Green s Functions and Topological Configurations

Size: px
Start display at page:

Download "Green s Functions and Topological Configurations"

Transcription

1 Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical Systems, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-8 Bratislava, Slovakia Axel.Maas@Uni-Graz.at There are, among others, currently two imortant views on the non-erturbative structure of Yang- Mills theory. One is through toological configurations and one is through Green s functions, in articular their (asymtotic) infrared behavior. Based on both views, various scenarios for confinement, chiral symmetry breaking and other non-erturbative effects have been develoed. However, if both views are correct then they can only be different asects of the same underlying hysics, and it must be ossible to relate them. After discussing the current status of the understanding of this connection, smeared and cooled configurations in lattice gauge theory are used to determine the roerties of Green s functions in the low-momentum regime. It is found that the qualitative roerties are essentially unchanged comared to results on unsmeared configurations. This is also the case when the configurations are smeared sufficiently strongly to reach the almost (anti-)self-dual domain. PoS(Confinement8) 8th Conference Quark Confinement and the Hadron Sectrum Setember -, 8 Mainz, Germany Seaker. Suorted by the DFG under grant number MA 9/- and by the FWF under grant number P. I am grateful to the organizers for inviting me to give this talk, and for this interesting conference. c Coyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. htt://os.sissa.it/

2 Green s Functions and Toological Configurations. Connecting confinement scenarios There are two views on the long-distance dynamics of Yang-Mills theory (and QCD), which are currently emloyed rominently []. One view is based on toological configurations of various tyes []. Most investigated among them are vortices and monooles, but there are also other ossibilities like merons, calorons, instantons, and others. These configurations rovide direct access to the generation of (quark) confinement, chiral symmetry breaking, the finite temerature hase transition and other non-erturbative features of Yang-Mills theory and QCD. The other view is by means of Green s functions []. These rovide access to (gluon) confinement, chiral symmetry breaking, bound states and also other non-erturbative henomena. They also ermit directly the connection to erturbation theory. Both sets of scenarios are not yet comlete, and the discussion on various asects of them continues [,, ]. Nonetheless, the most develoed scenarios of both cases, the combined vortex and monoole scenario [, ] and the scenarios of Gribov and Zwanziger and of Kugo and Ojima (GZKO) [,, ], rovide already a quite encomassing view of the long-distance shae of QCD. Given the considerable successes of both views, it seems rather unlikely that either is fundamentally flawed. If therefore both are correct views of the same underlying hysics, they must be connected. Understanding this connection may also rovide insight into the yet missing ieces of both views, and may also hel to settle ersisting roblems of the individual views. This relation is to a large extent unexlored. However, there are a number of observations, mostly on the connection of the infrared roerties of Landau and Coulomb gauge roagators to vortices, monooles, and instantons. In this context it is imortant that most toological configurations are gauge-deendent quantities, and that their identification in various gauges is differing in difficulty []. On the other hand, the GZKO scenario can be alied to the class of linear-λ gauges, including the Landau and Coulomb gauge. This requirement of gauge-fixing is due to the concet of quarks and gluons as the basic building blocks of matter, as these are gauge-deendent. However, at least vortices, instantons [7], and monooles [8] can be transferred to Landau gauge, although they are not in one-to-one corresondence to their counterarts in other gauges [9]. Hence, in the following only Landau (and to some extent Coulomb) gauge will be discussed, desite its comlexities [,, ]. In this gauge it was ossible to show that vortices aear inside and on the boundary of the socalled first Gribov region [7], monooles [8] and instantons [7] on the boundary of the first Gribov region, and instantons also on the common boundary of the first Gribov region and the so-called fundamental modular region [7]. According to the Gribov-Zwanziger scenario [], these boundaries are resonsible for the infrared roerties of Green s functions. Hence, these toological configurations should be relevant field configurations for the Green s functions. An indirect indication for this is that the sectrum and eigenstates of the Faddeev-Poov oerator, which determines the ghost roagator, are affected by toological configurations [7, 8, ]. In articular, they give rise to additional zero-modes, which in rincile enhances the ghost roagator. This has also been demonstrated exlicitly by determining the ghost [] and gluon roagators [] in lattice gauge theory after removal of vortices. In this case, the low-momentum roerties are qualitatively altered. However, one of the most surrising results in this context is that instantons also lay a role [7, ]. PoS(Confinement8)

