Baryonic Spectral Functions at Finite Temperature

Size: px
Start display at page:

Download "Baryonic Spectral Functions at Finite Temperature"

Transcription

1 Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July XQCD 2008

2 QCD Phase Diagram T LHC MeV 100MeV ~ K RHIC crossover CEP(critical end point) 1st order QGP (quark-gluon plasma) Hadron Phase chiral symmetry breaking confinement order? CSC (color superconductivity) 5-10ρ 0 μ B

3 Hadrons above Tc? Hadrons above T c No a priori reason that no hadrons exist above T c QGP looks like strongly interacting system (low viscosity...etc.) Definition of Spectral Function (SPF) ρ J μν μ ( k, k) e (2 π ) ( ) 0 : ( En μ Nn)/ T 0 0 Pmn / T 4 3 μ ( ) ν ( ) δ nm, Z mn m n nj 0 m mj 0 n(1 e ) ( k P ) ( + ) : Boson(Fermion) A Heisenberg Operator with some quantum # n : Eigenstate with 4-momentum P = P P P μ n mn Information on Dilepton production Photon Production J/ψ suppression...etc. : encoded in SPF

4 Microscopic Understanding of QGP Importance of Microscopic Properties of matter, in addition to Bulk Properties In condensed matter physics, common to start from one particle states, then proceed to two, three,... particle states (correlations) Spectral Functions: One Quark Two Quarks mesons color singlet octet diquarks Three Quarks baryons... need to fix gauge need to fix gauge need to fix gauge

5 Photon and Dilepton production rates Photon production rate (, ) 3 drγ α ρt ω = p p = 3 ω d p π exp( ω T) 1 Dilepton production rate 4 2 d R + l l α (2 ρt + ρl)( ω, p) = d p 3π p exp( ω T) 1 (for massless leptons) where ρ T and ρ L are given by ρ ( ω, p) = ρ ( ω, p)( P ) + ρ ( ω, p)( P ) μν T T μν L L μν ρ μν : QCD EM current spectral function ρ ( k, k) = ρ ( k, k) P + ρ ( k, k) P ( ) ( ) μν 0 T 0 T μν L 0 L μν em Jμ = jμ = uγμu dγμd sγμs

6 Lattice calculation of spectral functions No calculation yet for finite momentum light quark spectral functions (, ) 3 drγ α ρt ω = p p = 3 ω d p π exp( ω T) 1 LQGP collaboration, in progress So far, only pqcd spectral function has been used Calculation for zero momentum light quark spectral functions by two groups 4 2 d R + l l α (2 ρt + ρl)( ω, p) = d p 3π p exp( ω T) 1 ρ T = ρ zero momentum Since the spectral function is a real time quantity, necessary to use MEM (Maximum Entropy Method)

7 QGP is strongly coupled, but... D Enterria, LHC 2007

8 Lattice calculation of spectral functions No calculation yet for finite momentum light quark spectral functions (, ) 3 drγ α ρt ω = p p = 3 ω d p π exp( ω T) 1 LQGP collaboration, in progress So far, only pqcd spectral function has been used Calculation for zero momentum light quark spectral functions by two groups 4 2 d R + l l α (2 ρt + ρl)( ω, p) = d p 3π p exp( ω T) 1 ρ T = ρ zero momentum Since the spectral function is a real time quantity, necessary to use MEM (Maximum Entropy Method)

9 Spectral Functions above T c m~m s ss-channel at T/T c = 1.4 spectral functions A(ω)/ω 2 peak structure Lattice Artifact Asakawa, Nakahara & Hatsuda [hep-lat/ ]

10 Another calculation log scale! massless quarks smaller lattice dilepton production rate ~2 c Karsch et al., 2003 In almost all dilepton calculations from QGP, pqcd expression has been used How about for heavy quarks?

11 J/ψ non-dissociation above T c Lattice Artifact J/ψ (p = 0) disappears between 1.62T c and 1.70T c Lattice Artifact Asakawa and Hatsuda, PRL 2004

12 Result for PS channel (η c ) at Finite T η c (p = 0) also disappears between 1.62T c and 1.70T c Asakawa and Hatsuda, PRL 2004

13 Importance of Understanding T Success of v 2 p p 3v 2 3 ( p ) v and v ( p ) M p t B p t 2 t 2 2 t 2 ( x) n nx v 2M (p TM ) : v 2 B (p TB ) ~ 2 : 3 for p TM : p T B = 2 : 3 φ dn i dn = N i2 i v1cos( 0) + 2v2 cos 2( 0) + dydϕ dydϕd p T ( ϕ ϕ ϕ ϕ )

