply by forming an OR of the ANDs of all input variables for which the output is
2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output
More informationCalculus Cheat Sheet. Integrals Definitions. where F( x ) is an antiderivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx
Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous AntiDerivtive : An ntiderivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.
More informationMath 259 Winter Solutions to Homework #9
Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier
More informationThe RiemannStieltjes Integral
Chpter 6 The RiemnnStieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0
More informationCS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation
CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes
More informationUndecidability for arbitrary public announcement logic
Uneiility for ritrry puli nnounement logi Tim Frenh n Hns vn Ditmrsh strt. Aritrry puli nnounement logi (AP AL) is n extension of multigent epistemi logi tht llows gents knowlege sttes to e upte y the
More informationConnectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example
Connetiit in Grphs CSH: Disrete Mthemtis Grph Theor II Instrtor: Işıl Dillig Tpil qestion: Is it possile to get from some noe to nother noe? Emple: Trin netork if there is pth from to, possile to tke trin
More informationSymbolic Automata for Static Specification Mining
Symoli Automt for Stti Speifition Mining Hil Peleg 1, Shron Shohm, Ern Yhv, n Hongseok Yng 1 Tel Aviv University, Isrel Tel AvivYffo Aemi College, Isrel University of Ofor, UK Tehnion, Isrel Astrt. We
More informationCS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan
CS 267: Automted Verifiction Lecture 8: Automt Theoretic Model Checking Instructor: Tevfik Bultn LTL Properties Büchi utomt [Vrdi nd Wolper LICS 86] Büchi utomt: Finite stte utomt tht ccept infinite strings
More informationWave Equation on a Two Dimensional Rectangle
Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c
More informationReasoning and programming. Lecture 5: Invariants and Logic. Boolean expressions. Reasoning. Examples
Chir of Softwre Engineering Resoning nd progrmming Einführung in die Progrmmierung Introduction to Progrmming Prof. Dr. Bertrnd Meyer Octoer 2006 Ferury 2007 Lecture 5: Invrints nd Logic Logic is the sis
More informationT b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.
Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene
More informationIntroduction to Graphical Models
Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationarxiv: v1 [cs.dm] 24 Jul 2017
Some lsses of grphs tht re not PCGs 1 rxiv:1707.07436v1 [s.dm] 24 Jul 2017 Pierluigi Biohi Angelo Monti Tizin Clmoneri Rossell Petreshi Computer Siene Deprtment, Spienz University of Rome, Itly pierluigi.iohi@gmil.om,
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationEnergy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More information2. Properties of Functions
2. PROPERTIES OF FUNCTIONS 111 2. Properties of Funtions 2.1. Injetions, Surjetions, an Bijetions. Definition 2.1.1. Given f : A B 1. f is onetoone (short han is 1 1) or injetive if preimages are unique.
More informationA Functorial Query Language
A Funtoril Query Lnguge Ryn Wisnesky, Dvid Spivk Deprtment of Mthemtis Msshusetts Institute of Tehnology {wisnesky, dspivk}@mth.mit.edu Presented t Boston Hskell April 16, 2014 Outline Introdution to FQL.
More informationQuadratic reciprocity
Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition
More informationCS 330 Formal Methods and Models
CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationHandout: Natural deduction for first order logic
MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationCS 311 Homework 3 due 16:30, Thursday, 14 th October 2010
CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w
More informationBidirectionalizing Graph Transformations
Biiretionlizing Grph Trnsformtions Soihiro Hik Kzuhiro In Zhenjing Hu Hiroyuki Kto Ntionl Institute of Informtis, Jpn {hik,hu,kin,kto}@nii..jp Kzutk Mtsu Tohoku University, Jpn kztk@k.eei.tohoku..jp Keisuke
More informationAnalytically, vectors will be represented by lowercase boldface Latin letters, e.g. a, r, q.
1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples
More information