3 Green s Functions and Toological Configurations Smearing rogress D() Gluon dressing function D() Smearing stes APE ste APE stes DG () Smearing stes Smearing rogress.... Smearing stes DG ().... Ghost dressing function Smearing stes APE ste APE stes.... Figure : The gluon (to) and ghost (bottom) roagators as a function of the smearing ste (left anel) after mild smearing and measured after each smearing ste. Some individual stes are shown in the right anel. Results are from a lattice at β =. (a =. fm, V = (. fm ) ).. Proagators in toological backgrounds To investigate this fact more closely, smeared and/or cooled lattice gauge theory configurations can be used. In articular, when smearing sufficiently long, the configurations will be reduced to essentially (anti-)self-dual ones, with an action being almost a multile of the instanton action. To investigate this in detail, SU() lattice configurations in four dimensions [7] were smeared using a standard APE-smearing [8]. This rocedure is essentially as effective as other methods of smearing for the identification of long-range (toological) structures [8]. During the smearing, the smeared configurations were fixed to minimal Landau gauge, and the gluon and ghost roagators were determined using standard methods [7]. By this it was ossible to monitor the roagators during the smearing rocess, which has been done dee into the region of urely toological configurations. Results for rather small lattices, and thus only useful for investigations of the lowmomentum roerties, are shown in figure for mild smearing. In figure, results dee in the self-dual regime are shown. A more extended study, for significantly larger volumes and different PoS(Confinement8)

4 Green s Functions and Toological Configurations D() DG () Smearing rogress Smearing rogress Smearing rogress Smearing rogress Gluon dressing function D() DG () Smearing stes APE stes APE stes.... Ghost roagator dressing function Smearing stes APE stes APE stes.... Figure : Same as in figure, but smearing is now extended to APE stes, and measurements are erformed every stes. This is dee in the self-dual regime.. discretizations, will be shown elsewhere [9]. The roagators lose their ultraviolet roerties under smearing, as exected. The gluon roagator is damed out comletely, while the ghost roagator becomes essentially tree-level-like. Their low-momentum roerties are, however, not qualitatively affected. Nonetheless, the quantitative effects are considerable, and there might be even stronger effects observable once larger volumes, and thus smaller momenta, can be reached. In fact, the further smearing roceeds, the lower the momentum becomes from which on non-trivial roerties of the roagators are observed. The residual configurations, i. e., the configurations which the smeared configurations have to be combined with on the grou level to obtain the original ones, yield essentially trivial Green s functions, as exected [9]. It is also ossible to determine the roagators in sectors with fixed toological charge. Although this requires large amounts of statistics, reliminary findings indicate that there is no ronounced deendence of the roagators on the toological charge. This will be discussed in detail elsewhere [9]. In rincile, such an analysis could also be erformed for the instanton number. PoS(Confinement8)

