SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

Size: px
Start display at page:

Download "SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti"

Transcription

1 SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti, S. Rößner, M. Thaler, W. Weise: Eur. Phys. J. C 49 (27) 213 S. Rößner, C. Ratti, W. Weise: Phys. Rev. D 75 (27) 347 C. Ratti, S. Rößner, W. Weise: Phys. Lett. B 649 (27) 57

2 QCD PHASE DIAGRAM T [GeV] N f = 2 (q = u, d).2 T c quark gluon phase temperature hadron phase qq nuclear matter critical point CSC phase qq 1 GeV baryon chemical potential µ B

3 1. SYMMETRIES and SYMMETRY BREAKING PATTERNS SU(2) R SU(2) L CHIRAL SYMMETRY SU(3) R SU(3) L s quark mass u,d quark mass Z(3) SYMMETRY Center of SU(N c = 3) gauge group E. Laermann, O. Philipsen: Ann. Rev. Nucl. Part. Sci. 53 (23) 163

4 1.1 Z(3) SYMMETRY Consider PURE GAUGE ( pure glue ) QCD Thermodynamics: periodic boundary condition on gauge fields A µ ( x, τ + β) = A µ ( x, τ) (β = 1/T ) Gauge transformations: g( x, τ + β) = z g( x, τ) g A µ = g(a µ + µ )g [ z = exp i 2π n ] N c (n = 1, 2, 3,...) Polyakov loop: Φ( x ) = 1 N c T r [ exp ( i 1 T dτ A 4 ( x, τ) )] Φ z Φ = e 2πi n/3 Φ

5 DECONFINEMENT and spontaneous breaking of Z(3) SYMMETRY Polyakov loop: Φ( x ) = 1 N c T r Free energy of static color sources: [ exp ( i 1 T dτ A 4 ( x, τ) F (T ) = lim r F Q Q(r = x y, T ) = T ln Φ 2 Order parameter for confinement / deconfinement: )] U(Φ) T < T c confinement: Z(3) symmetry intact U(Φ) T > T c deconfinement: Z(3) symmetry spontaneously broken Φ = Φ Φ

6 QCD with (almost) MASSLESS u- and d-quarks (N = 2) spin 1.2 CHIRAL SYMMETRY momentum spin left - handed right - handed SU(2) L SU(2) R f ψ = (u, d) pseudoscalar - isovector π a ψ γ 5 t a ψ T SPONTANEOUS SYMMETRY BREAKING (Nambu - Goldstone) LOW T HIGH T U eff U eff σ ψ ψ scalar - isoscalar σ < φ > CHIRAL (QUARK) CONDENSATE qq qq = σ < φ >

7 Spontaneously Broken CHIRAL SYMMETRY NAMBU - GOLDSTONE BOSON: PION ORDER PARAMETER: PION DECAY CONSTANT A a µ() π b (p) = iδ ab p µ f π π µ Axial current f π = 92.4 MeV ν SYMMETRY BREAKING SCALE Λ χ = 4π f π 1 GeV MASS GAP PCAC: m 2 π f 2 π = m q ψψ + O(m 2 q) Gell-Mann - Oakes - Renner Relation

8 Tests of Chiral Symmetry Breaking Scenario: Lattice QCD.8 (am! ) 2.6 m! "676 MeV perfect consistency with leading-order Gell-Mann - Oakes - Renner relation M. Lüscher 294 Proc. Lattice 25 physical point amq m 2 π = m u + m d f 2 π + qq + O(m 2 q) O(m 2 q log m q ) confirmation of standard (Nambu-Goldstone) spontaneous chiral symmetry breaking with Pions as Goldstone Bosons and large quark condensate: qq (.23 GeV) fm 3 fm 3

9 2. Introducing the PNJL MODEL POLYAKOV LOOP dynamics Confinement Synthesis of and NAMBU & JONA-LASINIO model Chiral Symmetry... very much like Ginsburg - Landau approach: identify order parameters as collective degrees of freedom which drive dynamics and thermodynamics

10 2.1 Data base: QCD Thermodynamics on the Lattice (e.g. : F. Karsch, J. Phys. G31 (25) 633) Equation of State of pure gauge (purely gluonic) QCD Energy density Entropy density Pressure T c 27 MeV lattice: G. Boyd et al. Nucl. Phys. B 469 (1996) 419 Extrapolations of full-qcd thermodynamics to non-zero quark chemical potentials nq T n q T 3 Μ.6 T c Μ.4 T c Μ.2 T c T T c C. Ratti, M. Thaler, W. W. : Phys. Rev. D 73 (26) Quark number density lattice: C.R. Allton et al. Phys. Rev. D 68 (23) 1457

