γ, Z, W γ, Z, W q, q q, q

Size: px
Start display at page:

Download "γ, Z, W γ, Z, W q, q q, q"

Transcription

1 DESY ISSN July 1995 HIGGS BOSON PRODUCTION AND EAK BOSON STRUCTURE ojciech S LOMI NSKI and Jerzy SZED Institute of Comuter Science, Jagellonian University, Reymonta 4, Krakow, Poland Abstract The inuence of the QCD structure of the weak bosons on the Higgs boson roduction in e- scattering is studied. The energy and Higgs boson mass deendence of the cross-section, following from the new contributions, is calculated. ork suorted by the Polish State Committee for Scientic Research (grant No. PO3B ) and the Volkswagen-Stiftung.

2 1 Introduction In our recent aers [1, ] we have introduced the basic roerties of the and Z boson structure functions. In analogy to the hoton case [3] it has been shown there, how the quark and gluon content of the intermediate bosons aears due to the QCD cascade. The corresonding evolution equations have been solved in the asymtotic regime with the solutions develoing logarithmic Q growth of the quark and gluon densities. The form of weak coulings forces these densities to deend strongly on sin and avour. It is extremely interesting where the QCD structure of weak intermediate bosons may be observed exerimentally. In the systematic investigation of ossible rocesses we start with the Higgs boson roduction. The question ut forward in this case is to what extent the inclusion of the 'resolved' and Z can modify the redictions known before. e concentrate on the Higgs boson roduction in e- scattering, quoting the e + e scattering, where one should not exect large contributions, for comleteness. The aer is organized as follows. In Section we recall the formalism introduced before to study the QCD structure of gauge bosons and quote the main results concerning and Z, comared to the hoton case. Section 3 resents the calculation of the cross-section for the Higgs boson roduction in e- scattering at selected energies. The results are comared with the dominant roduction channel [4, 5](-fusion) and earlier calculation of the 'resolved' hoton contribution [6]. Summary, comments and conclusions are given in Section 4. QCD structure of and Z bosons In the standard model weak intermediate bosons are elementary (oint-like) articles. Nevertheless, when observed by a very high Q article, they can reveal QCD structure by collinear quark-gluon Bremsstrahlung. In this sense they become \comosite". The evolution equation for unolarized arton A density, f B A (x; t), inside a comosite weak intermediate boson B reads df B A (x; t) dt = X B P AB (x; t) f B B (x; t) ; (1) where t = ln(q =Q 0) and the scale Q 0, which deends on the articular rocess, will be discussed later. P AB (x; t) are slitting functions and the convolution is dened as (P f)(x) Z dx1 dx P (x1) f(x) (x x1x) : () For weak bosons the indices A; B go over quarks, antiquarks, gluons and oint-like, and Z. In the following we will consider the leading-log QCD and 1-st order electroweak case. Denoting weak intermediate bosons by uer case letters and QCD artons by lower case ones, we have f AB (x; t) = AB (1 x) ; (3) P ib (x; t) em P ib(x) ; (4) P ik (x; t) s(t) P ik(x) : (5) 1

3 Substituting this into Eq.(1) we arrive at the following non-homogeneous evolution equations for the QCD content of a weak intermediate boson: df B i (x; t) dt = em P B i (x)+ s(t) X k P ik (x) f B k (x; t) (6). In the lowest s order the slitting functions of the longitudinal and Z bosons vanish and the transverse ones read PqZ? (x) = P qz? (x) =z q P d? (x) = Pu+? (x) = 1 sin s(x) ; (8) with s(x) =[x +(1 x) ]=. The QCD slitting functions are taken in the standard form [7]. In the leading-log aroximation with s(t) s(t) = s(x); (7) bt ; (9) (b =11= nf=3 for nf avours) the t deendence of the equations (6) can be factorized out f B k (x; t) ' em leaving integral equations for the x deendence ~f B i (x) = P B i (x)+ 1 b X k=q;q;g ~f B k (x)t (10) P ik (x) ~ f B k (x) ; (11) Numerical solutions to the above equations can be found in Ref. []. They show in general that, aart from the t-deendent factor which at sub-asymtotic momentum transfers might be dierent (see discussion in the next Section), the quark and gluon structure of the weak bosons is reacher than that of the hoton. In the above review we have summed over the arton and weak boson olarizations (leaving out the longitudinal bosons which do not contribute in leading-log aroximation). The same considerations can be reeated keeing the arton and boson olarizations xed [8]. In fact, due to the articular form of weak coulings, we shall use in the following calculations artonic densities of given olarization inside olarized and Z bosons. 3 Higgs roduction in e- scattering The dominant mechanism of the Higgs boson roduction in electron{roton scattering is the - and Z-Z fusion (see Fig. 1a) [4, 5]. The new diagrams, which involve gauge boson structure, are shown in Fig. 1b{c. The case with the 'resolved' hoton has been already studied some time ago [6]. Here we include in the calculation the and Z bosons. The aroximations made in the following considerations require a word of warning. First, we will be using the equivalent boson aroximation, known since long for the hoton [9], and introduced in Ref. [10] for the and Z. In the case of massive weak bosons, out