5 Green s Functions and Toological Configurations. Concluding remarks The fact that the low-momentum roerties of the roagators kee their qualitative roerties under smearing rovides two insights. On the one hand, this imlies that the long-range structure is shaing the low-momentum roerties of roagators. This has already been anticiated based on the findings in center-trivial grous [, ]. On the other hand, reroducing the low-momentum roerties of the Green s functions in functional or other continuum calculations indicates that at least art of the dynamics due to toological configurations has been catured. Note that these findings are reliminary, and also do not reach far enough into the infrared to make (yet) a statement on the asymtotic roerties of the roagators in smeared (toological) field configurations. Nonetheless, the fact that smearing does not qualitatively modify the lowmomentum roerties of Green s functions is in agreement with the exectations [7]. References [] R. Alkofer and J. Greensite, J. Phys. G (7) S [arxiv:he-h/]. [] J. Greensite, Prog. Part. Nucl. Phys. () [arxiv:he-lat/]. [] C. S. Fischer, J. Phys. G () R [arxiv:he-h/7]. [] C. S. Fischer, A. Maas and J. M. Pawlowski, arxiv:8.987 [he-h]. [] A. Cucchieri and T. Mendes, arxiv: [he-lat]. [] M. Faber, J. Greensite and Š. Olejník, JHEP () [arxiv:he-lat/7]. [7] A. Maas, Eur. Phys. J. C 8 () 79 [arxiv:he-th/7]. [8] A. Maas, Nucl. Phys. A 79 (7) [arxiv:he-th/]. [9] J. Greensite, Š. Olejník and D. Zwanziger, Phys. Rev. D 9 () 7 [arxiv:he-lat/]. [] A. Maas, arxiv:88.7 [he-lat]. [] A. Sternbeck and L. von Smekal, PoS LATTICE8 (8) 7 [arxiv:8.7 [he-lat]]. [] D. Zwanziger, Phys. Rev. D 9 () [arxiv:he-h/8] and references therein. [] J. Greensite, Š. Olejník and D. Zwanziger, JHEP () 7 [arxiv:he-lat/7]. [] J. Gattnar, K. Langfeld and H. Reinhardt, Phys. Rev. Lett. 9 () [arxiv:he-lat/]. [] K. Langfeld, et al. arxiv:he-th/97; J. Gattnar, et al. Nucl. Phys. B 7 () [arxiv:he-lat/]. [] P. Boucaud, F. De Soto, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, Phys. Rev. D 7, () [arxiv:he-h/]. [7] A. Cucchieri, A. Maas and T. Mendes, Phys. Rev. D 7, () [arxiv:he-lat/]. [8] F. Bruckmann, et al., Eur. Phys. J. A (7) [arxiv:he-lat/]. [9] A. Maas, in rearation. [] A. Maas and Š. Olejník, JHEP 8 (8) 7 [arxiv:7. [he-lat]]. [] A. Maas, Mod. Phys. Lett. A () 797 [arxiv:he-h/]. PoS(Confinement8)

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

arxiv: v1 [hep-lat] 19 Dec 2013

arxiv: v1 [hep-lat] 19 Dec 2013 emerature deendence of electrical conductivity and dileton rates from hot quenched lattice QCD arxiv:32.5609v [he-lat] 9 Dec 203 and Marcel Müller Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

arxiv: v1 [hep-lat] 28 Nov 2018

arxiv: v1 [hep-lat] 28 Nov 2018 High Precision Statistical Landau Gauge Lattice Gluon Propagator Computation arxiv:1811.11678v1 [hep-lat] 28 Nov 2018 David Dudal KU Leuven Kulak, Department of Physics, Etienne Sabbelaan 53 bus 7657,

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

Eigenmodes of covariant Laplacian in SU(2) Yang Mills vacuum: higher representations

Eigenmodes of covariant Laplacian in SU(2) Yang Mills vacuum: higher representations Eigenmodes of covariant Laplacian in SU(2) Yang Mills vacuum: higher representations arxiv:hep-lat/597v 23 Oct 25 J. Greensite The Niels Bohr Institute, Blegdamsvej 7, DK-2 Copenhagen Ø, Denmark; Physics

More information

arxiv: v1 [hep-lat] 14 Jan 2010

arxiv: v1 [hep-lat] 14 Jan 2010 arxiv:00.2584v [hep-lat] 4 Jan 200 Numerical test of the Gribov-Zwanziger scenario in Landau gauge Attilio Cucchieri Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 3560-970

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

Properties of canonical fermion determinants with a fixed quark number

Properties of canonical fermion determinants with a fixed quark number Properties of canonical fermion determinants with a fixed uark number Julia Danzer Institute of Physics, University of Graz, Austria E-mail: julia.danzer@uni-graz.at Institute of Physics, University of

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Gluon chains and the quark-antiquark potential

Gluon chains and the quark-antiquark potential Jeff Greensite Physics and Astronomy Dept., San Francisco State University, San Francisco, CA 9432, USA E-mail: jgreensite@gmail.com Institute of Physics, Slovak Academy of Sciences, SK 845 Bratislava,

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

arxiv:hep-ex/ v1 18 Jan 2007

arxiv:hep-ex/ v1 18 Jan 2007 Jet roerties from di-hadron correlations in + collisions at s= GeV Jan Rak for the PHENIX collaboration arxiv:he-ex/77v 8 Jan 7 Abstract Deartment of Physics P.O.Box 5 (YFL) Jyväskylä FI-44 University

