Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Size: px
Start display at page:

Download "Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt"

Transcription

1 Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:

2 Phase diagram of QCD

3 non-perturbative continuum approaches Dyson-Schwinger equations FRG flow equations Hamiltonian approach

4 non-perturbative continuum approaches Dyson-Schwinger equations FRG flow equations Hamiltonian approach in Coulomb gauge

5 Outline introduction order parameter for confinement: Polyakov loop Hamiltonian approach to YMT in background gauge effective potential of the Polyakov loop deconfinement phase transition conclusions

6 recent work on the Polyakov-loop FRG F.Marhauser and J. M. Pawlowski, arxiv: J. Braun, H. Gies, J. M. Pawlowski, Phys. Lett. B684(2010)262 J. Braun,T.K. Herbst, arxiv J.Braun etal., Eur.Phys.J C70(2010) DSE C. Fischer, L. Fister, J. Lücker, J.M. Pawlowski, arxiv strong coupling lattice M. Fromm etal. JHEP1201(2012)042. lattice J. Greensite, Phys. Rev. D86(2012) J. Greensite and K. Langfeld, D87(2013) D. Smith etal Hamiltonian approach H. R. & J. Heffner, Phys. Lett.B718(2012)672 PRD(in press) arxiv:

7 Polyakov loop YMT at finite temperature T :compact Euclidean time P[A 0 ]( x) L = 1 d r trp exp i dx 0 A 0 (x 0, x) 0 order parameter for confinement: conf. phase: center symmetry deconf. phase: center symmetry-broken P[A 0 ]( x) exp[ F ( x)l ] P[A 0 ]( x) = 0 P[A 0 ]( x) 0 T 1 = L

8 Polyakov loop YMT at finite temperature T :compact Euclidean time P[A 0 ]( x) L = 1 d r trp exp i dx 0 A 0 (x 0, x) 0 order parameter for confinement: conf. phase: center symmetry deconf. phase: center symmetry-broken P[A 0 ]( x) exp[ F ( x)l ] P[A 0 ]( x) = 0 P[A 0 ]( x) 0 T 1 = L Polyakov gauge 0 A 0 = 0, fundamental modular region Jensen s inequality: A 0 = diagonal SU(2) : P[A 0 ]( x) = cos( A ( 0 x)l ) 2 0 < A 0 L / 2 < π P[A 0 ] unique function of A 0 P[A 0 ]( x) P[ A 0 ( x) ] alternative order parameters: P[A 0 ]( x) P[ A 0 ( x) ] A 0 ( x) F.Marhauser and J. M. Pawlowski, arxiv: J. Braun, H. Gies, J. M. Pawlowski, Phys. Lett. B684(2010)262 J. Braun,T.K. Herbst,arXiv

9 Effective potential of the order parameter for confinement background field calculation effective potential order parameter a 0 = A 0 ( x) const, diagonal (Polyakov gauge) e[a 0 ] min a 0 = a 0 P[A 0 ] P[a 0 ]

10 Effective potential of the order parameter for confinement background field calculation effective potential order parameter a 0 = A 0 ( x) const, diagonal (Polyakov gauge) e[a 0 ] min a 0 = a 0 P[A 0 ] P[a 0 ] 1-loop perturbation theory e PT [a 0 = x2π / L] Gross, Pisarski,Yaffe, Rev.Mod.Pys.53(1981) N.Weiss, Phys.Rev.D24(1981) P[a 0 = 0] = 1 deconfined phase

11 Effective potential of the order parameter for confinement background field calculation effective potential order parameter a 0 = A 0 ( x) const, diagonal (Polyakov gauge) e[a 0 ] min a 0 = a 0 P[A 0 ] P[a 0 ] 1-loop perturbation theory e PT [a 0 = x2π / L] Gross, Pisarski,Yaffe, Rev.Mod.Pys.53(1981) N.Weiss, Phys.Rev.D24(1981) P[a 0 = 0] = 1 deconfined phase aim of this talk: non-perturbative evaluation of e[ a 0 ] in the Hamiltonian approach