4 e γ, Z, H γ, Z, a) e γ, Z, e γ, Z, G H q, q H G q, q b) c) Figure 1: Diagrams contributing to the Higgs boson roduction in e- scattering: a) dominant - fusion; b) gluonic art of the electroweak boson structure; c) quark art of the electroweak boson structure. of the three ossible olarization states only the transverse degrees of freedom develo the logarithmic factor, characteristic of hoton emission. The density of transversely olarized gauge bosons inside unolarized electron f e B(x) / 1 x ln Q max + M B Q min + M B with x the boson momentum fraction, M B the gauge boson mass and Q the negative momentum squared of the emitted gauge boson. One sees that whereas in the hoton case the logarithm is scaled by the electron mass, coming from Q min, in the weak sector it is the mass M B which sets u the scale (exlicit forms used in the considered rocesses are given in the next Section). Consequently, due to the large weak boson mass, the above logarithmic factor is resonsible at resently available energies for the fact that there is more 'equivalent' hotons in the electron than 's and Z's. The accuracy of the 3 (1)

5 equivalent boson aroximation has been tested in the rocesses where exact calculation is also ossible [5]. For examle the ratio of the aroximate to exact results in the Higgs roduction in e + e scattering varies between a factor of two and few ercent in the energy range between 500 GeV and 50 TeV and aroaches 1 with increasing Higgs boson mass. Taking into account the above remarks one should treat the numerical results at energies corresonding to the existing accelerators only as estimates. Another roblem is the Z- interference. In general the neutral current exchange contains a coherent mixture of the Z and the hoton. However in the robabilistic aroach used here these ossible interference terms are neglected. The next aroximation concerns the quark masses. In the QCD evolution equation all masses are neglected, they are used solely as thresholds, oening new avour evolution when increasing Q. A more delicate treatment requires the b quark threshold in the structure evolution. In rincile it aears already above the b quark mass due to the bu roduction. However only after the channel b t oens ( Q > 180 GeV), the Kobayashi{Maskawa matrix elements squared add u to 1 and do not suress the b quark roduction. In our calculation we neglect this suression which otentially exists in the intermediate Higgs boson mass range. Finally the scale Q 0 of the QCD evolution requires some attention. In the leading-log aroximation, which we are using, its value for Q Q 0 is formally irrelevant (changing Q0 gives next-to-leading-log corrections). At nite Q the choice deends on the hysical situation in the rocess. In e- scattering we are interested in the electroweak bosons, 'as few o shell as ossible' which ractically means the mass negative and close to zero. Therefore, as concerns the masses, the dierence between hotons and weak bosons vanishes and in all cases we should take Q 0 = QCD. The contribution to the total cross-section for the rocess e =e HX coming from the 'resolved' bosons (Fig. 1 b,c) reads B = X i;j;; Z 1 dx x f e B (x) Z 1 dy =x y f B i (y)f P j xy ^ ij (13) where = M H =s with M H being the Higgs boson mass and s the total c.m. energy squared. The function f e B is the boson B (of olarization ) density inside electron, f B i is the quark/antiquark/gluon (of olarization ) density inside the boson B (of olarization ) and fj P the antiquark/quark/gluon (of olarization ) density inside the roton. The sum extends over artons (i; j = q; q; G), their olarization and the boson olarization. The olarization{indeendent artonic cross-section ^ GG = 144 s jnj G FM H (14) s for gluon{gluon (Fig. 1b) and ^ qq = GFm q 3 s for quark{antiquark annihilation (Fig.1c). Here GF is the Fermi couling, m q the quark mass and N a function of the quark and Higgs boson masses [11]. The equivalent boson densities deend on the exchanged boson and its olarization: f e (x) = 4 w + w (1 x) 1 x ln xs + M M (15) ; (16) 4

6 ++Z Z ++Z Z [b] 10 5 s = 314 GeV [b] 10 3 s =1:6TeV MH [GeV] MH [GeV] Figure : Contribution from the 'resolved' electroweak bosons to the cross-section for the Higgs boson roduction in e- scattering at: a) s = 314 GeV and b) s =1:6 TeV as function of the Higgs boson mass. f e Z (x) = 4 f e (x) = 4 z + z (1 x) 1 1+(1 x) 1 x x ln xs + M Z M Z ln (1 x)s xme ; (17) ; (18) where 1 w+ = sin ; w =0;z+= tan 1 1 sin ;z = tan (19) and me is the electron mass. The arton densities f B i fulll several relations [8], for examle in the case of : f d+ = f + u ; (0) f d = f + u+ ; (1) f + d+ = f + d+ = f d = f u = f u = f + u+ ; () f + d = f + d+ = f d + = f u+ = f u+ = f + u ; (3) f + G = f G+ ; (4) f + G+ = f G : (5) In the examles shown below we use their exlicit asymtotic form following from the numerical solutions of the Eqs.(11). Only in the case of the hoton we are able to see whether the asymtotic solutions lead to dierent results than the more realistic arametrisations 5

7 [b] 10 5 quarks + gluons quarks gluons 10 6 s = 314 GeV MH [GeV] Figure 3: The 'resolved' contribution to the cross-section for the Higgs boson roduction in e- scattering at s = 314 GeV as function of the Higgs mass. The gluonic and quark arts lotted searately. of its structure. e have checked that the arametrisation of Ref.[1] (LAC3) gives the cross-section for the e- Higgs boson roduction u to 30% larger in the considered energy and Higgs boson mass range. The arton densities inside the roton fi P (x) are taken from the arametrisation of Ref. [13] (MRS3). The results for scattering energies s = 314 and 1600 GeV are shown in Figs. and 3. One sees that the 'resolved' contribution is about a factor of 4 smaller than that of the 'resolved' at lower energies s = 314 GeV and aroaches one half at s = 1:6 TeV (Fig.). The Z contribution is the smallest for all considered energies and Higgs boson masses. In all cases the quark{antiquark diagram (Fig. 1c) is larger than the gluonic one (Fig. 1b), mainly due to resence of the b quark (Fig 3.). One should kee in mind that the dominant term in the Higgs roduction cross-section, the - fusion (Fig. 1a) [4, 5] exceeds the 'resolved' boson contribution by at least an order of magnitude. The conclusion is rather obvious: the QCD structure of the gauge bosons, used in e- scattering, does not hel in the hunt for the Higgs boson. 4 Summary In the aer we have considered the inuence of the QCD structure of the electroweak gauge bosons on the e- roduction of the Higgs boson. e have found that using the asymtotic 6