More information

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009 ITEP-LAT-29-5 at finite temperature arxiv:9.4828v [hep-lat] 26 Oct 29 Integrated Information Center, Kochi University, Akebono-cho, Kochi, 78-852, Japan E-mail: tsaito@rcnp.osaka-u.ac.jp M. N. Chernodub

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

arxiv: v1 [nucl-th] 19 Feb 2018

arxiv: v1 [nucl-th] 19 Feb 2018 for the KNN bound-state search in the J-PARC E15 exeriment arxiv:1802.06781v1 [nucl-th] 19 Feb 2018 Advanced Science Research Center, Jaan Atomic Energy Agency, Shirakata, Tokai, Ibaraki, 319-1195, Jaan

More information

arxiv: v3 [hep-lat] 30 Jan 2018

arxiv: v3 [hep-lat] 30 Jan 2018 The lattice Landau gauge gluon propagator: lattice spacing and volume dependence Orlando Oliveira and Paulo J. Silva Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, - Coimbra,

More information

arxiv: v1 [hep-lat] 18 Nov 2013

arxiv: v1 [hep-lat] 18 Nov 2013 t Hooft loop and the phases of SU(2) LGT arxiv:1311.437v1 [hep-lat] 18 Nov 213 G. Burgio Institut für Theoretische Physik Auf der Morgenstelle 14 7276 Tübingen Germany E-mail: giuseppe.burgio@uni-tuebingen.de

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

arxiv: v1 [hep-ph] 16 Jul 2018

arxiv: v1 [hep-ph] 16 Jul 2018 Jet cross sections at the LHC with NNLOJE arxiv:8.65v [he-h] 6 Jul 8 James Currie, Nigel Glover Institute for Particle Physics Phenomenology, Deartment of Physics, University of Durham, Durham, DH LE,

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Production of Strange Particles in Jets in Heavy-ion Collisions in ALICE

Production of Strange Particles in Jets in Heavy-ion Collisions in ALICE WD'3 Proceedings of Contributed Paers, Part III, 5 57, 23. IBN 978-8-737852-8 MAFYZPRE Production of trange Particles in Jets in Heavy-ion Collisions in ALICE V. učera Charles University in Prague, Faculty

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Laplacian modes for calorons and as a filter

Laplacian modes for calorons and as a filter Instituut-Lorentz for Theoretical Physics, University of Leiden, 2300 RA Leiden, The Netherlands E-mail: bruckmann@lorentz.leidenuniv.nl Ernst-Michael Ilgenfritz Institut für Physik, Humboldt Universität

More information

Systematizing Implicit Regularization for Multi-Loop Feynman Diagrams

Systematizing Implicit Regularization for Multi-Loop Feynman Diagrams Systematizing Imlicit Regularization for Multi-Loo Feynman Diagrams Universidade Federal de Minas Gerais E-mail: alcherchiglia.fis@gmail.com Marcos Samaio Universidade Federal de Minas Gerais E-mail: msamaio@fisica.ufmg.br

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Infrared properties of Landau propagators at finite temperature from very large lattices

Infrared properties of Landau propagators at finite temperature from very large lattices Infrared properties of Landau propagators at finite temperature from very large lattices Attilio Cucchieri (IFSC-São Paulo University) xqcd2007, Frascati Collaborators: Tereza Mendes (IFSC-USP), Axel Maas

More information

Center Vortices and Topological Charge

Center Vortices and Topological Charge Center Vortices and Topological Charge Roman Höllwieser, Thomas Schweigler, Manfried Faber, Urs M. Heller 1 Introduction The center vortex model [1, ] seems to be a very promising candidate to explain

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

Central µ + µ production via photon-photon fusion in proton-proton collisions with proton dissociation

Central µ + µ production via photon-photon fusion in proton-proton collisions with proton dissociation Central µ + µ roduction via hoton-hoton fusion in roton-roton collisions with roton dissociation Institute of Nuclear Physics PAN, Kraków, Poland E-mail: wolfgang.schafer@ifj.edu.l Antoni Szczurek Institute