12 Polyakov loop potential in the Hamiltonian approach Hamiltonian approach assumes Weyl gauge A 0 = 0

13 Polyakov loop potential in the Hamiltonian approach Hamiltonian approach assumes Weyl gauge A 0 = 0 O(4)-invariance compactify (instead of time) one spatial axis to a circle of circumference L and interprete L 1 as temperature L compactify x 3 axis a = a e 3

14 Polyakov loop potential in the Hamiltonian approach Hamiltonian approach assumes Weyl gauge A 0 = 0 O(4)-invariance compactify (instead of time) one spatial axis to a circle of circumference L and interprete L 1 as temperature L compactify x 3 axis a = a e 3 YMT at finite length in a constant, color diagonal background field a calculate the effective potential e[a]

15 effective potential The effective potential in the Hamiltonian approach e( a) of a spatial background field a H a = min H A = a H a = (spatial volume) e( a) e( a) effective potential

16 Hamiltonian approach to Yang-Mills theory Weyl gauge: A 0 a (x) = 0 cartesian coordinates A i a (x) momenta Π i a (x) = δs / δ A i a (x) = E i a (x) H = 1 2 d 3 x(π 2 (x) + B 2 (x)) Π k a (x) = δ / iδ A k a (x) YM Schrödinger equation H Ψ[A] = EΨ[A] Gauss law DΠΨ = 0 more convenient: gauge fixing explicit resolution of Gauss law gauge invariant wave functionals: + a, A = 0 a background field Ψ[A] for a = 0 A = 0 H. Reinhardt Hamiltonian approach to QCD 8

17 Hamiltonian approach to YMT in background gauge [d,a]=0 H = 1 2 (J 1 Π JΠ + B 2 ) + H C Π = δ / iδ A J( A ) = Det( Dd) D = + A d = + a H C = 1 2 J 1 ρj( Dd) 1 ( d 2 )( Dd) 1 ρ color charge density: ρ = (A a)π Coulomb term Φ... Ψ = Λ DAJ(A) Φ (A)...Ψ(A) H. Reinhardt Hamiltonian approach to QCD 9

18 Hamiltonian approach to YMT in background gauge [d,a]=0 H = 1 2 (J 1 Π JΠ + B 2 ) + H C Π = δ / iδ A J( A ) = Det( Dd) D = + A d = + a H C = 1 2 J 1 ρj( Dd) 1 ( d 2 )( Dd) 1 ρ color charge density: ρ = (A a)π Coulomb term Φ... Ψ = Λ DAJ(A) Φ (A)...Ψ(A) Ψ H Ψ min Ψ A Ψ = a H. Reinhardt Hamiltonian approach to QCD 9

19 Variational approach trial ansatz Ψ a ( A) = 1 J(A,a) exp 1 dx dy(a(x) a)ω(x, y)(a(y) a) 2 gluon field gluon propagator A a = a A(x)A(, y) a = (2ω(x, y)) 1 variational kernel determined from H. Reinhardt Hamiltonian approach to QCD 12

20 The background field covariant derivative d = + a background field a = a k H k a H in the Cartan algebra [H k, H l ] = 0 adjoint representaion (T b ) ac = f abc roots H k σ = iσ k σ σ =(σ 1,...,σ r ) roots SU(2): H 1 = T 3 σ 1 =0, ± 1 SU(3): H 1 = T 3 H 2 = T 8 σ =(1,0), ( 1 2, 1 2 3), ( 1 2, 1 2 3) positive roots eigenvalues of id = i( + a) p σ = p σ a

21 Propagators in the background field propagators in presence of the diagonal background field in background gauge [ + a, A] = 0 a exact relation: G σ a, background gauge(p) = G a=0, A=0 (p σ ) p σ = p σ a ordinary Coulomb gauge propagators G a=0, A=0 (p) choice of background field: a = a e 3 compactify 3-axis: temperature p σ = p + (p n σ a) e 3, p n = 2πn / L T 1 = L