8 form of the 'resolved' and Z, the contribution to the cross-section of the structure is of the same order as that of the hoton, the Z term being slightly smaller. In general however the considered new diagrams cannot comete with the dominant channel i.e. the - fusion. ehave also checked the Higgs boson roduction via 'resolved' bosons in e + e + scattering. As exected, the cross-section is suressed additionally, as comared to the - and Z-Z fusion, by a factor of which multilies the arton densities and consequently is negligible. One general lesson follows from the above studies. The structure function contributes to the considered rocesses aroximately with the same strength as the structure of the hoton. This means that one should look for its aearance in the reactions where the 'resolved' hoton is known to dominate. 5 Acknowledgments This work has been erformed during our visit to DESY, Hamburg. e would like to thank the DESY Theory Grou for hositality and the Volkswagen Foundation for nancial suort. References [1]. S lominski and J. Szwed, Phys. Lett. B 33 (1994) 47.. S lominski and J. Szwed, in High Energy Sin Physics, Proc. of X Int. Sym. on high Energy Sin Physics, Nagoya, Jaan, 199; ed. T. Hasegawa et al. (Universal Academy, Tokyo, 1993); []. S lominski and J. Szwed, Phys. Rev. D5 (1995). [3] E. itten, Nucl. Phys. B10, 189 (1977); C.H. Llewellyn Smith, Phys. Lett. 79B, 83 (1978); R.J. Deitt et al., Phys. Rev. D19, 046 (1979); T.F. alsh and P. Zerwas, Phys. Lett. 36 B (1973) 195; R.L. Kingsley, Nucl. Phys. B 60 (1973) 45. [4] Z. Hioki et al., Progr. Theor. Phys 69 (1983) 1484; D.A. Dicus and S.D. illenbrock, Phys. Rev. D 3 (1985) 164. [5] G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B 87 (1987) 05. [6]. S lominski and J. Szwed, Acta Physica Polonica B (1991) 859. [7] G. Altarelli and G. Parisi, Nucl. Phys. B16 (1977) 98. [8]. S lominski and J. Szwed, unublished. [9] C. eizsacker and E.J. illiams, Z. Phys. 88, ). [10] G.L. Kane,.. Reko and.b. Rolnick, Phys. Lett., 148B, 367 (1984). [11] R.N. Cahn and S. Dawson, Phys. Lett. 136 B (1984) 196. [1] H. Abramowicz, K. Charchula and A. Levy, Phys. Lett. B 69 (1991) 458. [13] A.D. Martin,.J. Stirling and R.G. Roberts, Phys. Rev. D

Gluons. ZZ γz z

Gluons. ZZ γz z 3 Gluons WW ZZ γz γγ...3.4.5.6.7.8.9 5 down quars 4 3 WW γγ ZZ γz...3.4.5.6.7.8.9 5 4 FF 3 ESF FF ESF...3.4.5.6.7 QCD STRUCTURE OF LEPTONS BNL-684 Wojciech S LOMI NSKI and Jery SZWED y Physics Department,

More information

Abstract. We perform a perturbative QCD analysis of the quark transverse momentum

Abstract. We perform a perturbative QCD analysis of the quark transverse momentum BIHEP-TH-96-09 The erturbative ion-hoton transition form factors with transverse momentum corrections Fu-Guang Cao, Tao Huang, and Bo-Qiang Ma CCAST (World Laboratory), P.O.Box 8730, Beijing 100080, China

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

Central µ + µ production via photon-photon fusion in proton-proton collisions with proton dissociation

Central µ + µ production via photon-photon fusion in proton-proton collisions with proton dissociation Central µ + µ roduction via hoton-hoton fusion in roton-roton collisions with roton dissociation Institute of Nuclear Physics PAN, Kraków, Poland E-mail: wolfgang.schafer@ifj.edu.l Antoni Szczurek Institute

More information

from low Q (' 0:45GeV ) inclusive hotoroduction. Finally, we discuss the contribution that olarized HERA could make to the measurement of these high s

from low Q (' 0:45GeV ) inclusive hotoroduction. Finally, we discuss the contribution that olarized HERA could make to the measurement of these high s The Drell-Hearn-Gerasimov Sum-Rule at Polarized HERA S. D. Bass a, M. M. Brisudova b and A. De Roeck c a Institut fur Theoretische Kernhysik, Universitat Bonn, Nussallee 4{6, D-535 Bonn, Germany b Theoretical

More information

1 Introduction Asymtotic freedom has led to imortant redictions for hard inclusive hadronic rocesses in erturbative QCD. The basic tools are factoriza

1 Introduction Asymtotic freedom has led to imortant redictions for hard inclusive hadronic rocesses in erturbative QCD. The basic tools are factoriza UPRF-97-09 July 1997 One article cross section in the target fragmentation region: an exlicit calculation in ( 3 )6 M. Grazzini y Diartimento di Fisica, Universita di Parma and INFN, Gruo Collegato di