More information

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes HU-EP-07/47 ADP-07-11/T651 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes a, E.-M. Ilgenfritz b, M. Müller-Preussker b, and A. Sternbeck c a Joint Institute

More information

arxiv: v1 [hep-ex] 8 Jun 2017

arxiv: v1 [hep-ex] 8 Jun 2017 UCHEP 17 05 6 Aril 017 Prosects for time-deendent mixing and CP-violation measurements at Belle II arxiv:1706.0363v1 [he-ex] 8 Jun 017 Physics Deartment, University of Cincinnati, Cincinnati, Ohio 51 E-mail:

More information

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T High High Power Power Laser Laser Programme Programme Theory Theory and Comutation and Asects of electron acoustic wave hysics in laser backscatter N J Sircombe, T D Arber Deartment of Physics, University

More information

arxiv: v1 [hep-ph] 22 Dec 2011

arxiv: v1 [hep-ph] 22 Dec 2011 Yang-Mills correlation functions at finite temerature Leonard Fister and Jan M. Pawlowsi Institut für Theoretische Physi, Universität Heidelberg, Philosohenweg 6, 69 Heidelberg, Germany and ExtreMe Matter

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-th] 7 Nov 2018 arxiv:1811.337v1 [hep-th] 7 Nov 18 SLAC National Accelerator Laboratory, Stanford University, USA E-mail: lowdon@slac.stanford.edu Local formulations of quantum field theory provide a powerful framework

More information

arxiv:hep-lat/ v1 15 Jun 2004

arxiv:hep-lat/ v1 15 Jun 2004 Propagators in Coulomb gauge from SU() lattice gauge theory Kurt Langfeld and Laurent Moyaerts Insitut für Theoretische Physik, Universität Tübingen D-7076 Tübingen, Germany. (Dated: June 5, 004) UNITUE-THEP/5-004

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

Physics Letters B 720 (2013) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 720 (2013) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics etters B 70 013) 414 418 Contents lists available at SciVerse ScienceDirect Physics etters B www.elsevier.com/locate/hysletb Infrared divergences, mass shell singularities and gauge deendence of

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

Fault Tolerant Quantum Computing Robert Rogers, Thomas Sylwester, Abe Pauls

Fault Tolerant Quantum Computing Robert Rogers, Thomas Sylwester, Abe Pauls CIS 410/510, Introduction to Quantum Information Theory Due: June 8th, 2016 Sring 2016, University of Oregon Date: June 7, 2016 Fault Tolerant Quantum Comuting Robert Rogers, Thomas Sylwester, Abe Pauls

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge Institut für Physik, Karl-Franzens-Universität, Universitätsplatz 5, A-8010 Graz, Austria E-mail: reinhard.alkofer@uni-graz.at

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

arxiv: v1 [nucl-th] 26 Aug 2011

arxiv: v1 [nucl-th] 26 Aug 2011 The Viscosity of Quark-Gluon Plasma at RHIC and the LHC Ulrich Heinz, Chun Shen and Huichao Song Deartment of Physics, The Ohio State University, Columbus, Ohio 436, USA Lawrence Berkeley National Laboratory,

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

arxiv: v1 [hep-ex] 1 Feb 2018

arxiv: v1 [hep-ex] 1 Feb 2018 arxiv:8.6v [he-ex] Feb 8 MA Wigner RCP E-mail: varga-kofarago.monika@wigner.mta.hu In heavy-ion collisions, the quark gluon lasma is exected to be roduced, which is an almost erfect liquid that made u

More information

Equivalence of Wilson actions

Equivalence of Wilson actions Prog. Theor. Ex. Phys. 05, 03B0 7 ages DOI: 0.093/te/tv30 Equivalence of Wilson actions Physics Deartment, Kobe University, Kobe 657-850, Jaan E-mail: hsonoda@kobe-u.ac.j Received June 6, 05; Revised August

More information

Beta function of three-dimensional QED

Beta function of three-dimensional QED Beta function of three-dimensional QED, Ohad Raviv, and Yigal Shamir Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: bqs@julian.tau.ac.il We have

More information

Thermodynamical quantities for overlap fermions with chemical potential

Thermodynamical quantities for overlap fermions with chemical potential with chemical potential Christof Gattringer a and b a Institut für Physik, Universität Graz, Universitätsplatz 5, 8 Graz, Austria b Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9,