22 The effective potential energy density 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= χ background field p σ = p + (p n σa) p n = 2πn / L σ = 0 ± 1 periodicity e(a, L) = e(a + µ k / L, L) exp( iµ k ) = z k Z(N) ghost loop χ arises from the FP determinant in the kinetic energy input: ω(p), χ(p) from the variational calculation in Coulomb gauge at T=0 C. Feuchter & H. Reinhardt,Phys. Rev.D71(2005) D. Epple, H. Reinhardt, W. Schleifenbaum, Phys. Rev.D75(2007)

23 Variational approach in Coulomb gauge Numerical results for SU(2) D. Epple, H. R., W.Schleifenbaum, PRD 75 (2007) IR : ω(k) 1 / k UV : ω(k) k H. Reinhardt Hamiltonian approach to QCD 13

24 Static gluon propagator in D=3+1 D(k) = (2ω(k)) 1 Gribov s formula ω(k) = k 2 + M 4 M = 0.88GeV k 2 missing strength in mid momentum regime: missing gluon loop G. Burgio, M.Quandt, H.R., PRL102(2009) H. Reinhardt Hamiltonian approach to QCD 14

25 Variational approach to YMT with non-gaussian wave functional D. Campagnari & H.R, Phys.Rev.D82(2010) wave functional ψ A 2 = exp( S A ) ansatz S A = ω A γ (3) A 3 3! + 1 γ (4) A 4 4! exploit DSE H. Reinhardt Hamiltonian approach to QCD 15

26 non-gausssian wave functional D. Campagnari & H.R, Phys.Rev.D82(2010)

27 The effective potential energy density 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= χ background field p σ = p + (p n σa) p n = 2πn / L σ roots periodicity e(a, L) = e(a + µ k / L, L) exp( iµ k ) = z k Z(N)

28 The effective potential energy density 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= background field p σ = p + (p n σa) p n = 2πn / L σ roots periodicity e(a, L) = e(a + µ k / L, L) exp( iµ k ) = z k Z(N) neglect ghost loop quasi-gluon gas χ(p) = 0 1 e(a, L) = L d 2 p ω(p σ ) σ n= n=

29 The effective potential energy density 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= background field p σ = p + (p n σa) p n = 2πn / L σ roots periodicity e(a, L) = e(a + µ k / L, L) exp( iµ k ) = z k Z(N) neglect ghost loop quasi-gluon gas χ(p) = 0 1 e(a, L) = L d 2 p ω(p σ ) σ n= n= limiting cases UV: IR: ω UV (p) = p ω IR (p) = M 2 / p Gribov: ω(p) = (p 2 + M 4 / p 2 ) ω IR (p) + ω UV (p)

30 The UV-effective potential χ(p) = 0 ω(p) = p 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= e(a, L) = 8 sin 2 (nal / 2) π 2 L 4 n 4 = 4π 2 3L 4 n=1 al 2π x 2 al 2π 1 N.Weiss 1-loop PT 2 Polyakov loop P P[a min = 0] = 1 deconfining phase

31 The IR-effective potential χ(p) = 0 ω(p) = M 2 / p 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= e IR (a, L) = 4M 2 sin 2 (nal / 2) π 2 L 2 n 2 = 2M 2 L 2 n=1 al al 2π 2π 1 x Polyakov loop P P[a min = π / L] = 0 confining phase

32 The IR-effective potential χ(p) = 0 ω(p) = M 2 / p 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= e IR (a, L) = 4M 2 sin 2 (nal / 2) π 2 L 2 n 2 = 2M 2 L 2 n=1 al al 2π 2π 1 x Polyakov loop P P[a min = π / L] = 0 confining phase deconfinement phase transition results from the interplay between the confining IR-potential and deconfining UV-potential

33 The IR+UV effective potential: χ(p) = 0 e(a, L) = e UV (a, L) + e IR (a, L) ω(p) = p + M 2 / p phase transition critical temperature: T C = 3M / π lattice : M 880MeV T C 485MeV

