QCD phase structure from the functional RG

Size: px
Start display at page:

Download "QCD phase structure from the functional RG"

Transcription

1 QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

2 fqcd collaboration - QCD (phase diagram) with frg: J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink... Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

3 fqcd collaboration - QCD (phase diagram) with frg: J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink... Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores large part of this effort: vacuum YM-theory and QCD - why? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

4 QCD with the frg Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] [Wetterich 93] k Γ k = effective action Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

5 QCD with the frg Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] [Wetterich 93] k Γ k = effective action Γ[Φ] = lim k Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) [Φ]) 1 on rhs gauge-fixed approach (Landau gauge): ghosts appear mesons due to bosonization of four-fermi interaction M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

6 Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

7 Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

8 Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] external information: Polyakov-loop potential U(Φ, Φ ) from lattice input initial h ΛQM, U ΛQM, m σ,λqm and m π,λqm from vacuum observables M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

9 Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] external information: Polyakov-loop potential U(Φ, Φ ) from lattice input initial h ΛQM, U ΛQM, m σ,λqm and m π,λqm from vacuum observables usual applications Λ QM.7 1 GeV - justified? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

10 Equation of state (EOS) pressure t = T Tc T c interactions measure correct dofs below t.2 P/T Wuppertal-Budapest, 21 PQM FRG PQM emf PQM MF (ε - 3P)/T Wuppertal-Budapest, 21 HotQCD N t =8, 212 HotQCD N t =12, 212 PQM FRG PQM emf PQM MF t t [Herbst, MM, Pawlowski, Schaefer, Stiele, 213] [Herbst, MM, Pawlowski, Schaefer, Stiele, 216] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

11 Kurtosis [Fu, Pawlowski, 215,216], [Fu, Pawlowski, Schaefer, 216] χ B n = n p (µ B /T ) n T 4 µ( s) from freeze-out curve fluctuations in finite volume: cf. talk B.-J. Schaefer M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

12 η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

13 η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P) k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

14 η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P) k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) 1 screening masses 8 m/[mev] m η m ηpqm m σpqm m πpqm T/[MeV] [Heller, MM, 215] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

15 η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P) k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) 1 8 screening masses N f = 2 + 1: [MM, Schaefer, 213] m/[mev] m η m ηpqm m σpqm m πpqm T/[MeV] [Heller, MM, 215] masses [MeV] 12 π σ a η η T [MeV] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

16 Spectral functions [Pawlowski, Strodthoff, 215] (O(N)-model, T = ).1 pion ε=.1 sigma ε=.1 spectral function ρ[1/mev 2 ].1 1e-6 1e-8 1e-1 ρ(ω, p) = ImΓ (2) R (ω, p), ImΓ (2) R (ω, p)2 +ReΓ (2) Γ(2) R (ω, p)2 R ext. frequency ω[mev] (ω, p) = lim ɛ Γ(2) E direct calculation, no numerical analytical continuation O(4)-symmetric regularization ( i (ω + iɛ), p) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

17 Phase structure with functional methods works well at µ = : agreement with lattice (ε - 3P)/T Wuppertal-Budapest, 21 HotQCD N t =8, 212 HotQCD N t =12, 212 PQM FRG PQM emf PQM MF t [Herbst, MM, Pawlowski, Schaefer, Stiele, 13] 1.8 Lattice set A set B l,s (T) / l,s (T=) T [MeV] [Luecker, Fischer, Welzbacher, 214] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

18 Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) T [MeV] FRG emf MF µ [MeV] [MM, Schaefer, 213] 2 15 µ B /T=2 µ B /T=3 T [MeV] 1 5 Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point DSE: deconfinement crossover µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

19 Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with frg: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex T [MeV] µ [MeV] FRG emf MF [MM, Schaefer, 213] µ B /T=2 µ B /T=3 T [MeV] 1 5 Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point DSE: deconfinement crossover µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

20 Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with frg: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex possible explanations for disagreement: µ : relative importance of diagrams changes summed contributions vs. individual contributions µ-dependent initial values necessary in PQM/PNJL approaches T [MeV] T [MeV] µ [MeV] FRG emf MF [MM, Schaefer, 213] Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point µ B /T=2 DSE: deconfinement crossover µ B /T= µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