More information

arxiv: v1 [hep-lat] 19 Dec 2016

arxiv: v1 [hep-lat] 19 Dec 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2018 arxiv:1612.06106v1 [hep-lat] 19 Dec 2016 QCD propagators and

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 80 29 JUNE 1998 NUMBER 26 Heavy Meson Decay Constants from Quenched Lattice QCD S. Aoki, 1, * M. Fukugita, 2 S. Hashimoto, 3, N. Ishizuka, 1,4 Y. Iwasaki, 1,4 K. Kanaya,

More information

Particle Physics at the University of Graz

Particle Physics at the University of Graz Particle Physics at the University of Graz Axel Maas 7th of October 2016 Vienna Austria Graz Graz 2nd largest city (280k) Five universities [G. de Grancy, Wikipedia] Graz Graz 2nd largest city (280k) Five

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Bonn, Germany

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Bonn, Germany Helmholtz-Institut für Strahlen- und Kernhysik, Universität Bonn, 535 Bonn, Germany E-mail: higa@hiskuni-bonnde Chiral erturbation theory is nowadays a well-established aroach to incororate the chiral

More information

Estimation of the large covariance matrix with two-step monotone missing data

Estimation of the large covariance matrix with two-step monotone missing data Estimation of the large covariance matrix with two-ste monotone missing data Masashi Hyodo, Nobumichi Shutoh 2, Takashi Seo, and Tatjana Pavlenko 3 Deartment of Mathematical Information Science, Tokyo

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan

Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan , Takumi Iritani, Arata Yamamoto Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 66-852, Japan E-mail: suganuma@scphys.kyoto-u.ac.jp Hideaki Iida The Institute of Physical and

More information

Highlights from the ATLAS experiment

Highlights from the ATLAS experiment Nuclear Physics A Nuclear Physics A (28) 7 www.elsevier.com/locate/rocedia XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 28) Highlights from the ALAS exeriment

More information

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures Chater 2 Introductory Concets of Wave Proagation Analysis in Structures Wave roagation is a transient dynamic henomenon resulting from short duration loading. Such transient loadings have high frequency

More information

γ, Z, W γ, Z, W q, q q, q

γ, Z, W γ, Z, W q, q q, q DESY 95-135 ISSN 0418-9833 July 1995 HIGGS BOSON PRODUCTION AND EAK BOSON STRUCTURE ojciech S LOMI NSKI and Jerzy SZED Institute of Comuter Science, Jagellonian University, Reymonta 4, 30-059 Krakow, Poland

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

A Qualitative Event-based Approach to Multiple Fault Diagnosis in Continuous Systems using Structural Model Decomposition

A Qualitative Event-based Approach to Multiple Fault Diagnosis in Continuous Systems using Structural Model Decomposition A Qualitative Event-based Aroach to Multile Fault Diagnosis in Continuous Systems using Structural Model Decomosition Matthew J. Daigle a,,, Anibal Bregon b,, Xenofon Koutsoukos c, Gautam Biswas c, Belarmino

More information

Partially Quenched Chiral Perturbation Theory and the Replica Method

Partially Quenched Chiral Perturbation Theory and the Replica Method Partially Quenched Chiral Perturbation Theory and the Relica Method P. H. Damgaard and K. Slittorff The Niels Bohr Institute Blegdamsvej 7 DK-200 Coenhagen Ø Denmark March 24, 2000 Abstract We describe

More information

SYMPLECTIC STRUCTURES: AT THE INTERFACE OF ANALYSIS, GEOMETRY, AND TOPOLOGY

SYMPLECTIC STRUCTURES: AT THE INTERFACE OF ANALYSIS, GEOMETRY, AND TOPOLOGY SYMPLECTIC STRUCTURES: AT THE INTERFACE OF ANALYSIS, GEOMETRY, AND TOPOLOGY FEDERICA PASQUOTTO 1. Descrition of the roosed research 1.1. Introduction. Symlectic structures made their first aearance in

More information

Quantitative estimates of propagation of chaos for stochastic systems with W 1, kernels