More information

Feynman Diagrams of the Standard Model Sedigheh Jowzaee

Feynman Diagrams of the Standard Model Sedigheh Jowzaee tglied der Helmholtz-Gemeinschaft Feynman Diagrams of the Standard Model Sedigheh Jowzaee PhD Seminar, 5 July 01 Outlook Introduction to the standard model Basic information Feynman diagram Feynman rules

More information

Spin light of electron in matter

Spin light of electron in matter Sin light of electron in matter Alexander Grigoriev a,b, Sergey Shinkevich a, Alexander Studenikin a,b, Alexei Ternov c, Ilya Trofimov a a Deartment of Theoretical Physics, arxiv:he-h/0611103v1 8 Nov 006

More information

Radiative corrections to semi-inclusive deep inelastic scattering induced by lepton and photon pair electroproduction

Radiative corrections to semi-inclusive deep inelastic scattering induced by lepton and photon pair electroproduction arxiv:1312.0136v1 [he-h] 30 Nov 2013 Radiative corrections to semi-inclusive dee inelastic scattering induced by leton and hoton air electroroduction A. Ilyichev National Scientific and Educational Center

More information

Hard Diffraction Results and Prospects at the Tevatron

Hard Diffraction Results and Prospects at the Tevatron Hard Diffraction Results and Prosects at the Tevatron University of Manchester On behalf of the CDF & DØ Collaboration ISMD 2005 14 th August, Kromeriz Tevatron Tevatron at Fermilab -collisions Run II:

More information

Structure of 11 Be studied in β-delayed neutron- and γ- decay from polarized 11 Li

Structure of 11 Be studied in β-delayed neutron- and γ- decay from polarized 11 Li Nuclear Physics A 46 (4) c c Structure of Be studied in β-delayed neutron- and γ- decay from olarized Li Y. Hirayama a, T. Shimoda a,h.izumi a,h.yano a,m.yagi a, A. Hatakeyama b, C.D.P. Levy c,k.p.jackson

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

arxiv: v1 [nucl-th] 26 Aug 2011

arxiv: v1 [nucl-th] 26 Aug 2011 The Viscosity of Quark-Gluon Plasma at RHIC and the LHC Ulrich Heinz, Chun Shen and Huichao Song Deartment of Physics, The Ohio State University, Columbus, Ohio 436, USA Lawrence Berkeley National Laboratory,

More information

Hadron single spin asymmetry and polarization relation in reactions involving photons

Hadron single spin asymmetry and polarization relation in reactions involving photons STARS and SMFNS 2017 Habana Varadero, Cuba Hadron single sin asymmetry and olarization relation in reactions involving hotons Carlos Javier Solano Salinas Facultad de Ciencias UNI, Lima, Perú Cooeration

More information

arxiv: v1 [nucl-ex] 28 Sep 2009

arxiv: v1 [nucl-ex] 28 Sep 2009 Raidity losses in heavy-ion collisions from AGS to RHIC energies arxiv:99.546v1 [nucl-ex] 28 Se 29 1. Introduction F. C. Zhou 1,2, Z. B. Yin 1,2 and D. C. Zhou 1,2 1 Institute of Particle Physics, Huazhong

More information

Basic Formalism (leading order in EW coupling)

Basic Formalism (leading order in EW coupling) Dee Inelastic cattering in Leton-Hadron Collisions Probing the Parton tructure of the Nucleon with Letons Basic Formalism (inde. of strong dynamics and arton icture) Exerimental Develoment Fixed target

More information

MEASUREMENT OF THE INCLUSIVE ELECTRON (POSITRON) +PROTON SCATTERING CROSS SECTION AT HIGH INELASTICITY y USING H1 DATA *

MEASUREMENT OF THE INCLUSIVE ELECTRON (POSITRON) +PROTON SCATTERING CROSS SECTION AT HIGH INELASTICITY y USING H1 DATA * Romanian Reorts in Physics, Vol. 65, No. 2, P. 420 426, 2013 MEASUREMENT OF THE INCLUSIVE ELECTRON (POSITRON) +PROTON SCATTERING CROSS SECTION AT HIGH INELASTICITY y USING H1 DATA * IVANA PICURIC, ON BEHALF

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

arxiv: v1 [hep-ex] 1 Feb 2018

arxiv: v1 [hep-ex] 1 Feb 2018 arxiv:8.6v [he-ex] Feb 8 MA Wigner RCP E-mail: varga-kofarago.monika@wigner.mta.hu In heavy-ion collisions, the quark gluon lasma is exected to be roduced, which is an almost erfect liquid that made u

More information

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico Introduction Introduction to Elementary Particle Physics Diego Bettoni Anno Accademico 010-011 Course Outline 1. Introduction.. Discreet symmetries: P, C, T. 3. Isosin, strangeness, G-arity. 4. Quark Model

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Green s Functions and Topological Configurations

Green s Functions and Topological Configurations Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical

More information

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG CR-244 15 May 1996 QCD-RESULTS AND STUDIES OF FOUR FERMION PROCESSES AT THE INTERMEDIATE LEP ENERGY SCALE p s = 130{136 GEV Hans-Christian Schultz-Coulon Universitat Freiburg, Fakultat fur Physik Hermann-Herder-Strae

More information

Christina Mesropian The Rockefeller University

Christina Mesropian The Rockefeller University Christina Mesroian The Rockefeller University Introduction Definition of diffractive rocesses Single Diffraction Hard Single Diffraction Soft Single diffraction Double Diffraction Hard Double Diffraction