21 QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

22 QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

23 QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) [Φ]) 1 on rhs gauge-fixed approach (Landau gauge): ghosts appear M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

24 Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

25 Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

26 Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = want apparent convergence of Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

27 Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 215] quenched QCD: allows separate investigation: M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

28 Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 215] quenched QCD: allows separate investigation: quenched matter part [MM, Strodthoff, Pawlowski, 214] outlook: unquenching [Cyrol, MM, Strodthoff, Pawlowski, in preparation] pure YM-theory (cf. talk Anton Cyrol) [Cyrol, Fister, MM, Pawlowski, Strodthoff, 216] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

29 Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

30 Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): resonance singularity without momentum dependency t λ = a λ 2 + b λ α + c α 2, b >, a, c t = t λ g = g =, T > g = g cr λ g > g cr [Braun, 211] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

31 (transverse) running couplings [Cyrol, MM, Pawlowski, Strodthoff, in preparation] running couplings α X qaq cac,prop cr p [GeV] agreement in perturbative regime required by gauge symmetry non-degenerate in nonperturbative regime: reflects gluon mass gap α qaq > α cr : necessary for chiral symmetry breaking area above α cr very sensitive to errors M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

32 4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 22] change of variables: particular 4-Fermi channels meson exchange efficient inclusion of momentum dependence no singularities M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

33 4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 22] change of variables: particular 4-Fermi channels meson exchange efficient inclusion of momentum dependence no singularities identification of Λ QM/NJL 3 MeV k Γ k = (bosonized) 4-fermi-interaction h 2 π /(2 m2 π ) λ π RG-scale k [GeV] Yukawa interaction h π RG-scale k [GeV] [MM, Strodthoff, Pawlowski, 214] [Braun, Fister, Haas, Pawlowski, Rennecke, 214] [MM, Strodthoff, Pawlowski, 214] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

34 Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] 1 t = t = perm. t = 2 + perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

35 Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], t 1 = + [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] t 1 = t = t = + perm. t = 1 2 t = perm perm. t = perm. t = 2 + perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

36 Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], t 1 = + [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] t 1 = t = t = + perm. t = 1 2 t = perm perm. t = perm. t = 2 1 t = perm. t = perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

37 YM theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 216] Γ (2) AA (p) Z A(p) p 2 ( δ µν p µ p ν /p 2) running couplings gluon propagator dressing FRG, scaling FRG, decoupling Sternbeck et al. running couplings α Acc α A 3 α A p [GeV] p [GeV] more details Talk Anton K. Cyrol lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT26, 76. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

38 Quark propagator [MM, Pawlowski, Strodthoff, 214] Γ (2) qq (p) Z q(p) (/p + M(p)) quark propagator dressings Bowman et al., 5 1/Z q M q p [GeV] frg vs. lattice: bare mass, quenched, scale set via gluon propagator agreement not sufficient: need apparent convergence at µ lattice data: Bowman, Heller, Leinweber, Parappilly, Williams, Zhang, Phys. Rev. D71, 5457 (25). M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

39 Outlook: unquenching extended truncation: [Cyrol, MM, Pawlowski, Strodthoff, in prep.] Γ (2) AA (p) Γ(2) cc (p) Γ (3) A cc (psym) Γ (3) (psym) A 3 Γ (4) (psym) A 4 classical tensor classical tensor Γ(2) Γ (3) qq (p) A qq (p, q) Γ(4) Γ (5) Γ (4) AA qq (psym) (psym) A3 qq q qqq(p, p, p) q /D n q complete, n 3 mom. ind. tensors φ1 φn Γ(2) φφ (p) φ {σ, π} Γ (3) qqφ (p, p) Γ (4) qqφφ (psym) Γ(5) qqφ 3 (psym) n {3,..., 12} Γ(n) φ n () classical tensor classical tensor classical tensor systematics of improving the truncation? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