14 Constituent Quark Number Scaling v 2M (p TM ) : v 2 B (p TB ) ~ 2 : 3 for p TM : p T B = 2 : 3 Partons are flowing and Partons recombine to make mesons and baryons Assumption Evidence of Deconfinement All hadrons are created at hadronization simultaneously

15 Baryon Operators Nucleon current ( ) ( ) J N( x) = εabc s ua( x) Cdb( x) γ5uc( x) + t ua( x) Cγ5db( x) uc( x) s = t = 1 Ioffe current On the lattice, used s = 0, t = 1, u(x) = d(x) = q(x), J N (x) J(x) Euclidean correlation function at zero momentum 3 D(,0) τ = d x J(, τ x) J(0,0) D(,0) τ = K(, τωρω ) ( ) dω 1 ω exp τt 2 T K(, τω) = ω ω exp + exp 2T 2T

16 Spectral Functions for Fermionic Operators 3 D( τ,0) = d x J( τ, x) J(0,0) D(,0) τ = K(, τωρω ) ( ) dω ρ( ω) = ρ ( ω) γ + ρ ( ω): ρ ( ω), ρ ( ω) 0 0 s 0 = ρ ( ω) Λ γ + ρ ( ω) Λ γ s independent ρ ( ω) = ρ ( ω), ρ ( ω) = ρ ( ω) 0 0 s ρ ( ω) = ρ ( ω) = ρ ( ω) + ρ ( ω) 0 semi-positivity + 0 s s ρ+ ( ω)( ρ ( ω)) : neither even nor odd For Meson currents, SPF is odd Thus, need to and can carry out MEM analysis in [-ω max, ω max ] In the following, we analyze ρω ( ) ρ ( ω) + 5 ω

17 Lattice Parameters 1. Lattice Sizes (T = 1.62T c ) 54 (T = 1.38T c ) 72 (T = 1.04T c ) 80 (T = 0.93T c ) 96 (T = 0.78T c ) 2. β = 7.0, ξ 0 = 3.5 ξ = a σ /a τ = 4.0 (anisotropic) 3. a τ = fm L σ = 1.25 fm 4. Standard Plaquette Action 5. Wilson Fermion 6. Heatbath : Overrelaxation = 1 : sweeps between measurements 7. Quenched Approximation 8. Gauge Unfixed 9. p = 0 Projection 10. Machine: CP-PACS

18 Analysis Details Default Model At zero momentum, ρ ( ω ) ρ ( ω ) sgn( ) ω ω + = = ( 2π ) Espriu, Pascual, Tarrach, 1983 Relation between lattice and continuum currents LAT 3/4 15/4 1 1 CON J (, τ x) = aτ aσ J (, τ x) 2 κκ Z τ σ O 3/2 ω max = 45 GeV ~ 3π/a σ (3 quarks) In the following, lattice spectral functions are presented Z O = 1 is assumed

19 Stat. and Syst. Error Analyses in MEM Generally, The Larger the Number of Data Points and the Lower the Noise Level The closer the result is to the original image Need to do the following: Put Error Bars and Make Sure Observed Structures are Statistically Significant Change the Number of Data Points and Make Sure the Result does not Change Statistical Systematic in any MEM analysis

20 Below T c : Light Baryon sss baryon parity - parity +

21 Below T c : Charm Baryon ccc baryon parity - parity +

22 Above T c : Light Baryon peak near zero + symmetric and equally separated peaks parity - parity +

23 @Higher T only symmetric and equally separated peaks parity - parity +

24 Above T c : Charm Baryon peak near zero + symmetric and equally separated peaks parity - parity +

25 @Higher T only symmetric and equally separated peaks parity - parity +

26 Statistical Analysis: Light Peaks are statistically significant

27 Statistical Analysis: Charm T Peak near zero is statistically significant

28 Origin of Near Zero Structure Scattering Term p = Scattering term at 0 m 1 ( ω, p ) 1 1 a.k.a. Landau damping J N p = 0 m 2 ( ω, p ) 2 1 This term is non-vanishing only for 0 < ω = ω ω m m For J/ψ (m 1 =m 2 ), this condition becomes 0 < ω = ω2 ω1 ε zero mode cf. QCD SR (Hatsuda and Lee, 1992)

29 Scattering Term (two body case) m 1 ( ω, p ) 1 1 J N p = 0 m 2 ( ω, p ) 2 1 This term is non-vanishing only for 0 < ω = ω ω m m T m, m p 0 m m 2 1 m m 2 1 (Boson-Fermion case, e.g. Kitazawa et al., 2008)