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE K.W. Gan*, M.R. Wisnom, S.R. Hallett, G. Allegri Advanced Comosites

More information

Strong-coupling properties of a superfuid Fermi gas and application to neutron-star EOS

Strong-coupling properties of a superfuid Fermi gas and application to neutron-star EOS November 21-24 (2016), Neutron Star Matter (NSMAT2016), Tohoku Univ. Strong-couling roerties of a suerfuid Fermi gas and alication to neutron-star EOS Yoji Ohashi Deartment of Physics, Keio University,

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 1. PP TH 03/04 Accelerators and Detectors 1 hysics, RWTH, WS 2003/04, T.Hebbeker 2003-12-03 1. Accelerators and Detectors In the following, we concentrate on the three machines SPS, Tevatron and LHC with

More information

Breakdown of QCD factorization in hard diffraction. Boris Kopeliovich Valparaiso

Breakdown of QCD factorization in hard diffraction. Boris Kopeliovich Valparaiso Breakdown of CD factorization in hard diffraction Boris Koeliovich Valaraiso CD factorization in diffraction e Ingelman-Schlein icture of diffraction h X It looks natural that DIS on the Pomeron robes

More information

Probing anomalous quartic couplings at the Large Hadron Collider with proton tagging

Probing anomalous quartic couplings at the Large Hadron Collider with proton tagging Probing anomalous quartic coulings at the Large Hadron Collider with roton tagging Cristian Baldenegro University of Kansas cbaldenegro@ku.edu Setember 4, 07 / Central exclusive reactions rocesses Central

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

arxiv:hep-ex/ v1 18 Jan 2007

arxiv:hep-ex/ v1 18 Jan 2007 Jet roerties from di-hadron correlations in + collisions at s= GeV Jan Rak for the PHENIX collaboration arxiv:he-ex/77v 8 Jan 7 Abstract Deartment of Physics P.O.Box 5 (YFL) Jyväskylä FI-44 University

More information

arxiv:hep-ph/ v2 2 May 1997

arxiv:hep-ph/ v2 2 May 1997 PSEUDOSCALAR NEUTRAL HIGGS BOSON PRODUCTION IN POLARIZED γe COLLISIONS arxiv:hep-ph/961058v May 1997 M. SAVCI Physics Department, Middle East Technical University 06531 Ankara, Turkey Abstract We investigate

More information

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91.

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91. Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 334 9029 GLAS{PPE/95{02

More information

Exclusive diffractive results from ATLAS, CMS, LHCb, TOTEM at the LHC

Exclusive diffractive results from ATLAS, CMS, LHCb, TOTEM at the LHC Exclusive diffractive results from ATLAS, CMS, LHCb, TOTEM at the LHC 1 Christohe Royon University of Kansas, Lawrence, USA On behalf of the ATLAS, CMS, LHCb and TOTEM collaborations 47th International

More information

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field.

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field. Sin Diffusion and Relaxation in a Nonuniform Magnetic Field. G.P. Berman, B. M. Chernobrod, V.N. Gorshkov, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 V.I. Tsifrinovich

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Highlights from the ATLAS experiment

Highlights from the ATLAS experiment Nuclear Physics A Nuclear Physics A (28) 7 www.elsevier.com/locate/rocedia XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 28) Highlights from the ALAS exeriment

More information

u-channel Omega Meson Production from the Fpi-2 Experiment

u-channel Omega Meson Production from the Fpi-2 Experiment u-channel Omega Meson Production from the Fi- Exeriment Bill (Wenliang) Li Hall C Worksho. January, 015. Outline Where the data come from Theoretical justification Plan for data analysis Wenliang Li, Det.

More information

Physics Letters B 720 (2013) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 720 (2013) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics etters B 70 013) 414 418 Contents lists available at SciVerse ScienceDirect Physics etters B www.elsevier.com/locate/hysletb Infrared divergences, mass shell singularities and gauge deendence of

More information

Quantization of the Photon Field QED

Quantization of the Photon Field QED Quantization of the Photon Field QED 21.05.2012 0.1 Reminder: Classical Electrodynamics Before we start quantizing the hoton field, let us reflect on classical electrodynamics. The Hamiltonian is given

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

arxiv: v1 [hep-lat] 19 Dec 2013

arxiv: v1 [hep-lat] 19 Dec 2013 emerature deendence of electrical conductivity and dileton rates from hot quenched lattice QCD arxiv:32.5609v [he-lat] 9 Dec 203 and Marcel Müller Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 23 May 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 23 May 2006 Quantum dot with ferromagnetic leads: a densiti-matrix renormaliation grou study C. J. Gaa, M. E. Torio, and J. A. Riera Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas,

More information

Other ATLAS Jet Measurements

Other ATLAS Jet Measurements Other ALAS Jet Measurements Michael Begel Aril, Jets as Hard Probes Michael Begel Standard Model @ LHC ALAS Jet Measurements Aril, High dijet roduction rovides a owerful robe of the hard scatter recision

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Ordered and disordered dynamics in random networks

Ordered and disordered dynamics in random networks EUROPHYSICS LETTERS 5 March 998 Eurohys. Lett., 4 (6),. 599-604 (998) Ordered and disordered dynamics in random networks L. Glass ( )andc. Hill 2,3 Deartment of Physiology, McGill University 3655 Drummond