40 Outlook: unquenching extended truncation: [Cyrol, MM, Pawlowski, Strodthoff, in prep.] Γ (2) AA (p) Γ(2) cc (p) Γ (3) A cc (psym) Γ (3) (psym) A 3 Γ (4) (psym) A 4 classical tensor classical tensor Γ(2) Γ (3) qq (p) A qq (p, q) Γ(4) Γ (5) Γ (4) AA qq (psym) (psym) A3 qq q qqq(p, p, p) q /D n q complete, n 3 mom. ind. tensors φ1 φn Γ(2) φφ (p) φ {σ, π} Γ (3) qqφ (p, p) Γ (4) qqφφ (psym) Γ(5) qqφ 3 (psym) n {3,..., 12} Γ(n) φ n () classical tensor classical tensor classical tensor systematics of improving the truncation? BRST-invariant operators, e.g. ψ /D n ψ M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

41 Outlook: running couplings α cac = α AAA = α A 4 = ( ) Γ (3) 2 cac (p) 4π Z A (p)z c(p) 2 ( Γ (3) AAA (p) ) 2 4π Z A (p) 3 ( Γ (4) A 4 (p) ) 4π Z A (p) 2 running couplings α X α qaq = [Cyrol, MM, Pawlowski, Strodthoff, in preparation] ( Γ (3) qaq (p) ) 2 4π Z A (p)z q(p) 2 α cac,prop = 1 4π Z A (p)z c(p) 2 cac AAA A 4 qaq cac,prop p [GeV] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

42 Outlook: gluon propagator [Cyrol, MM, Pawlowski, Strodthoff, in preparation] gluon propagator dressing 1/Z A Sternbeck et al. FRG p [GeV] lattice data: A. Sternbeck, K. Maltman, M. Müller-Preussker, L. von Smekal, PoS LATTICE212 (212) 243. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

43 Outlook: quark propagator [Cyrol, MM, Pawlowski, Strodthoff, in preparation] quark propagator dressings lattice, m π =28 MeV m π =295 MeV.4 FRG, m π = p [GeV] comparison frg with lattice: bare mass and scale setting lattice data: Orlando Oliveira, Kzlersu, Silva, Skullerud, Sternbeck, Williams, arxiv: [hep-lat]. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

44 Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

45 Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

46 Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators Outlook QCD phase diagram: order parameters, equation of state and fluct. of cons. charges (T, µ)-dependent input for effective low-energy descriptions bound-state properties (form factors,pda... ) more checks on convergence of vertex expansion M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

47 Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators Outlook QCD phase diagram: order parameters, equation of state and fluct. of cons. charges (T, µ)-dependent input for effective low-energy descriptions bound-state properties (form factors,pda... ) more checks on convergence of vertex expansion M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November / 23

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

Functional renormalization group approach of QCD and its application in RHIC physics

Functional renormalization group approach of QCD and its application in RHIC physics Functional renormalization group approach of QCD and its application in RHIC physics Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Theoretical Physics at Peking U.

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Baryon number fluctuations within the functional renormalization group approach

Baryon number fluctuations within the functional renormalization group approach Baryon number fluctuations within the functional renormalization group approach Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Chiral Effective Field Theory, Oct. 28-Nov.

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

Spectral Functions from the Functional RG

Spectral Functions from the Functional RG Spectral Functions from the Functional RG 7 th International Conference on the Exact Renormalization Group ERG 2014 22/09/14 Lefkada, Greece Nils Strodthoff, ITP Heidelberg 2-Point Functions and their

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Hadron spectra and QCD phase diagram from DSEs

Hadron spectra and QCD phase diagram from DSEs Hadron spectra and QCD phase diagram from DSEs Christian S. Fischer Justus Liebig Universität Gießen ECT* 017 with Gernot Eichmann, Helios Sanchis-Alepuz, Richard Williams, Christian Welzbacher Review:

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Probing QCD Phase Diagram in Heavy Ion Collisions

Probing QCD Phase Diagram in Heavy Ion Collisions LQCD LHC Probing QCD Phase Diagram in Heavy Ion Collisions QCD Phase Diagram from LQCD Fluctuations of conserved charges as probe of thermalization and QCD phase boundary Linking LQCD results to HIC data

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information