11 2.2 Sketch of the PNJL MODEL Action : S(ψ, ψ, φ) = β=1/t dτ V d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] T V U(φ, T) VT Fermionic Hamiltonian density (NJL) : Four-Fermion interaction H = iψ ( α + γ 4 m φ) ψ + V(ψ, ψ ) quark glue V = L int quark Temporal background gauge field Φ = 1 N c Tr [ exp ( i 1/T )] dτ A 4 1 Tr exp(iφ/t) 3 φ = φ 3 λ 3 + φ 8 λ 8 Polyakov loop SU(3) Effective potential : U(Φ) confinement T < T c U(Φ) T > T c deconfinement

12 2.3 Basics of the NJL MODEL Y. Nambu, G. Jona-Lasinio: Phys. Rev. 122 (1961) applications to HADRON PHYSICS: U. Vogl, W. W. : Prog. Part. Nucl. Phys. 27 (1991) 195 T. Hatsuda, T. Kunihiro: Phys. Reports 247 (1994) many others QUARK COLOR CURRENT: J a µ(x) = ψ(x)γ µ λa 2 ψ(x) Assume: short correlation range for color transport between quarks l c <.2 fm G c g 2 l 2 c quark glue quark L int = G c J a µ(x) J µ a(x) (chiral invariant) LOCAL SU(N c) GLOBAL SU(N c ) gauge symmetry of symmetry of QCD NJL model

13 Fierz transform of Color - Current-Current Interaction (N f = 2 flavors): QUARK-ANTIQUARK channels vector + axial vector L q q = G 2 [( ψψ) 2 + ( ψiγ 5 τψ) 2 ] color octet terms H DIQUARK channels L qq = ( ψiγ 5 τ 2 λ A C ψ T )(ψ T Ciγ 5 τ 2 λ A ψ) Self-consistent MEAN FIELD approximation: GAP equation: M = m o G ψψ quark CHIRAL CONDENSATE: ψψ = 2iN f N c d 4 p M θ(λ 2 p 2 ) (2π) 4 p 2 M 2 + iɛ G = 4 3 H 1 GeV 1 m 5 MeV Λ.65 GeV SPONTANEOUS CHIRAL SYMMETRY BREAKING GOLDSTONE BOSONS (pions)...but: no confinement!

14 π the MESON sector Bethe-Salpeter Equation in (colour singlet) QUARK-ANTIQUARK channels: antiquark quark = + T K K T SU(3) NJL model including Axial U(1) breaking t Hooft interaction (INSTANTONS) PSEUDOSCALAR MESON SPECTRUM Gell-Mann - Oakes -Renner Relation satisfied: mass 1. S ].8 [GeV] 1..8 U(1) A U(1) A breaking breaking η m 2 π = m u + m d f 2 π qq + O(m 2 q).6.6 η η f 2 π = 4iN c d 4 p M 2 θ(λ 2 p 2 ) (2π) 4 (p 2 M 2 + iɛ) U(3) x U(3).2 L R SU(3) x SU(3) L R K m s = MeV MeV s π S. Klimt, M. Lutz, U. Vogl, W. W. : Nucl. Phys. A 516 (199) 429 SU(3) m u L = m SU(3) d = m s = R π, K, η, η 8 π, K, η 8 m u,d 5 MeV m = m = 5 MeV u d

15 2.3 Polyakov Loop (Thermal Wilson Line) Order parameter of spontaneously broken Z(N c ) center symmetry of SU(N c ) pure gauge theory ( DECONFINEMENT ) [ ( Φ = 1 )] 1/T Tr exp i dτ A 4 1 Tr exp(iφ/t) N c 3 φ = φ 3 λ 3 + φ 8 λ 8 { SU(3) Effective potential : (R. Pisarsky (2); K. Fukushima (24)) U(Φ, T) = 1 2 a(t) Φ Φ b(t) ln[1 6 Φ Φ + 4(Φ 3 + Φ 3 ) 3(Φ Φ) 2 ] U(Φ) T < T c confinement: Z(3) symmetry intact Φ = U(Φ) T > T c Φ deconfinement: Z(3) symmetry spontaneously broken Φ

16 Polyakov Loop EFFECTIVE POTENTIAL and Z(3) SYMMETRY Φ z Φ = e 2πi n/3 Φ (n = 1, 2, 3,...) U(Φ, T) = 1 2 a(t) Φ Φ b(t) ln[1 6 Φ Φ + 4(Φ 3 + Φ 3 ) 3(Φ Φ) 2 ] 5 U(Φ) Φ Φ 8 S. Rößner