More information

arxiv: v1 [nucl-th] 19 Feb 2018

arxiv: v1 [nucl-th] 19 Feb 2018 for the KNN bound-state search in the J-PARC E15 exeriment arxiv:1802.06781v1 [nucl-th] 19 Feb 2018 Advanced Science Research Center, Jaan Atomic Energy Agency, Shirakata, Tokai, Ibaraki, 319-1195, Jaan

More information

An Improved Calibration Method for a Chopped Pyrgeometer

An Improved Calibration Method for a Chopped Pyrgeometer 96 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17 An Imroved Calibration Method for a Choed Pyrgeometer FRIEDRICH FERGG OtoLab, Ingenieurbüro, Munich, Germany PETER WENDLING Deutsches Forschungszentrum

More information

Convex Optimization methods for Computing Channel Capacity

Convex Optimization methods for Computing Channel Capacity Convex Otimization methods for Comuting Channel Caacity Abhishek Sinha Laboratory for Information and Decision Systems (LIDS), MIT sinhaa@mit.edu May 15, 2014 We consider a classical comutational roblem

More information

Nuclear models: The liquid drop model Fermi-Gas Model

Nuclear models: The liquid drop model Fermi-Gas Model Lecture Nuclear models: The liquid dro model ermi-gas Model WS1/1: Introduction to Nuclear and Particle Physics,, Part I 1 Nuclear models Nuclear models Models with strong interaction between the nucleons

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

LUMINOSITY DETERMINATION AT THE TEVATRON*

LUMINOSITY DETERMINATION AT THE TEVATRON* LUMINOSITY DETERMINATION AT THE TEVATRON* V. Paadimitriou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract In this aer we discuss the luminosity determination at the Tevatron. We discuss luminosity measurements

More information

Calculations of γz corrections-box diagrams. Carl E. Carlson William and Mary Intense Electron Beams Workshop June17-19, 2015, Cornell

Calculations of γz corrections-box diagrams. Carl E. Carlson William and Mary Intense Electron Beams Workshop June17-19, 2015, Cornell Calculations of γz corrections-box diagrams 1 Carl E. Carlson William and Mary Intense Electron Beams Worksho June17-19, 2015, Cornell Toics PV in e scattering and QWeak A startling (at least in 2009)

More information

Two-photon effects in charge asymmetry in annihilation channel with χ 2 intermediate state

Two-photon effects in charge asymmetry in annihilation channel with χ 2 intermediate state Two-hoton effects in charge asymmetry in annihilation channel with χ 2 intermediate state E.A. Kuraev 1,Yu.M.Bystritskiy 1, E. Tomasi-Gustafsson 2,3 1 Bogoliubov Laboratory of Theoretical Physics, JINR

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Lecture 8, the outline

Lecture 8, the outline Lecture, the outline loose end: Debye theory of solids more remarks on the first order hase transition. Bose Einstein condensation as a first order hase transition 4He as Bose Einstein liquid Lecturer:

More information

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble Commun. Theor. Phys. 57 (2012) 463 467 Vol. 57, No. 3, March 15, 2012 Storage and Retrieval of a Weak Otical Signal Imroved by Sontaneously Generated Coherence in an Atomic Assemble ZHENG Tao (Ü ), 1 QIU

More information

Diffractive results from CDF

Diffractive results from CDF International Journal of Modern Physics A Vol. 3, No. 8 (5) 543 ( ages) c World Scientific Publishing Comany DOI:.4/S775X5438 Diffractive results from CDF Konstantin Goulianos Exerimental High Energy Physics,

More information

REFLECTION AND TRANSMISSION BAND STRUCTURES OF A ONE-DIMENSIONAL PERIODIC SYSTEM IN THE PRESENCE OF ABSORPTION

REFLECTION AND TRANSMISSION BAND STRUCTURES OF A ONE-DIMENSIONAL PERIODIC SYSTEM IN THE PRESENCE OF ABSORPTION Armenian Journal of Physics, 0, vol. 4, issue,. 90-0 REFLECTIO AD TRASMISSIO BAD STRUCTURES OF A OE-DIMESIOAL PERIODIC SYSTEM I THE PRESECE OF ABSORPTIO A. Zh. Khachatrian State Engineering University

More information

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems Int. J. Oen Problems Comt. Math., Vol. 3, No. 2, June 2010 ISSN 1998-6262; Coyright c ICSRS Publication, 2010 www.i-csrs.org Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various

More information

arxiv:hep-ph/ v1 22 Dec 1999

arxiv:hep-ph/ v1 22 Dec 1999 DTP/99/4 DAMTP-999-79 Cavendish-HEP-99/9 BFKL Dynamics at Hadron Colliders arxiv:hep-ph/992469v 22 Dec 999 Carlo Ewerz a,b,, Lynne H. Orr c,2, W. James Stirling d,e,3 and Bryan R. Webber a,f,4 a Cavendish

More information

The directivity of the forced radiation of sound from panels and openings including the shadow zone

The directivity of the forced radiation of sound from panels and openings including the shadow zone The directivity of the forced radiation of sound from anels and oenings including the shadow zone J. Davy RMIT University, Alied Physics, GPO Box 476V, 3001 Melbourne, Victoria, Australia john.davy@rmit.edu.au

More information

arxiv: v3 [hep-ph] 17 Oct 2017

arxiv: v3 [hep-ph] 17 Oct 2017 Ridge Production in High-Multilicity Hadronic Ultra-Periheral Proton-Proton Collisions Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University Stanislaw D. Glazek Faculty of Physics,

More information

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) Note: SFA will automatically be taken to mean Coulomb gauge (relativistic or non-diole) or VG (nonrelativistic, diole-aroximation). If LG is intended (rarely),