34 The IR+UV effective potential: χ(p) = 0 e(a, L) = e UV (a, L) + e IR (a, L) ω(p) = p + M 2 / p phase transition critical temperature: T C = 3M / π lattice : M 880MeV T C 485MeV χ(p) = 0 ω(p) = p 2 + M 4 / p 2 T C 432MeV

35 The effective potential-role of the ghost loop 1 e(a, L) = L d 2 p (ω(p σ ) σ n= χ(p σ )) χ n= neglecting the ghost loop in e(a, L) enhances the IR-contribution χ(p) confinement reduces the UV-contribution deconfinement pushes the deconfinement transition to a higher temparature

36 The full effective potential 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= variational calculation in Coulomb gauge SU(2) critical temperature: T C 270MeV

37 The effective potential for massive gluons χ(p) = 0 ω(p) = M 2 + p 2 x = al 2π 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= no phase transition Polyakov loop P P[a min = 0] = 1 deconfining phase

38 The effective potential for massive gluons χ(p) = 0 ω(p) = M 2 + p 2 x = al 2π 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= M = 0 ω(p) = p no phase transition N.Weiss 1-loop PT Polyakov loop P P[a min = 0] = 1 deconfining phase

39 The effective potential for massive gluons χ(p) = 0 ω(p) = M 2 + p 2 x = al 2π 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= ω(p) = M 4 p 2 + p 2 no phase transition phase transition

40 The effective potential for SU(3) SU(3)-algebra consists of 3 SU(2)-subalgebras characterized by the 3 non-zero positive rooots e SU (3) [a] = σ >0 e SU (2)(σ ) [a]

41 The full effective potential for SU(3) 1 e(a, L) = L d 2 p (ω(p σ ) χ(p σ )) σ n= n= variational calculation in Coulomb gauge T < T C T > T C x = a 3 L 2π, y = a 8 L 2π

42 Polyakov loop potential for SU(3) x = a 3L 2π, y = a 8L 2π = 0 input : SU(2) data : M = 880MeV T C = 283MeV

43 The Polyakov loop SU(2) SU(3)

44 critical temperature lattice : T C SU (2) = 295MeV T C SU (3) = 270MeV this work : T C SU (2) = 267MeV T C SU (3) = 277MeV FRG(Fister & Pawlowski) : T C SU (2) = 230MeV T C SU (3) = 275MeV

45 Conclusions effective potential of the Polyakov loop in the Hamiltonian approach input: vacuum propagators obtained in the variational calculation in Coulomb gauge neglect of ghost loop and use of the UV-gluon energy ω(p) = p : ` Weiss potential full potential: deconfinement phase transition SU(2): 2.order SU(3): 1.order T C 270MeV deconfinement phase transition is encoded in the vacuum wave functional on R 2 S 1 similar results: grand canonical ensemble J. Heffner, H. Reinhardt, D. Campagnari, Phys. Rev.D85(2012)

46 Thanks for your attention H. Reinhardt Hamiltonian approach to QCD 54

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

arxiv:hep-lat/ v1 15 Jun 2004

arxiv:hep-lat/ v1 15 Jun 2004 Propagators in Coulomb gauge from SU() lattice gauge theory Kurt Langfeld and Laurent Moyaerts Insitut für Theoretische Physik, Universität Tübingen D-7076 Tübingen, Germany. (Dated: June 5, 004) UNITUE-THEP/5-004

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Chirality: from QCD to condensed matter

Chirality: from QCD to condensed matter High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 Intersections between QCD and condensed matter, Schladming, Styria, Austria, March 1-6, 2015 Chirality: from QCD to condensed matter D. Kharzeev

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

Dynamical Construction of Glueballs in Pure Gluodynamics

Dynamical Construction of Glueballs in Pure Gluodynamics Dynamical Construction of Glueballs in Pure Gluodynamics Rajan Dogra Department of Technical Education, U.T., Chandigarh, # 3291, Sector 27 D, Chandigarh 160 019, India, E-mail: rajandogra_2000@yahoo.com