17 Comparison with PURE GLUE Lattice Thermodynamics Minimization of U(Φ(T), T) = p(t) fit a(t), b(t) energy density, entropy density, pressure ε T 4 3 s 4 T 3 3 p T 4 U T Effective potential.5 T 1. T.75 T 1.25 T 2. T T T c O. Kaczmarek et al. Phys. Lett. B 543 (22) S. Rößner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 first order phase transition T c (pure gauge) T 27 MeV

18 2.4 Action : S S(ψ, ψ, φ) = Bosonisation: Thermodynamics of the PNJL Model β=1/t dτ V d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] V T U(φ, T) TV Goldstone Bosons of spontaneously broken Chiral Symmetry π a ψ iγ 5 τ a ψ Scalar Field σ ψψ Chiral Condensate σ ψψ Diquark Field ψ T Γψ Cooper Pair Condensate ψ T Γψ Thermodynamical Potential: Ω = T V ln Z Z = Dϕ exp[ S(T, V, µ)] ( τ τ µ)

19 Thermodynamics of the PNJL Model Thermodynamical Potential after Matsubara sums: Ω = U(Φ, T ) + σ2 2G + 2H { [ ] 2N d 3 p f (2π) 3 T ln expressions with ε( p ) = p + m : Quasiparticle branches : E 1,2 = ε( p ) ± µ b, E 3,4 = (ε( p ) + µ r ) ± i φ 3, E 5,6 = (ε( p ) µ r ) ± i φ 3, ε( p ) = p 2 + m 2 m = m σ = m G ψψ µ b = µ + 2i φ 8 3, µ r = µ i φ 8 3. Minimize Thermodynamical Potential = E j ε ± µ is the difference of the quasip fermions (quarks), where the lower sign ap Re Ω ϕ = (ϕ = σ,, φ 3, φ 8 ) chiral condensate j diquark [ 1 + e E j/t ] + const Mean Field Equations: Polyakov loop generators

20 3. Results PART 1: DECONFINEMENT and CHIRAL SYMMETRY RESTORATION Ψ Ψ Ψ Ψ T T T c CHIRAL and DECONFINEMENT transitions almost coincide! T T GeV (µ = ) PNJL T Ψ Ψ T T GeV PNJL: S. Rößner, C. Ratti, W. W. : Phys. Rev. D 75 (27) 347 Lattice results: G. Boyd et al., Phys. Lett. B 349 (1995)

21 Entanglement of DECONFINEMENT and CHIRAL SYMMETRY RESTORATION: Chiral Limit chiral condensate 1. Polyakov loop.8 PNJL Ψ Ψ Ψ Ψ.6.4 NJL Pure Gauge T GeV 2nd order chiral transition Thomas Hell 1st order deconfinement transition

22 POLYAKOV LOOP at zero chemical potential PNJL prediction in comparison with 2-flavour Lattice QCD Thermodynamics S. Rößner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 Lattice data: O. Kaczmarek, F. Zantow: Phys. Rev. D 71 (25) 5458 first order deconfinement transition (pure gauge) cross-over (with quarks)

23 PNJL : Comparisons with N = 2 Lattice Thermodynamics f PRESSURE and ENERGY DENSITY at zero chemical potential p = Ω(T, µ = ) ε = T p(t, µ = ) T C. Ratti, M. Thaler, W. W.: Phys. Rev. D 73 (26) 1419 p(t, µ = ) p psb PNJL NJL pressure (confinement) (no conf.) N t 6 N t 4 8 (ε-3p)/t 4 N t = interaction measure T T c T/T c Lattice data: F. Karsch, F. Laermann, A. Peikert; Nucl. Phys. B 65 (22) 579

24 Results PART I1: Non-zero QUARK (contd.) CHEMICAL POTENTIAL Quark number density: n q (T, µ) = Ω(T, µ) µ.8.6 C. Ratti, M. Thaler, W.W. PRD 73 (26) Μ.6 T c Μ T c nq T Μ.4 T c Μ.2 T c nq T Μ.8 T c T T c T T c Lattice data: Allton et al. Phys. Rev. D 68 (23)

25 Non-zero QUARK CHEMICAL POTENTIAL (contd.) Role of CONFINEMENT (POLYAKOV loop dynamics) 1.8 NJL classic (no confinement) quark number density nq T PNJL (incl. confinement) Μ 12 MeV T T c C. Ratti, M. Thaler, W.W. PRD 73 (26)