More information

Hard Probes at ATLAS. Zvi Citron. (for the ATLAS Collabora9on) Moriond, 28 March Zvi Citron

Hard Probes at ATLAS. Zvi Citron. (for the ATLAS Collabora9on) Moriond, 28 March Zvi Citron בס"ד Hard Probes at ALAS (for the ALAS Collabora9on) Moriond, 8 March 4 HI at ALAS In addi9on to the high energy + rogram, LHC and ALAS have a robust Heavy Ion rogram Muon sectrometry, calorimetry, and

More information

Principles of Computed Tomography (CT)

Principles of Computed Tomography (CT) Page 298 Princiles of Comuted Tomograhy (CT) The theoretical foundation of CT dates back to Johann Radon, a mathematician from Vienna who derived a method in 1907 for rojecting a 2-D object along arallel

More information

On the determination of the longitudinal. component of the fragmentation function of the. N.B.Skachkov, O.G.Smirnova, L.G.Tkatchev.

On the determination of the longitudinal. component of the fragmentation function of the. N.B.Skachkov, O.G.Smirnova, L.G.Tkatchev. DELPHI Collaboration DELPHI 95- PHYS 472 30 January, 995 On the determination of the longitudinal component of the fragmentation function of the process e + e??! h + X from DELPHI data N.B.Skachkov, O.G.Smirnova,

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

Higgs Production with a Jet Veto at NNLL+NNLO

Higgs Production with a Jet Veto at NNLL+NNLO Higgs Production with a Jet Veto at NNLL+NNLO Wouter Waalewijn UCSD West Coast LHC heory Meeting December, 20 In collaboration with: Carola Berger, Claudio Marcantonini, Iain Stewart and Frank ackmann

More information

arxiv: v2 [hep-ph] 9 Mar 2017

arxiv: v2 [hep-ph] 9 Mar 2017 Searches for the Anomalous FCNC To-Higgs Coulings with Polarized Electron Beam at the LHeC XiaoJuan Wang, Hao Sun and Xuan Luo Institute of Theoretical Physics, School of Physics & Otoelectronic Technology,

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

arxiv: v1 [hep-th] 6 Oct 2017

arxiv: v1 [hep-th] 6 Oct 2017 Dressed infrared quantum information Daniel Carney, Laurent Chaurette, Domini Neuenfeld, and Gordon Walter Semenoff Deartment of Physics and Astronomy, University of British Columbia, BC, Canada We study

More information

Optical self-energy of superconducting Pb in the terahertz region

Optical self-energy of superconducting Pb in the terahertz region Otical self-energy of suerconducting Pb in the terahertz region T. Mori, 1 E. J. Nicol, 2, * S. Shiizuka, 1 K. Kuniyasu, 3 T. Nojima, 3 N. Toyota, 1 and J. P. Carbotte 4 1 Physics Deartment, Graduate School

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 80 29 JUNE 1998 NUMBER 26 Heavy Meson Decay Constants from Quenched Lattice QCD S. Aoki, 1, * M. Fukugita, 2 S. Hashimoto, 3, N. Ishizuka, 1,4 Y. Iwasaki, 1,4 K. Kanaya,

More information

Carnegie Mellon Physics Dept., Pittsburgh PA Abstract. the Skyrme model. Unitarity requires only that the usual normalization conditions

Carnegie Mellon Physics Dept., Pittsburgh PA Abstract. the Skyrme model. Unitarity requires only that the usual normalization conditions November, 995 CMU-HEP95- DOE/ER/4068-09 he-h/95309 Large-N c Relations Among Isgur-ise Functions David E. Brahm and James alden Carnegie Mellon Physics Det., Pittsburgh PA 53 Abstract e investigate the

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

Quantum Field Theory and the Electroweak Standard Model

Quantum Field Theory and the Electroweak Standard Model Proceedings of the 07 Euroean School of High-Energy Physics, Evora, Portugal, 6 9 Setember 07, edited by M. Mulders and G. anderighi, CERN Yellow Reorts: School Proceedings, Vol. 3/08, CERN-08-006-SP (CERN,

More information

Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting

Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting CLAS-NOTE 4-17 Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting Mike Williams, Doug Alegate and Curtis A. Meyer Carnegie Mellon University June 7, 24 Abstract We have used the

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

2 K. ENTACHER 2 Generalized Haar function systems In the following we x an arbitrary integer base b 2. For the notations and denitions of generalized

2 K. ENTACHER 2 Generalized Haar function systems In the following we x an arbitrary integer base b 2. For the notations and denitions of generalized BIT 38 :2 (998), 283{292. QUASI-MONTE CARLO METHODS FOR NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES II KARL ENTACHER y Deartment of Mathematics, University of Salzburg, Hellbrunnerstr. 34 A-52 Salzburg,

More information

How to Estimate Expected Shortfall When Probabilities Are Known with Interval or Fuzzy Uncertainty

How to Estimate Expected Shortfall When Probabilities Are Known with Interval or Fuzzy Uncertainty How to Estimate Exected Shortfall When Probabilities Are Known with Interval or Fuzzy Uncertainty Christian Servin Information Technology Deartment El Paso Community College El Paso, TX 7995, USA cservin@gmail.com

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

CHAPTER 25. Answer to Checkpoint Questions

CHAPTER 25. Answer to Checkpoint Questions CHAPTER 5 ELECTRIC POTENTIAL 68 CHAPTER 5 Answer to Checkoint Questions. (a) negative; (b) increase. (a) ositive; (b) higher 3. (a) rightward; (b),, 3, 5: ositive; 4: negative; (c) 3, then,, and 5 tie,