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Non-perturbative momentum dependence of the coupling constant and hadronic models

Non-perturbative momentum dependence of the coupling constant and hadronic models Non-perturbative momentum dependence of the coupling constant and hadronic models Pre-DIS Wokshop QCD Evolution Workshop: from collinear to non collinear case April 8-9, 2011 JLab Aurore Courtoy INFN-Pavia

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Baryon number fluctuations within the functional renormalization group approach

Baryon number fluctuations within the functional renormalization group approach Baryon number fluctuations within the functional renormalization group approach Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Chiral Effective Field Theory, Oct. 28-Nov.

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian The hadronization into the octet of pseudoscalar mesons in terms of SU(N gauge invariant Lagrangian National Research Nuclear University Moscow 115409, Moscow, Russia E-mail: a kosh@internets.ru By breaking

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Gauge Invariant Variables for SU(2) Yang-Mills Theory

Gauge Invariant Variables for SU(2) Yang-Mills Theory Gauge Invariant Variables for SU(2) Yang-Mills Theory Cécile Martin Division de Physique Théorique, Institut de Physique Nucléaire F-91406, Orsay Cedex, France. Abstract We describe a nonperturbative calculation

More information

Local Quantum Field Theory and Confinement in QCD

Local Quantum Field Theory and Confinement in QCD Local Quantum Field Theory and Confinement in QCD Peter Lowdon (24th May 2017) Outline 1. LQFT: an axiomatic approach to QFT 2. Consequences of LQFT 3. Confinement and the cluster decomposition property

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Hybrid mesons spectroscopy

Hybrid mesons spectroscopy Hybrid mesons spectroscopy Peng Guo and Adam Szczepaniak Indiana University Giuseppe Galatà, Andrea Vassallo and Elena Santopinto ICN-UNAM, INFN and Università di Genova Mini-Workshop Bled 2013 Looking

More information

From confinement to new states of dense QCD matter

From confinement to new states of dense QCD matter From confinement to new states of dense QCD matter From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011 Kurt Langfeld School of Comp. and Mathematics and The HPCC, Univ. of Plymouth,

More information

Functional renormalization group approach of QCD and its application in RHIC physics

Functional renormalization group approach of QCD and its application in RHIC physics Functional renormalization group approach of QCD and its application in RHIC physics Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Theoretical Physics at Peking U.

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

Instanton constituents in sigma models and Yang-Mills theory at finite temperature Instanton constituents in sigma models and Yang-Mills theory at finite temperature Falk Bruckmann Univ. of Regensburg Extreme QCD, North Carolina State, July 8 PRL (8) 56 [77.775] EPJ Spec.Top.5 (7) 6-88

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Wave functions and compositeness for hadron resonances from the scattering amplitude

Wave functions and compositeness for hadron resonances from the scattering amplitude Wave functions and compositeness for hadron resonances from the scattering amplitude Takayasu SEKIHARA (RCNP, Osaka Univ.) 1. Introduction 2. Two-body wave functions and compositeness 3. Applications:

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

String Dynamics in Yang-Mills Theory

String Dynamics in Yang-Mills Theory String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on Strongly Interacting Field Theories Jena,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Towards a Solution of 2+1 (pure) QCD in the Planar Limit

Towards a Solution of 2+1 (pure) QCD in the Planar Limit Towards a Solution of 2+1 (pure) QCD in the Planar Limit Rob Leigh University of Illinois hep-th/0407051 with D. Minic Outline the solution of QCD is certainly one of the grand problems of theoretical

More information

Pushing dimensional reduction of QCD to lower temperatures

Pushing dimensional reduction of QCD to lower temperatures Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100,

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

Spectral Functions from the Functional RG

Spectral Functions from the Functional RG Spectral Functions from the Functional RG 7 th International Conference on the Exact Renormalization Group ERG 2014 22/09/14 Lefkada, Greece Nils Strodthoff, ITP Heidelberg 2-Point Functions and their

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information