26 Non-zero QUARK CHEMICAL POTENTIAL (contd.) Taylor expansion of pressure: p(t, µ) = T 4 n ( µ n c n (T) T) c 2 c 4 c 6 S. Rößner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 Lattice: C.R. Allton et al. Phys. Rev. D 71 (25) 5458

27 4. PHASE DIAGRAM Issues: Critical point Diquark (superconducting) phase S. Rößner, C. Ratti, W. W.: Phys. Rev. D 75 (27) 347 hadronic phase qq quark gluon phase diquark phase qq... for comparison: critical temperature from Lattice QCD T c 22 MeV ( 2 flavors ) T c = 192 ± 11 MeV ( 2+1 flavors ) M. Cheng et al., Phys. Rev. D74 (26) 5457 O. Kaczmarek, F. Zantow: Phys. Rev. D 71 (25) 5458

28 PHASE DIAGRAM (contd.) Effect of Polyakov Loop Effect of Diquarks T [GeV] T [GeV].1 PNJL without diquarks PNJL without diquarks µ [GeV] µ [GeV] Location of critical point depends sensitively on active degrees of freedom involved S. Rößner, C. Ratti, W. W.: Phys. Rev. D 75 (27) 347

29 PHASE DIAGRAM (contd.).22 T.2 [GeV].18 m = 5 MeV Critical Point and Quark Mass.16 m = m = 5.5 MeV µ [GeV] T c [GeV].16 chiral limit Location of critical point depends sensitively on quark mass.14 m q in MeV.3.4 µ c [GeV]

30 PHASE DIAGRAM (contd.) Status: Lattice QCD and chemical freezeout phenomenology T (MeV) Z. Fodor, S. Katz, JHEP44, Z. Fodor, S. Katz: JHEP 44 (24) 5 P. Braun-Munzinger et al. (26)

31 5. Summary QUASIPARTICLE approach (PNJL model) encoding CHIRAL SYMMETRY and CONFINEMENT in terms of coupled order parameter fields (CHIRAL CONDENSATE, POLYAKOV LOOP) surprisingly successful in comparison with QCD THERMODYNAMICS on the Lattice (T 2 T c ) further developments: PNJL for flavors (including DIQUARKS) Establish contacts with high temperature limit (Transverse Gluons, Hard Thermal Loops, Running Coupling) Extensions beyond MEAN FIELD

32 6. Outlook : PNJL with Running Coupling Running Nambu-Coupling III Α.2 α s (Q) Particle Data Group [1] Lattice (Sternbeck et al., 25 [8]) Q GeV 3 Definition of the Q Running [GeV] Nambu-Coupling, S.Rößner, C. Ratti, W. Weise Thermodynamics of an NJL-Model with R ψψ = N cn f 4π 4 G(Q 2 ) = 2π α(q 2 ) dq for Q Γ Q 2 d 3 M(Q 2 ) Q Q 2 + M(Q 2 ) g(q 2 ) for Q 2 < Γ 2 smooth function α s (Q 2 ) gq continues a δ bg Q 2 p µ heat bath p k ν p G(Q 2 ) = 2π 3 in the IR M(Q 2 ) = G(Q 2 ) ψψ at large Q: k quark condensate Running Nambu-Coupling G GeV Q GeV Q [GeV] 4 Introduction of a three momentum cutoff Ω Γ in order to Q G(Q) [GeV 2 ] Thomas Hell NJL with Simon Rößner contacts with PQCD: replace NJL cutoff by sliding Q-scale see also: Dyson-Schwinger approach

33 NJL with running coupling: dynamical (constituent) quark mass onstituent Quark Mass: Comparison to the Latt ANJL Constituent Quark Mass compared to Lattice Data.3 NJL.25 M(Q) M GeV [GeV] M(Q 2 ) = G(Q 2 ) ψψ Lattice (quenched).5 Quark Self-Energy at Finite Temper Q GeV Q [GeV] Quark Self-Energy Diagram at Finite Temperatu perfect description of pion properties and current algebra k in progress: implementation of Polyakov loop and a δ b thermodynamics incl. thermal self-energies α p µ heat bathν p p k β

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Fundamental Challenges of QCD Schladming 6 March 29 Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Wolfram Weise Is the NAMBU-GOLDSTONE scenario of spontaneous CHIRAL SYMMETRY BREAKING well established?