30 Scattering Term (three body case) m 1 ( ω, p ) 1 1 J N p = 0 m 2 m 3 ( ω, p ) 2 2 ( ω, p ) 3 3 T m1, m2, m3 p 1 0 ω

31 Negative parity: a possible interpretation anti-quark: parity - m 1 ( ω, p ) 1 1 J N p = 0 L 0 if m 2 ( ω, p ) or 1 then: parity T m, m p

32 Origin of Symmetric Structure Wilson Doublers Mass of Wilson Doublers with r = 1 in the continuum limit m 2n π + n π : number of momentum components equal to π (1,2,3) a If quark mass can be neglected: Masses of baryons with doublers Scattering term peaks with quark-doubler, doubler-doubler pairs Approximately equally separated and symmetric in ω

33 QCD Phase Diagram Quark-antiquark correlations T LHC Diquark correlations Baryon correlations RHIC QGP (quark-gluon plasma) MeV 100MeV ~ K crossover CEP(critical end point) 1st order Hadron Phase chiral symmetry breaking confinement order? CSC (color superconductivity) 5-10ρ 0 μ B

34 Summary Baryons disappear just above T c A sharp peak with negative parity near ω=0 is observed in baryonic SPF above T c This can be due to diquark-quark scattering term and imply the existence of diquark correlation above T c Diquarks disappear below meson disapperance temperature Direct measurement of SPF of one and two quark operators with MEM is desired To understand doubler contribution, calculation with finer lattice is desired

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

Low mass dileptons from Pb + Au collisions at 158 A GeV

Low mass dileptons from Pb + Au collisions at 158 A GeV PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 2003 physics pp. 1073 1077 Low mass dileptons from Pb + Au collisions at 158 A GeV SOURAV SARKAR 1, JAN-E ALAM 2;Λ and T HATSUDA 2 1

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Deconfinement Phase Transition in QCD

Deconfinement Phase Transition in QCD Deconfinement Phase Transition in QCD Weicheng Lv Department of Physics, University of Illinois (Dated: May 5, 2008) At low energy, the interactions between quarks are so strong that they have to form

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Spectral functions in QCD

Spectral functions in QCD Spectral functions in QCD Gert Aarts ECT*, May 2016 p. 1 Strongly interacting matter: transport and response aim of the meeting common questions for diverse systems cold atomic gases hadronic and quark-gluon

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

arxiv: v1 [hep-lat] 14 Oct 2015

arxiv: v1 [hep-lat] 14 Oct 2015 Calculation of free baryon spectral densities at finite temperature arxiv:151.469v1 [hep-lat] 14 Oct 15 and Gert Aarts Department of Physics, College of Science, Swansea University, Swansea, United Kingdom

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz Open charm in heavy-ion collisions A Heavy-Ion Seminar talk by Szymon Harabasz Outline: Charmed hadrons Why charm physics? How to do charm physics Open questions on open charm: D mesons R AA at low p T

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

The Secret of Mass. Can we Evaporate the Vacuum at RHIC?

The Secret of Mass. Can we Evaporate the Vacuum at RHIC? : Can we Evaporate the Vacuum at RHIC? Texas A&M University February 24, 2007 Outline The Beauty of Nature: Symmetries The Beauty of Nature: Symmetries What is a symmetry? Geometry: Certain operations

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

arxiv: v1 [hep-lat] 10 Oct 2015

arxiv: v1 [hep-lat] 10 Oct 2015 BI-TP /6 A stochastic approach to the reconstruction of spectral functions in lattice QCD arxiv:.9v [hep-lat] Oct, Heng-Tong Ding Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

Fluctuations, Correlations and bound states in the QGP

Fluctuations, Correlations and bound states in the QGP Fluctuations, Correlations and bound states in the QGP Introduction BS correlations Some speculations Work in collaboration with: A. Majumder and J. Randrup Phase diagram Z. Fodor et al., PLB Susceptibilities

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

MULTI-CHANNEL MEASUREMENTS OF LIGHT VECTOR MESONS AT PHENIX

MULTI-CHANNEL MEASUREMENTS OF LIGHT VECTOR MESONS AT PHENIX International Journal of Modern Physics E Vol. 16, Nos. 7 & 8 (2007) 2154 2159 c World Scientific Publishing Company MULTI-CHANNEL MEASUREMENTS OF LIGHT VECTOR MESONS AT PHENIX KENTA SHIGAKI [PHENIX Collaboration]