More information

Single and double coincidence nucleon spectra in the weak decay of Λ hypernuclei

Single and double coincidence nucleon spectra in the weak decay of Λ hypernuclei Single and double coincidence nucleon sectra in the weak decay of hyernuclei E. Bauer 1, G. Garbarino 2, A. Parreño 3 and A. Ramos 3 1 Deartamento de Física, Universidad Nacional de La Plata, C. C. 67

More information

Soft QCD Results from ATLAS and CMS

Soft QCD Results from ATLAS and CMS Soft QCD Results from ALAS and Moriond, March oics Proerties of minimum bias events - transverse momentum, seudoraidity and event-by-event multilicity distributions of charged articles Underlying event

More information

A Note on the Positive Nonoscillatory Solutions of the Difference Equation

A Note on the Positive Nonoscillatory Solutions of the Difference Equation Int. Journal of Math. Analysis, Vol. 4, 1, no. 36, 1787-1798 A Note on the Positive Nonoscillatory Solutions of the Difference Equation x n+1 = α c ix n i + x n k c ix n i ) Vu Van Khuong 1 and Mai Nam

More information

arxiv: v1 [hep-ph] 19 Nov 2012

arxiv: v1 [hep-ph] 19 Nov 2012 Evidence for a narrow D 0 state in K η near threshold Bo-Chao Liu 1,, and Ju-Jun Xie,, 1 Deartment of Alied Physics, Xi an Jiaotong University, Xi an, Shanxi 710049, China Theoretical Physics Center for

More information

A PEAK FACTOR FOR PREDICTING NON-GAUSSIAN PEAK RESULTANT RESPONSE OF WIND-EXCITED TALL BUILDINGS

A PEAK FACTOR FOR PREDICTING NON-GAUSSIAN PEAK RESULTANT RESPONSE OF WIND-EXCITED TALL BUILDINGS The Seventh Asia-Pacific Conference on Wind Engineering, November 8-1, 009, Taiei, Taiwan A PEAK FACTOR FOR PREDICTING NON-GAUSSIAN PEAK RESULTANT RESPONSE OF WIND-EXCITED TALL BUILDINGS M.F. Huang 1,

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

arxiv: v2 [cond-mat.stat-mech] 10 Feb 2012

arxiv: v2 [cond-mat.stat-mech] 10 Feb 2012 Ergodicity Breaking and Parametric Resonances in Systems with Long-Range Interactions Fernanda P. da C. Benetti, Tarcísio N. Teles, Renato Pakter, and Yan Levin Instituto de Física, Universidade Federal

More information

Higgs Modeling using EXPER and Weak Fusion. by Woody Stanford (c) 2016 Stanford Systems.

Higgs Modeling using EXPER and Weak Fusion. by Woody Stanford (c) 2016 Stanford Systems. iggs Modeling using EXPER and Weak Fusion by Woody Stanford (c) 2016 Stanford Systems. Introduction The EXPER roject, even though its original findings were inconclusive has lead to various ideas as to

More information

Brief Notes on Differential Equations

Brief Notes on Differential Equations Brief Notes on Differential Equations (A) Searable First-Order Differential Equations Solve the following differential equations b searation of variables: (a) (b) Solution ( 1 ) (a) The ODE becomes d and

More information

Very forward energy distributions and jet production observed with CASTOR in CMS

Very forward energy distributions and jet production observed with CASTOR in CMS Very forward energy distributions and jet roduction observed with CASOR in Universiteit Antweren E-mail: Alex.VanSilbeeck@UAntweren.be he CASOR calorimeter at the exeriment at LHC rovides very forward

More information

VISCOELASTIC PROPERTIES OF INHOMOGENEOUS NANOCOMPOSITES

VISCOELASTIC PROPERTIES OF INHOMOGENEOUS NANOCOMPOSITES VISCOELASTIC PROPERTIES OF INHOMOGENEOUS NANOCOMPOSITES V. V. Novikov ), K.W. Wojciechowski ) ) Odessa National Polytechnical University, Shevchenko Prosekt, 6544 Odessa, Ukraine; e-mail: novikov@te.net.ua

More information

When in doubt, tell the truth... Mark Twain I. INTRODUCTION. Dening an accurate framework in which the study of all radiative decays of light avor mes

When in doubt, tell the truth... Mark Twain I. INTRODUCTION. Dening an accurate framework in which the study of all radiative decays of light avor mes Phys. Rev. D59, 407 (999) UK/TP 99{0 LPNHE 99{0 SLAC{PUB{8048 he-h/99036 Radiative Decays, Nonet Symmetry and SU(3) Breaking M. Benayoun a, L. DelBuono a, S. Eidelman a;b, V. N. Ivanchenko a;b, H.B. O'Connell

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 38 Variable Selection and Model Building Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur Evaluation of subset regression

More information

Correspondence Between Fractal-Wavelet. Transforms and Iterated Function Systems. With Grey Level Maps. F. Mendivil and E.R.

Correspondence Between Fractal-Wavelet. Transforms and Iterated Function Systems. With Grey Level Maps. F. Mendivil and E.R. 1 Corresondence Between Fractal-Wavelet Transforms and Iterated Function Systems With Grey Level Mas F. Mendivil and E.R. Vrscay Deartment of Alied Mathematics Faculty of Mathematics University of Waterloo

More information