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Cristoforetti, and Wolfram Weise Physik Department Technische Universität München INT Workshop The QCD Critical Point July 28 August 22, 2008

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN

PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN Mainz, 23. November 2004 PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN Wolfram Weise TU München Stichworte zur Quanten Chromo Dynamik Struktur und Masse des Nukleons Niederenergie

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

QCD and the Nambu Jona-Lasinio Model

QCD and the Nambu Jona-Lasinio Model Lecture 1 QCD and the Nambu Jona-Lasinio Model Ian Cloët The University of Adelaide & Argonne National Laboratory CSSM Summer School Non-perturbative Methods in Quantum Field Theory 11 th 15 th February

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

LOW-ENERGY QCD and STRANGENESS in the NUCLEON PAVI 09 Bar Harbor, Maine, June 009 LOW-ENERGY QCD and STRANGENESS in the NUCLEON Wolfram Weise Strategies in Low-Energy QCD: Lattice QCD and Chiral Effective Field Theory Scalar Sector: Nucleon Mass and

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

arxiv:hep-ph/ v4 10 Dec 2005

arxiv:hep-ph/ v4 10 Dec 2005 1 The mass of the nucleon in a chiral quark-diquark model arxiv:hep-ph/0408312v4 10 Dec 2005 Keitaro Nagata 1, Atsushi Hosaka 1 and Laith. J. Abu-Raddad 2 1 Research Center for Nuclear Physics (RCNP),

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

arxiv: v2 [hep-ph] 17 Dec 2008

arxiv: v2 [hep-ph] 17 Dec 2008 Dynamics and thermodynamics of a nonlocal Polyakov Nambu Jona-Lasinio model with running coupling T. Hell, S. Rößner, M. Cristoforetti, and W. Weise arxiv:0810.1099v [hep-ph] 17 Dec 008 Physik-Department,

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

The heavy mesons in Nambu Jona-Lasinio model

The heavy mesons in Nambu Jona-Lasinio model The heavy mesons in Nambu Jona-Lasinio model Xiao-Yu Guo, Xiao-Lin Chen, and Wei-Zhen Deng School of physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871,

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Chiral Symmetry Restoration and Pion Properties in a q-deformed NJL Model

Chiral Symmetry Restoration and Pion Properties in a q-deformed NJL Model 8 Brazilian Journal of Physics, vol. 36, no. B, March, 6 Chiral Symmetry Restoration and Pion Properties in a q-deformed NJL Model V. S. Timóteo Centro Superior de Educação Tecnológica, Universidade Estadual

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256.

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256. Selected Publications Wolfram Weise status: December 2017 A. Monographs Pions and Nuclei (with T.E.O. Ericson) International Series of Monographs in Physics Oxford University Press Clarendon, Oxford 1988

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov

On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov Institute for Physical Problems Baku tate University Baku, Azerbaijan INTRODUCTION Multi-particle equations are a

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL NUC-MINN-96/3-T February 1996 arxiv:hep-ph/9602400v1 26 Feb 1996 PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL Sangyong Jeon and Joseph Kapusta School of Physics and Astronomy

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Polyakov loop extended NJL model with imaginary chemical potential

Polyakov loop extended NJL model with imaginary chemical potential SAGA-HE-238-7 Polyakov loop extended NJL model with imaginary chemical potential Yuji Sakai, 1, Kouji Kashiwa, 1, Hiroaki Kouno, 2, and Masanobu Yahiro 1, 1 Department of Physics, Graduate School of Sciences,

More information

The phase diagram of strongly interacting matter

The phase diagram of strongly interacting matter The phase diagram of strongly interacting matter TIFR Indian Institute of Science, Bangalore November 25, 2011 Introduction 1 Introduction 2 Bulk Strongly Interacting Matter 3 Relativistic Heavy-ion Collisions

More information

Observing chiral partners in nuclear medium

Observing chiral partners in nuclear medium Observing chiral partners in nuclear medium Su Houng Lee. Order Parameters of chiral symmetry breaking - Correlation function of chiral partners. f (8) and w meson 3. Measuring the mass shift of f (8)

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

The Quark-Gluon Plasma in Equilibrium

The Quark-Gluon Plasma in Equilibrium The Quark-Gluon Plasma in Equilibrium Dirk H. Rischke arxiv:nucl-th/0305030v2 13 Aug 2003 Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Germany February 4, 2008

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report 67th Annual Meeting of the Physical Society of Japan 25 March 2012 Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report Wolfram Weise Low-energy QCD: symmetries and symmetry

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV M. M. Islam 1, J. Kašpar 2,3, R. J. Luddy 1 1 Department of Physics, University of Connecticut, Storrs, CT 06269

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information