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Confronting Theory with Experiment at the LHC

Confronting Theory with Experiment at the LHC Confronting Theory with Experiment at the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators 21 st IPM Physics Spring Conference May 21-22, 2014 1 Standard Model: a theory of interactions

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Photoabsorption and Photoproduction on Nuclei in the Resonance Region Photoabsorption and Photoproduction on Nuclei in the Resonance Region Susan Schadmand Institut für Kernphysik First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005 electromagnetic probes Hadron

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition

Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition Gert Aarts 1, Chris Allton 1, Davide De Boni 1,a, Simon Hands 1, Chrisanthi Praki 1, Benjamin Jäger 1,2,b,

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Particle Physics. Lecture 11: Mesons and Baryons

Particle Physics. Lecture 11: Mesons and Baryons Particle Physics Lecture 11: Mesons and Baryons Measuring Jets Fragmentation Mesons and Baryons Isospin and hypercharge SU(3) flavour symmetry Heavy Quark states 1 From Tuesday: Summary In QCD, the coupling

More information

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan Lattice QCD Evidence for Exotic Tetraquark Resonance Λ and Kyosuke Tsumura Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 66-85, Japan E-mail: suganuma@scphys.kyoto-u.ac.jp,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Overview of Elementary Particle Physics

Overview of Elementary Particle Physics Overview of Elementary Particle Physics Michael Gold Physics 330 May 3, 2006 Overview of Elementary Particle Physics Rutherford e p elastic elastic scattering e p inelastic scattering zeus Parton model

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Lattice Methods for Hadron Spectroscopy: new problems and challenges Lattice Methods for Hadron Spectroscopy: new problems and challenges Sinéad Ryan School of Mathematics, Trinity College Dublin, Ireland INT, Seattle, 10 th August, 2012 Sinéad Ryan (TCD) 1 / 28 Plan A

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson IX April 12, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA

Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Omar Tarek ElSherif Department of Physics,

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Parton dynamics in heavy-ion collisions from FAIR to LHC

Parton dynamics in heavy-ion collisions from FAIR to LHC Parton dynamics in heavy-ion collisions from FAIR to LHC Wolfgang Cassing Erice, 21.09.2012 The holy grail: Search for the critical point The phase diagram of QCD Study of the phase transition from hadronic

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL Towards Exploring Parity Violation with Lattice QCD Brian Tiburzi 30 July 2014 RIKEN BNL Research Center Towards Exploring Parity Violation with Lattice QCD Towards Exploring Parity Violation with Lattice

More information

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Gert Aarts Saariselkä April 2018 p. 1 Mesons in a medium mesons in a medium very well studied hadronic phase: thermal broadening,

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan Lattice QCD Evidence for Exotic Tetraquark Resonance and Kyosuke Tsumura arxiv:hep-lat/0509121v1 26 Sep 2005 Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502, Japan E-mail:

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Professor David Evans The University of Birmingham Nuclear Physics Summer School Queen s University, Belfast XX th August 2017 Outline of Lectures

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

QUARKS, GLUONS, AND LATTICES. Michael Creutz Brookhaven Lab. Quarks: fundamental constituents of subnuclear particles

QUARKS, GLUONS, AND LATTICES. Michael Creutz Brookhaven Lab. Quarks: fundamental constituents of subnuclear particles QUARKS, GLUONS, AND LATTICES Michael Creutz Brookhaven Lab Quarks: fundamental constituents of subnuclear particles Gluons: what holds them together Q _ Q Lattices: a mathematical framework for calculation

More information

Magnetic Field Quenching of Quarkonium Decay

Magnetic Field Quenching of Quarkonium Decay Magnetic Field Quenching of Quarkonium Decay PARIS 2013 P.Filip 11. June 2013 Institute of Physics, SAV, Bratislava n, p, D, X, S, L, W : mag. moment mu, md, ms mc = 2ms / 3 mb = ms / 9 Vector-meson elmag.

More information

DAE-HEP, IIT Guwahati Dec,2014

DAE-HEP, IIT Guwahati Dec,2014 DAE-HEP, IIT Guwahati Dec,014 8-1 Strange Hyperon Productions at LHC energy Purabi Ghosh Fakir Mohan University, Balasore PLAN OF TALK: Introduction Strange particles and Relativistic Heavy Ion Collisions

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Basics of CP viola-on

Basics of CP viola-on Basics of CP viola-on Summary from previous class pp results of heavy flavor mesons. Charm meson measurements in the decay channel D 0, D +, D *+, D s Fragmenta-on frac-on measured at LHC consistent with

More information