Quantitative estimates of propagation of chaos for stochastic systems with W 1, kernels oname manuscrit o. will be inserted by the editor) Quantitative estimates of roagation of chaos for stochastic systems with W, kernels Pierre-Emmanuel Jabin Zhenfu Wang Received: date / Acceted: date Abstract

More information

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY LTH 601 November 16, 2016 21:26 WSPC/Trim Size: 9in x 6in for Proceedings arxiv:hep-th/0309241v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY D. DUDAL AND H. VERSCHELDE Ghent

More information

arxiv: v1 [hep-th] 28 Nov 2018

arxiv: v1 [hep-th] 28 Nov 2018 Thermal effective otential for the Polyakov loo to higher loo order arxiv:8.736v he-th] 8 Nov 08 RIKEN-BNL Research Center, Brookhaven National Laboratory, Uton, New York 973, USA E-mail: hnishimura@bnl.gov

More information

QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal

QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal 1 Special Credit and Thanks to: Reinhard Alkofer Jens Braun Christian Fischer Holger Gies Lisa Haas Axel Maas Kim Maltman

More information

arxiv: v1 [hep-th] 6 Oct 2017

arxiv: v1 [hep-th] 6 Oct 2017 Dressed infrared quantum information Daniel Carney, Laurent Chaurette, Domini Neuenfeld, and Gordon Walter Semenoff Deartment of Physics and Astronomy, University of British Columbia, BC, Canada We study

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

Unquenched Lattice Landau Gauge QCD Simulation

Unquenched Lattice Landau Gauge QCD Simulation Unquenched Lattice Landau Gauge QCD Simulation Sadataka Furui School of Science and Engineering, Teikyo University Hideo Nakajima Department of Information science, Utsunomiya University 16 Dec. 2004,

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

A Note on Massless Quantum Free Scalar Fields. with Negative Energy Density

A Note on Massless Quantum Free Scalar Fields. with Negative Energy Density Adv. Studies Theor. Phys., Vol. 7, 13, no. 1, 549 554 HIKARI Ltd, www.m-hikari.com A Note on Massless Quantum Free Scalar Fields with Negative Energy Density M. A. Grado-Caffaro and M. Grado-Caffaro Scientific

More information

What we have learned so far from 3-fluid hydrodynamics

What we have learned so far from 3-fluid hydrodynamics What we have learned so far from 3-fluid hydrodynamics and V.N. Russkikh Kurchatov Institute, Moscow, Russia Gesellschaft für Schwerionenforschung, Darmstadt, Germany E-mail: Y.Ivanov@gsi.de, russ@ru.net

More information

State Estimation with ARMarkov Models

State Estimation with ARMarkov Models Deartment of Mechanical and Aerosace Engineering Technical Reort No. 3046, October 1998. Princeton University, Princeton, NJ. State Estimation with ARMarkov Models Ryoung K. Lim 1 Columbia University,

More information

Very forward energy distributions and jet production observed with CASTOR in CMS

Very forward energy distributions and jet production observed with CASTOR in CMS Very forward energy distributions and jet roduction observed with CASOR in Universiteit Antweren E-mail: Alex.VanSilbeeck@UAntweren.be he CASOR calorimeter at the exeriment at LHC rovides very forward

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Dimensional perturbation theory for Regge poles

Dimensional perturbation theory for Regge poles Dimensional erturbation theory for Regge oles Timothy C. Germann Deartment of Chemistry, University of California, Berkeley, California 94720 Sabre Kais Deartment of Chemistry, Purdue University, West

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

Pulse Propagation in Optical Fibers using the Moment Method

Pulse Propagation in Optical Fibers using the Moment Method Pulse Proagation in Otical Fibers using the Moment Method Bruno Miguel Viçoso Gonçalves das Mercês, Instituto Suerior Técnico Abstract The scoe of this aer is to use the semianalytic technique of the Moment

More information

Effective conductivity in a lattice model for binary disordered media with complex distributions of grain sizes

Effective conductivity in a lattice model for binary disordered media with complex distributions of grain sizes hys. stat. sol. b 36, 65-633 003 Effective conductivity in a lattice model for binary disordered media with comlex distributions of grain sizes R. PIASECKI Institute of Chemistry, University of Oole, Oleska

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information